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Abstract 

The statistical likelihood of Gabor filters and pri- 
mary visual cortex has been of interest for years, 
yet learning mechanisms proposed did not generate 
satisfactory Gabor-like receptive fields. In this pa- 
per, a new computational model of self-organised 
Hebbian learning (SOHL) is proposed to work on a 
multi-resolution image pyramid for the problem of 
visual receptive field learning. Receptive fields of 
both orientation and spatial frequence selectivity 
as observed in our simulation result. 

1 Introduction 

Simple cells in the primary visual cortex, first de- 
tected by Hubel and Wiesel early in 1962, are 
found to behave approximately like 2-D Gabor fil- 
ters in spatial domain and spatial frequency do- 
main. With these effective representation of loca- 
tion, orientation and spatial frequency content of 
the image, it is believed that shape and texture 
analyses start at these simple cells. And a series of 
publications by Daugman [a] et al. on mathematic 
framework eventually draw great attention in the 
research field of Gabor filtering applications. 

The statistical likelihood of Gabor filters and re- 
ceptive fields (RFs) of primary visual cortex gives 
rise to the question that how such resemblance 
could be developped in primary visual systems. In 
[3] Pattison pointed out the connection between 
Fodi5k’s Hebbian learning scheme [4] and image re- 
construction with Gabor functions by a minimum 
mean square error (MMSE) criterion. However, ex- 
periments carried on Fodibk’s algorithm have failed 
to produce Gabor filter-like weights on the feed- 
forward connections. And the MMSE criterion 
which Pattison employed is biologically question- 
able, since it is quite clear that the image is not re- 
constructed with sheer fidelity in human brain. In 
[5], Sanger tried to learn receptive fields in a single 
layered feed-forward network with GHA carried for 

K-L Transform. Orthogonality between RFs was 
resulted and some patterns found no biological ex- 
planation. 

Barrow [6] has proposed another model of re- 
ceptive field learning. He applied plain Hebbian 
learning rule for RFs operating on a band-passed 
white noise image as well as a natural image. A 
Winner-Takes-All strategy was used so that for a 
certain input only the RF which strongestly re- 
sponds to it would be updated. Compared with 
Sanger’s model, this approach with competitive 
learning is more of biological plausibility. However, 
although the model is successfully applied on nat- 
ural images, considerable, limitation exist where 
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2.1 

The RF window size is limited so that the win- 
dow never covers two edges or blobs at the 
same time. Such a limitation restrains the 
possibility to  learn information of spatial fre- 
quency in the image. 

There is no guarantee on the competitive 
learning between dii’ierent units so as to cope 
with ill initialization and under-learning, and 
after convergence not all patterns learned are 
meaningful and useful for image analysis. 

Computational Model 

Self-organised Hebbian learning: 
optimization analysis 

Barrow’s model uses plain competitive learning at  
the winning unit, and no cooperation between RFs 
exist. We argue that for the problem of RFs learn- 
ing with orientation and frequency sensitivity, and 
learn from it in proportion to their responses. In 
this case we introduce a neighbourhood for each 
winning unit and learning is self-organised within 
the neighbourhood. 

Let p ( z )  denote the probability density function 
of input x. If we want to reconstruct the input x 



from the active outputs, a cost or error function E 
can be defined as 

where b is the index of best-matching unit. Usu- 
ally p ( z )  is unknown, and the optimization process 
is approximated by minimizing the following cost 
function for each input sample x: 

E1 = IIX - hb,kWkYk1I2 (2) 
k 

Given the constraint ck hb,k = 1, it goes further 
to - 

k k 

(3) 

E2 = hz,kllx - Y k W k ( l 2  (4) 
Define 

k 

We can see that, in the case of plain competition 
among output neurons, weight modification occurs 
only on the output node with maximum response, 
and the neighbourhood function h ( )  shrinks into 
the impulse function, i.e., 

(5) 
1 i f b = k  

h b , k  = &b,k = 0 otherwise 

Then the criterion function defined in Eqn.(2) is 
equivalent to Eqn.(4). In general, the cost function 
E2 is the upper bound of El.  To minimize the cost 
function Ez, We take the gradient decent of E2 in 
Eqn.4. Notice that Yk = w z x ,  we have 

{ 

Ow,& = -2htiVw ($) + hi,dVw,(y:wTwi) 
= -2h;,i(2yp4 + h,,l( 2Yixllw;112 + 2y;wd) 

(6) 
If weight vectors are normalized during the learning 
process, i.e., llwill = 1 for every i, it yields to 

Vw, E2 = -2hz,i(yix - Y:w~) (7) 

Hence we obtain the following learning rule: 

Awi y h i , i ( ~ ; x -  $wi) cx -Vw,Ez (8) 

where 7 is the learning rate. From Eqn.(8) it can 
be easily seen that the learning algorithm incorpo- 
rated in the computational model is a combination 
of the Oja rule and a process of self-organisation 
similar to Kohonen’s approach [9]. We denote 
the algorithm as ‘Self-organising Hebbian Learn- 
ing’ (SOHL). 

Because of the locality of the SOHL algorithm, 
the criterion of minimizing the cost function E2 is 

not aimed at a perfect reconstruction of the original 
input, but to carry maximum information of the in- 
put onto the organised output layer. As shown in 
[8], the implementation of Hebbian learning under 
certain condition will gain a maximum information 
transmission rate on the output layer. And since 
that only the output cell with maximum response 
along with its neighbourhood modify their synapse 
weights a t  a time, it is unlikely that this compet- 
itive implementation will learn all the orthogonal 
eigenvectors of a input space, as Sanger commented 
[5]. Rather the input space diverge into several 
subspace within which the eigenvector for each of 
them is learned. Hence orthogonality among re- 
ceptive fields is not necessary, which is biological 
supported. 

