<table>
<thead>
<tr>
<th>Title</th>
<th>The role of endoscopic ultrasonography in the management of cystic lesions of the pancreas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Chan, ACY; Liu, CL</td>
</tr>
<tr>
<td>Citation</td>
<td>Hong Kong Medical Journal, 2003, v. 9 n. 6, p. 441-445</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2003</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/45425</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
The role of endoscopic ultrasonography in the management of cystic lesions of the pancreas

Objective. To review the role of endoscopic ultrasonography in the management of cystic lesions of the pancreas.

Study selection. Key words for the literature search were ‘endoscopic ultrasonography’, ‘pancreas’, ‘pseudocyst’, and ‘cystic tumor’.

Data extraction. All relevant studies were reviewed.

Data synthesis. In the management of cystic lesions of the pancreas, endoscopic ultrasonography appears to be superior to percutaneous ultrasonography, computed tomography, and endoscopic retrograde cholangiopancreatography, because it can achieve detailed imaging of both the pancreatic parenchymal tissue and the ductal anatomy simultaneously with a high-frequency ultrasound examination at a close proximity. Endoscopic ultrasonography can differentiate benign pseudocysts or benign cystic lesions from malignant neoplasms of the pancreas; the distinction is crucial in the surgical treatment of the patients. The diagnostic accuracy can be further enhanced with endoscopic ultrasonography-guided fine-needle aspiration of the cystic fluid to detect tumour markers and cytological examination. Endoscopic ultrasonography-guided aspiration with or without endoscopic cystogastrostomy or cystoduodenostomy has become the treatment of choice for patients with pancreatic pseudocysts. The procedure is associated with decreased morbidity and mortality when compared with open surgery.

Conclusion. Endoscopic ultrasonography appears to be a useful tool in the management of cystic lesions of the pancreas.
useful in the management of diseases of the lung9,10 and thyroid,11 mediastinal tumours,12 and diseases of the gastrointestinal tract. In this article, we review the role of endoscopic ultrasonography in the management of cystic lesions of the pancreas.

Approximately 90\% of all cystic lesions of the pancreas are benign pseudocysts, which are related to acute and chronic pancreatitis, and trauma. The remaining 10\% of cases are cystic neoplasms.13,14 The conventional imaging methods that are used to diagnose cystic tumours of the pancreas are transabdominal ultrasonography, abdominal computed tomography (CT) and endoscopic retrograde cholangiopancreatography (ERCP). Computed tomography is useful in demonstrating any involvement of parenchymal tissue, whereas ERCP, despite its invasiveness, is more effective in visualising the ductal anatomy.15,16 Endoscopic ultrasonography appears to be superior to both CT and ERCP, because it can achieve a detailed image of both pancreatic parenchymal tissue and the ductal anatomy at the same time.17

Endoscopic ultrasonography is a combination of two investigation modalities—namely, endoscopic visualisation and high-frequency ultrasonography.18,19 Two types of endoscopic ultrasonography are commonly used: mechanical radial echo-endoscopy, which provides 360\degree images perpendicular to the longitudinal axis of the endoscope, and curvilinear electronic array endoscopy, which provides images sagittal to the longitudinal axis of the endoscope. Both types of endoscopy can operate at different frequencies, thereby allowing different depths of penetration. The close proximity of the pancreas to the stomach and duodenum is well within the range of endoscopic ultrasonography. Hence, the head, body, and tail of the pancreas can be visualised clearly, and the pancreatic duct can also be examined in detail.1,20,21

Pancreatic pseudocyst

Pancreatic pseudocysts may develop as a complication of acute or chronic pancreatitis, trauma, or pancreatic duct obstruction by tumour. Small pseudocysts usually do not require intervention, and spontaneous resolution is common. In contrast, spontaneous resolution occurs less frequently in large pseudocysts, and the risk of developing a complication is high. It has been recommended that any pseudocysts larger than 6 cm and persistent for more than 6 weeks be drained.22-24 Management of pancreatic pseudocysts consists of surgical drainage, percutaneous drainage under the guidance of ultrasonography or CT, or endoscopic drainage. Although surgical drainage has been the standard treatment, it is associated with significant operative morbidity rate of 10\% and mortality rate of about 1\%.24 In the past decade, percutaneous and endoscopic drainage has become the treatment of choice for pseudocysts and has gradually replaced surgical drainage in most cases.25,26

