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Abstract

The statistical likelihood of Gabor filters and pri-
mary visual cortex has been of interest for years,
yet learning mechanisms proposed did not generate
satisfactory Gabor-like receptive fields. In this pa-
per, a new computational model of self-organised
Hebbian learning (SOHL) is proposed to work on a
multi-resolution image pyramid for the problem of
visual receptive field learning. Receptive fields of
both orientation and spatial frequence selectivity
as observed in our simulation result.

1 Introduction

Simple cells in the primary visual cortex, first de-
tected by Hubel and Wiesel early in 1962, are
found to behave approximately like 2-D Gabor fil-
ters in spatial domain and spatial frequency do-
main. With these effective representation of loca-
tion, orientation and spatial frequency content of
the image, it is believed that shape and texture
analyses start at these simple cells. And a series of
publications by Daugman [2] et al. on mathematic
framework eventually draw great attention in the
research field of Gabor filtering applications.

The statistical likelihood of Gabor filters and re-
ceptive fields (RFs) of primary visual cortex gives
rise to the question that how such resemblance
could be developped in primary visual systems. In
[3] Pattison pointed out the connection between
Fédiak’s Hebbian learning scheme [4] and image re-
construction with Gabor functions by a minimum
mean square error (MMSE) criterion. However, ex-
periments carried on Fodiak’s algorithm have failed
to produce Gabor filter-like weights on the feed-
forward connections. And the MMSE criterion
which Pattison employed is biologically question-
able, since it is quite clear that the image is not re-
constructed with sheer fidelity in human brain. In
[5], Sanger tried to learn receptive fields in a single
layered feed-forward network with GHA carried for

K-L Transform. Orthogonality between RFs was
resulted and some patterns found no biological ex-
planation.

Barrow [6] has proposed another model of re-
ceptive field learning. He applied plain Hebbian
learning rule for RFs operating on a band-passed
white noise image as well as a natural image. A
Winner-Takes-All strategy was used so that for a
certain input only the RF which strongestly re-
sponds to it would be updated. Compared with
Sanger’s model, this approach with competitive
learning is more of biological plausibility. However,
although the model is successfully applied on nat-
ural images, considerable limitation exist where

o The RF window size is limited so that the win-
dow never covers two edges or blobs at the
same time. Such a limitation restrains the
possibility to learn information of spatial fre-
quency in the image.

e There is no guarantee on the competitive
learning between different units so as to cope
with ill initialization and under-learning, and
after convergence not all patterns learned are
meaningful and useful for image analysis.

2 Computational Model

2.1 Self-organised Hebbian learning;:

optimization analysis

Barrow’s model uses plain competitive learning at
the winning unit, and no cooperation between RFs
exist. We argue that for the problem of RFs learn-
ing with orientation and frequency sensitivity, and
learn from it in proportion to their responses. In
this case we introduce a neighbourhood for each
winning unit and learning is self-organised within

the neighbourhood.

Let p(z) denote the probability density function
of input x. If we want to reconstruct the input x



from the active outputs, a cost or error function F
can be defined as

E= /Hx = hoeweys P p(x)dx (1)
k

where b is the index of best-matching unit. Usu-
ally p(z) is unknown, and the optimization process
is approximated by minimizing the following cost
function for each input sample x:
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Given the constraint > ; hpx = 1, it goes further
to -
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We can see that, in the case of plain competition
among output neurons, weight modification occurs
only on the output node with maximum response,
and the neighbourhood function h() shrinks into
the impulse function, i.e.,

1 fb=k
hox = 8 = { 0 otherwise ®)
Then the criterion function defined in Eqn.(2) is
equivalent to Eqn.(4). In general, the cost function
E5 is the upper bound of E;. To minimize the cost
function E3, We take the gradient decent of Ej in

Eqn.4. Notice that yp = w{x, we have

Vw, B2 = =2hf Vw () + b}, Vw, (i w] wi)
= ~2hi ;(2yix) + b} ;(2yix|lwi | + 2ywi)
(6)
If weight vectors are normalized during the learning
process, i.e., {|w;|| = 1 for every ¢, it yields to

Vw,Ey = —2h3 ;(vix — yZw;) (M
Hence we obtain the following learning rule:
Aw; = 7h§:i(y,~x - $w)x -Yw,Ex (8)

where 7 is the learning rate. From Eqn.(8) it can
be easily seen that the learning algorithm incorpo-
rated in the computational model is a combination
of the Oja rule and a process of self-organisation
similar to Kohonen’s approach [9]. We denote
the algorithm as ‘Self-organising Hebbian Learn-
ing’ (SOHL).

Because of the locality of the SOHL algorithm,
the criterion of minimizing the cost function E5 is

not aimed at a perfect reconstruction of the original
input, but to carry maximum information of the in-
put onto the organised output layer. As shown in
(8], the implementation of Hebbian learning under
certain condition will gain a maximum information
transmission rate on the output layer. And since
that only the output cell with maximum response
along with its neighbourhood modify their synapse
weights at a time, it is unlikely that this compet-
itive implementation will learn all the orthogonal
eigenvectors of a input space, as Sanger commented
[5]. Rather the input space diverge into several
subspace within which the eigenvector for each of
them is learned. Hence orthogonality among re-
ceptive fields is not necessary, which is biological
supported.