3 Self-organised Learning of 
Receptive Fields 

3.1 Multi-resolution image pyramid 

A multi-resolution image pyramid is constructed 
following Burt [7] to provide sufficient spatial fre- 
quency information for RF learning. First, the orig- 
inal image I is reduced into a half-sized image I ,  
by convolving with a gaussian window g: 

2 2  

m=-2 n=-2 

Then the reduced image I ,  is expanded into an 
image which is of the same size as the image Z: 

2 2  

r n z - 2 n z - 2  

(10) 

(11) 

And the Laplacian image I1 is obtained by 

I [  = I - I ,  

Fig.1 shows the Laplacian image sequence gener- 
ated from the original 512x512 image. It can be 
shown that in Eqn.(ll) the Laplacian image is 
equivalent to the original image convolved with a 
DOG function. Hence we consider the pyramid 
construction is equivalent to the pre-cortical pro- 
cessing in retina and LGN units as modelled in [6]. 

3.2 Frequency selectivity 

For the sake of optimal training, input image 
patches are discriminated by their local frequen- 
cies, and patches in different frequency scale are 
used to train the corresponding RF, resulting in 



Receptive Uniw Figure 1: Laplacian Pyramid for Lena 

RFs of different orientation and frequency selectiv- 
ity after competitive learning. A very simple yet 
fast method is used to estimate the local frequency. 
If the intensity value sequence within the image 
patch is treated as a waveform, with D.C. compo- 
nent drawn across it, and if we count the significant 
zero-crossings on both the x- and y- axes, the esti- 
mated frequency f can be calculated as follows: 

Figure 2: To learn RFs from multi-resolution 

And the RFs in the neighbourhood of the winning 
unit m are modified by the SOHL rule: 

R: = Ri + (~(yiIi -. y:&)h(li - ml, v ) ~  (15) 

where (Y is the neighbourhood radius which shrinks 
gradually with the time, and h(.) is a normalized 
gaussian neighbourhood function taking the form: 

h(d, .) = e - d a / 2 r 2  (16) 

where nx and ny are zero-crossing rates on x-axis 

erage. Zero-crossings within a threshold bound are 

frequency estimation. 

and y-axis respectively, and E(.) means taking av- 

ignored since they are of little significance in local 

4 Simulation Result and Dis- 
cuss ion 

3.3 Computation scheme with 
SOHL 

The computation scheme is shown in Fig.2 . At 
the first stage a Laplacian pyramid of the original 
image is generated. Meanwhile, RFs correspond- 
ing to  each spatial frequency stage are randomly 
initialized. Then a small patch of image is sampled 
from the Laplacian pyramid, also randomly. The 
sampled image patch is classified to  a certain fre- 
quency level after a frequency estimation process, 
and it is multiplied to  the receptive units on the 
frequency level to  generate the responses: 

N N  

i j  

where Rk is one of the M RFs in the k-th frequency 
level, and N is the size of both the image patch Ik 
and RFs. 

The competitive learning among these M recep- 
tive units then picks out the unit with the maxi- 
mum response, i.e., 

Figure 3: Grayscale images for training: ‘Lena’ 
and a composed brodatz texture image. Both are 
of 512 x 512 sire. 

Due to the nature of the work we choose nat- 
ural images with detailed frequency information 
for training. The standard image ‘Lena’ and a 
composed Brodatz texture image, both shown in 
Fig.3, are used in our experiment. Original im- 
ages are of 512 x 512 size, and 2 cycles of reducing- 
expanding processes generate an image pyramid of 
3 images, each of size 512 x 512, 256 x 256 and 
128 x 128 respectively. The receptive fields are of 
4 frequency levels, and on each level there are 112 
competitive fields aimed for orientation selectivity, 
randomly initialized at beginning. Image patch of 
fixed 32 x 32 size are randomly sampled from the 
image pyramid and fed into the frequency selection 



unit. After the frequency level is decided, receptive 
units on that level will learn from the input image 
patch through competition. The neighbourhood 
width begins at 4, and shrinks gradually to  0 dur- 
ing learning. The initial learning rate is y = 0.0015. 
Fig.4 shows the intensity of RF patterns after train- 
ing, where RFs on the same frequency level are 
lined up in a row. After convergence, the increas- 
ing average selectivity of winning units, defined as 
ymaz/ xi yi, is found to be saturated, as shown in 
Fig.5. 

Figure 4: Receptive fields learned from malti- 
resolution 
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Figure 5: Selectivity of Output Units on Level 2 

With the self-or g anisat ion implemented, the 
performance of our computation model is improved 
in that a much flatter firing rate distribution is 
gained, which implies that more receptive fields 
may learn from the input image patch, and there- 
fore, more likely to  develop finer orientation selec- 
tivity. 

It can be seen in Fig.4 that although the recep- 
tive fields bear similar frequency and orientation 
selectivity, they are not strictly Gabor-like. RFs on 
higher frequency levels suffer from under-learning. 
Besides, orientations displayed in each frequency 
level may differ. We argue that these results indi- 
cate the dependency to  the training image. In real 
visual systems, Gabor-like cortical synapse weights 

can be developped by learning from a large pop- 
ulation of visual stimulations, and therefore gain 
the independency to individual stimulation along 
with the adaptiveness to  almost all of them. With 
the SOHL carried out on 2-dimentional directions, 
it  is also possible that organised cortical column 
can be formed. To achieve such a goal, and to  test 
the plausibility of applying SOHL in image analysis 
tasks, further work needs to  be done. 
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