Endoscopic ultrasonography plays both diagnostic and therapeutic roles in the management of pancreatic pseudocysts. During the examination, pseudocysts may appear uniloculated or multilocated. The cyst wall and the septa are usually thin and are made up of fibrous tissue. Although a clinical history of pancreatitis may make the diagnosis of simple pancreatic pseudocyst more likely, it can be difficult to distinguish pancreatic pseudocysts from cystic neoplasms by using endoscopic ultrasonography alone.27 However, endoscopic ultrasonography–guided aspiration and cystic fluid analysis can be very helpful in achieving the diagnosis. Aspirates from pancreatic pseudocysts usually yield fluid with a high level of amylase, low levels of tumour markers, and inflammatory cells (Table).14,28-32

<table>
<thead>
<tr>
<th>Cystic lesion</th>
<th>Viscosity</th>
<th>CEA*</th>
<th>CA-72.4</th>
<th>Amylase</th>
<th>Cytology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudocyst</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>Inflammatory</td>
</tr>
<tr>
<td>Serous cystadenoma</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Usually low</td>
<td>25%-50% positive</td>
</tr>
<tr>
<td>Mucinous cystadenoma</td>
<td>Usually high</td>
<td>High</td>
<td>Low</td>
<td>Usually low</td>
<td>40% positive</td>
</tr>
<tr>
<td>Mucinous cystadenocarcinoma</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>Usually low</td>
<td>67% positive</td>
</tr>
</tbody>
</table>

* CEA carcinoembryonic antigen

Endoscopic ultrasonography–guided drainage has become the treatment of choice for complicated pancreatic pseudocysts; the method has a high success rate and causes minimal morbidity and mortality.33 The most common route of drainage is through either the stomach or the duodenum. As a general rule for safe drainage, the maximum distance between the pseudocyst and the gut lumen should be less than 1 cm. Any greater distance increases the risk of perforation during endoscopic drainage. In addition, identification of the indentation in the gut wall created by the bulk of the pseudocyst gives a rough guide to the pseudocyst’s exact location in relation to the gut lumen.33 The presence of anechoic material inside the cystic cavity indicates an ideal lesion for endoscopic ultrasonography–guided drainage. On the other hand, substantial hyperechoic material indicates the presence of debris or necrotic tissue, which in turn would prompt the endoscopist to use endoprosthesis for optimal drainage. Endoscopic ultrasonography can also detect any vascular structure in the wall or in between the pseudocyst and the gut wall, including varices and retroperitoneal vessels. Avoidance of such structures on needle passage during drainage is crucial in minimising the associated risk of haemorrhage.33
Serous cystadenoma

Using endoscopic ultrasonography, serous cystadenoma (SCA) typically appears as multiple microcystic compartments with thin septations. Depending on the size of the tumour, a large SCA can occasionally appear as a single macrocystic lesion. Another morphological feature of SCA is the presence of central calcifications in about 15% of all cases. In addition, SCA can typically appear as an anechoic lesion. In contrast, the presence of mixed hyperechoic signals are likely to be associated with debris and are more commonly found in mucinous cystadenomas (MCAs). The fact that most cases of SCA are microcystic lesions has rendered endoscopic ultrasonography–guided fine-needle aspiration (FNA) less reliable, because it is difficult to pass the needle into the small-size compartments. Acellularity in the aspiration fluid can make up to 50% of all cases and result in a diagnostic accuracy of only 25%. However, the presence of glycogen-rich cells in the cyst aspirate is a diagnostic feature of SCA.

Mucinous cystadenoma and mucinous cystadenocarcinoma

Mucinous cystadenoma is the most common primary cystic tumour of the pancreas, accounting for about 45% of all cases. There is a female preponderance and middle-aged women are mostly affected. Mucinous cystadenoma is recognised as a group of tumours with heterogeneous pathological features, ranging from slow-growing benign tumour to aggressive malignant mucinous cystadenocarcinoma (MCAC). In more than half of cases, histological examination of the resected tumour reveals co-existing benign and malignant epithelia. Hence, MCA is generally regarded as potentially malignant, and surgical resection is considered as first-line treatment.

The typical features of MCA under endoscopic ultrasonography are macrocystic, single loculation, and peripheral calcification. Sometimes, a large MCA could be divided by thin septae that form multiple fluid-filled compartments. The lining of the wall is relatively thin, and the lesion is usually well demarcated from the pancreas. Floatation of mucus within the cystic fluid is sometimes visible. A large multiloculated lesion should warrant surgical resection in view of the risk of malignant transformation. Similarly, a single loculated lesion in the absence of a clinical history of pancreatitis or pancreatic trauma should also be resected, owing to the likelihood of a mucinous neoplasm. However, a diagnostic challenge will arise when a multiloculated lesion is found in a patient who has a history of pancreatitis or pancreatic trauma. In this case, FNA with cystic fluid analysis will increase the diagnostic accuracy of endoscopic ultrasonography.