3 Self-organised Learning of
Receptive Fields

3.1 Multi-resolution image pyramid

A multi-resolution image pyramid is constructed
following Burt [7] to provide sufficient spatial fre-
quency information for RF learning. First, the orig-
inal image I is reduced into a half-sized image I,
by convolving with a gaussian window g¢:

LG, = Y Y g(mn)I(2i+m,2j+n) (9)

m=—2n=-2

Then the reduced image I, is expanded into an
image which is of the same size as the image I

Io=I-I.=4 Y Y g(mn)((i-m)/2,(j—n)/2)

m=-=2n=-2
(10)
And the Laplacian image I; is obtained by

L=I-1, (11)

Fig.1 shows the Laplacian image sequence gener-
ated from the original 512x512 image. It can be
shown that in Eqn.(11) the Laplacian image is
equivalent to the original image convolved with a
DOG function. Hence we consider the pyramid
construction is equivalent to the pre-cortical pro-
cessing in retina and LGN units as modelled in [6].

3.2 Frequency selectivity

For the sake of optimal training, input image
patches are discriminated by their local frequen-
cles, and patches in different frequency scale are
used to train the corresponding RF, resulting in



Figure 1: Laplacian Pyramid for Lena

RFs of different orientation and frequency selectiv-
ity after competitive learning. A very simple yet
fast method is used to estimate the local frequency.
If the intensity value sequence within the image
patch is treated as a waveform, with D.C. compo-
nent drawn across it, and if we count the significant
zero-crossings on both the x- and y- axes, the esti-
mated frequency fcan be calculated as follows:

f= (B[22 + (E(ny)/22 (12)
where n, and n, are zero-crossing rates on x-axis
and y-axis respectively, and E(.) means taking av-
erage. Zero-crossings within a threshold bound are
ignored since they are of little significance in local
frequency estimation.

3.3 Computation scheme  with

SOHL

The computation scheme is shown in Fig.2 . At
the first stage a Laplacian pyramid of the original
image is generated. Meanwhile, RFs correspond-
ing to each spatial frequency stage are randomly
initialized. Then a small patch of image is sampled
from the Laplacian pyramid, also randomly. The
sampled image patch is classified to a certain fre-
quency level after a frequency estimation process,
and it is multiplied to the receptive units on the
frequency level to generate the responses:

N N

Yk = Z I;j Ry i (13)
i

where Ry is one of the M RF's in the k-th frequency

level, and N is the size of both the image patch Iy

and RFs.

The competitive learning among these M recep-
tive units then picks out the unit with the maxi-
mum response, i.e.,

(14)
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Figure 2: To learn RFs from multi-resolution

And the RFs in the neighbourhood of the winning
unit m are modified by the SOHL rule:

R! =R, + o(y:L — y?R;)A(|i — m], r?  (15)

where « is the neighbourhood radius which shrinks
gradually with the time, and h(.) is a normalized
gaussian neighbourhood function taking the form:

h(d,r) = e~ 417" (16)

4 Simulation Result and Dis-
cussion

Figure 3: Grayscale images for training: ‘Lena’
and a composed brodatz texture image. Both are
of 512 x 512 size.

Due to the nature of the work we choose nat-
ural images with detailed frequency information
for training. The standard image ‘Lena’ and a
composed Brodatz texture image, both shown in
Fig.3, are used in our experiment. Original im-
ages are of 512 x 512 size, and 2 cycles of reducing-
expanding processes generate an image pyramid of
3 images, each of size 512 x 512, 256 x 256 and
128 x 128 respectively. The receptive fields are of
4 frequency levels, and on each level there are 12
competitive fields aimed for orientation selectivity,
randomly initialized at beginning. Image patch of
fixed 32 x 32 size are randomly sampled from the
image pyramid and fed into the frequency selection



unit. After the frequency level is decided, receptive
units on that level will learn from the input image
patch through competition. The neighbourhood
width begins at 4, and shrinks gradually to 0 dur-
ing learning. The initial learning rate isy = 0.0015.
Fig.4 shows the intensity of RF patterns after train-
ing, where RFs on the same frequency level are
lined up in a row. After convergence, the increas-
ing average selectivity of winning units, defined as
Ymaz/ Y_; i, is found to be saturated, as shown in
Fig.5.
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Figure 5: Selectivity of Ouiput Units on Level 2

With the self-organisation implemented, the
performance of our computation model is improved
in that a much flatter firing rate distribution is
gained, which implies that more receptive fields
may learn from the input image patch, and there-
fore, more likely to develop finer orientation selec-
tivity.

It can be seen in Fig.4 that although the recep-
tive fields bear similar frequency and orientation
selectivity, they are not strictly Gabor-like. RFs on
higher frequency levels suffer from under-learning.
Besides, orientations displayed in each frequency
level may differ. We argue that these results indi-
cate the dependency to the training image. In real
visual systems, Gabor-like cortical synapse weights

can be developped by learning from a large pop-
ulation of visual stimulations, and therefore gain
the independency to individual stimulation along
with the adaptiveness to almost all of them. With
the SOHL carried out on 2-dimentional directions,
it is also possible that organised cortical column
can be formed. To achieve such a goal, and to test
the plausibility of applying SOHL in image analysis
tasks, further work needs to be done.
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