<table>
<thead>
<tr>
<th>Title</th>
<th>Nutcracker phenomenon presenting as left varicocele.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ting, AC; Cheng, SW</td>
</tr>
<tr>
<td>Citation</td>
<td>Hong Kong Medical Journal = Xianggang Yi Xue Za Zhi / Hong Kong Academy Of Medicine, 2002, v. 8 n. 5, p. 380</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2002</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/45421</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Nutcracker phenomenon presenting as left varicocele

A 27-year-old man with good past health presented with a left varicocele. He had no urinary symptoms and urine microscopy did not show haematuria. Subsequent ultrasound scan showed a grossly distended left renal vein. The cross-sectional view of magnetic resonance imaging (MRI) showed compression of the left renal vein between the superior mesenteric artery and the aorta, before the vein joins the inferior vena cava (Fig 1). This compression caused the marked dilatation of the distal left renal vein with associated venous hypertension (nutcracker phenomenon). The coronal view showed dilated vasculature over the upper pole of the left kidney (Fig 2), which was caused by the venous hypertension. The patient subsequently underwent laparoscopic varicocelectomy and conservative treatment was adopted for the left renal vein compression.

The nutcracker phenomenon was first described by de Schepper in 1972. Compression of the left renal vein between the superior mesenteric artery and the aorta causes left renal vein hypertension, and this led to a left varicocele in this patient. The resulting renal vein hypertension is also a cause of haematuria, thought to be due to hypertension-induced anomalous calyceal-venous communications. The pathophysiology of this condition is not fully understood, but it may be more prevalent in thin people with a decreased amount of perirenal and pararenal adipose tissue or in those with a prominent lumbar lordotic curve that causes forward displacement of the aorta. Abnormal branching of the superior mesenteric artery from the aorta has also been attributed to be the underlying pathology. Apart from MRI or computed tomography, selective left renal vein phlebography and renal vein pressure measurement are helpful for establishing the diagnosis. For asymptomatic patients with no haematuria, the treatment is conservative. For patients with gross haematuria, various surgical treatments including left renal vein transposition, left renal autotransplantation, or endovascular stenting of the left renal vein have been described. Besides left renal vein compression, similar pathophysiology may lead to duodenal obstruction at the third portion of the duodenum, known as superior mesenteric artery syndrome.

ACW Ting, FRCS, FHKAM (Surgery)
SWK Cheng, FRCS, FHKAM (Surgery)
Division of Vascular Surgery, Department of Surgery
The University of Hong Kong
Queen Mary Hospital
102 Pokfulam Road
Hong Kong

References