The combination of ultrasonography and CT is inaccurate in the diagnosis of MCAC, and 40% to 60% of cases can be misinterpreted as pseudocyst. This can be explained by the limited spatial resolution of these two imaging modalities and the pathological features of MCAC. Typically, MCAC is a thick-walled macrocyst with intracystic mural nodules or extracystic solid components in small tumours. A dilated pancreatic duct is present in about 80% of cases. Endoscopic ultrasonography has a higher spatial resolution than ultrasonography and CT, and so it can clearly delineate the internal architecture of the pancreatic parenchyma precisely. Endoscopic ultrasonography might also be more sensitive in detecting cystic tumours of less than 2 cm in diameter. The overall 5-year survival rate for resected MCAC is more than 50%, and curative resection can be achieved in 74% of patients. The prognosis of unresected MCAC is dismal and comparable with unresected pancreatic adenocarcinoma. Hence, an aggressive surgical approach may be justified for radical resection of MCAC, even when there is local spread to neighbouring structures.
Fine-needle aspiration and cystic fluid analysis

It has been reported that FNA and cystic fluid analysis significantly increase the accuracy of the diagnosis of pancreatic cystic tumour (Fig). Cystic fluid analysis with various tumour markers and enzymes have been extensively studied (Table). Nevertheless, it is important to appreciate that no single marker is specific enough to differentiate between benign lesions and malignant tumours. Cystic fluid in mucinuous cystic tumour is generally more viscous than SCA and pancreatic pseudocysts. It may be related to the high protein concentration of the cystic fluid, although differences in total protein concentration among various cystic lesions are yet to be determined. The level of amylase is significantly higher in pancreatic pseudocysts than in cystic neoplasms of the pancreas, because pseudocysts frequently communicate with the pancreatic ductal system. A high level of amylase itself is the single most important determinant factor in establishing the diagnosis of pseudocysts.

Carcinoembryonic antigen (CEA) is a good tumour marker to differentiate mucinous lesion from non-mucinous neoplasms: the former is associated with a high CEA level. The presence of CEA is usually normal in pseudocysts and SCA. A CEA level of more than 400 ng/mL (>400 μg/L) is potentially predictive of malignancy. CA-72.4 has been increasingly recognised as one of the best tumour markers in differentiating MCAC from benign pseudocysts. Although studies with other tumour markers such as CA-19.9 and CA-15.3 have also shown promising results, the sensitivities and specificities of measurements of these markers appear to be inferior to those of measuring CA-72.4 in detecting MCAC. Sperti et al reported a sensitivity of 87.5% and a specificity of 94.0% of CA-72.4 in the detection of mucinous tumours. Expression of CA-72.4 may occur during the malignant transformation of a benign mucinous cystic tumour.

Cyst-fluid cytology is useful in diagnosing MCA and MCAC through the identification of mucin epithelial cells and malignant cells, respectively. When positive cells are present, the specificity of fluid cytology is close to 100%. However, cyst-fluid cytology is often negative, and inadequate cystic fluid sampling also jeopardises the reliability of this technique. Centeno et al reported a prospective evaluation of FNA on 28 radiographically identified cysts. The overall accuracy of cyst-fluid cytology was 40% for mucinous cysts and 67% for malignant cystic tumours.

The technique of FNA of cystic tumours of the pancreas is similar to FNA of pancreatic solid masses. However, in view of the fluid component of the tumour, multiple needle punctures would certainly increase the risk of perforation and cystic rupture. Hence, a single-needle pass technique is usually adopted. Although there is a theoretic risk of needle tract tumour seeding during FNA for suspected malignant cystic lesions, such a complication has yet to be reported.

Conclusion

Endoscopic ultrasonography is a useful diagnostic tool in the assessment of cystic lesions of the pancreas. It can help to avoid characterising a mucinous cyst as a benign serous cyst and erroneously opting for simple observation instead of choosing early surgical resection for cure. Endoscopic ultrasonography–guided FNA with cystic fluid analysis can further enhance the diagnostic accuracy. Endoscopic ultrasonography–guided drainage is the treatment of choice in most patients with pancreatic pseudocysts.

References

5. Scottniatius IA, Kochman ML, Lewis JD, Furth EE, Rosato EF, Ginsberg GG. Accuracy of EUS in the evaluation of Barrett’s esophagus and high-grade dysplasia or intramucosal carcinoma. Gastrointest Endosc 2001;54:689-96.
Endoscopic ultrasonography for cystic lesions of the pancreas

