<table>
<thead>
<tr>
<th>Title</th>
<th>The efficacy of extracorporeal shock wave lithotripsy in the treatment of ureteric stones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yip, KH; Tam, PC; Lee, FCW; Leung, YL</td>
</tr>
<tr>
<td>Citation</td>
<td>Hong Kong Medical Journal, 1995, v. 1 n. 2, p. 110-114</td>
</tr>
<tr>
<td>Issued Date</td>
<td>1995</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/45368</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
The efficacy of extracorporeal shock wave lithotripsy in the treatment of ureteric stones

KH Yip, PC Tam, CWF Lee, YL Leung

This study was conducted to evaluate the efficacy of in situ extracorporeal shock wave lithotripsy treatment of ureteric stones using the Dornier MFL 5000 lithotripter. From March 1991 to June 1994, 184 patients received in situ extracorporeal shock wave lithotripsy treatment. The overall success rate was 77% (77% for upper, 69% for middle, and 81% for lower ureteric stones, respectively, no statistical significance). However, the size of the stones affected the final outcome significantly (p < 0.05, χ^2 test). An average of 1.23 sessions were required for each patient and the rate of major auxiliary intervention was 21%. We conclude that extracorporeal shock wave lithotripsy is an effective treatment for ureteric stones.

HKMJ 1995;1:110-114

Key words: Shockwaves; Extracorporeal shockwave lithotripsy; Ureteral calculi

Introduction

The introduction of extracorporeal shock wave lithotripsy (ESWL) has revolutionised the treatment of urinary stones. It is now the “gold standard” treatment for uncomplicated renal stones. With technological advances and increasing experience, in situ (no instrumentation) ESWL has been accepted as the treatment of choice for ureteric stones worldwide.1-6

The Dornier MFL 5000 Lithotripter was installed at the Queen Mary Hospital in March 1991, and was the first lithotripter in the public sector. The facility is currently shared by major regional hospitals. The Dornier MFL 5000 Lithotripter is a third generation lithotripter which was first available in 1988.2-4 The machine delivers a spark-induced shock wave, with the shock waves focused by an ellipsoid. The variable power generator can deliver a wide range of shock wave energies enabling the fragmentation of stones under minimal analgesia. A dual modality stone localisation system (fluoroscopy and ultrasonography) is available and the unit’s design as a multi-purpose table allows various urological procedures to be performed. This study was conducted to evaluate its efficacy in the in situ treatment of ureteric stones, and its impact on the management of ureteric stones in a tertiary referral centre.

Subjects and methods

From March 1991 to June 1994, 184 ureteric patients treated with in situ ESWL (179 as primary treatment; five after failed endourological procedures) were studied and factors affecting the final outcome were analysed. Factors assessed included stone size, burden (sum of maximal diameters), location, and other treatment parameters. Chi squared test and logistic regression analysis were used to test for statistical significance. The term upper ureter refers to the ureteric segment from the pelviureteric junction to above the upper border of the sacroiliac joint, the middle ureter refers to the part overlying the joint, and the lower ureter refers to the segment from below the sacroiliac joint to the vesicoureteric junction.

Initially, ESWL was conducted as an inpatient procedure, but with increasing experience, most subsequent treatments were conducted as outpatient procedures. Fluoroscopy was used primarily for stone localisation. Intravenous contrast injection or ureteric catheterisation for contrast injection were employed.
when stones were radiolucent or faintly opaque upon fluoroscopy. Ultrasound for stone localisation was employed only rarely, and its use was limited to upper and lower ureteric stones. Patients were treated in a comfortable supine position—except for middle and some lower ureteric stones—where patients adopted a prone position. Patient blood pressure, pulse, and oxygen saturation were monitored throughout the procedure. Intravenous sedo-analgesia using valium and/or pethidine were given as required.

All patients received pretreatment intravenous urogram unless contraindicated. Treatment was conducted without any manipulation (except for on-table retrograde pyelogram when indicated). Patients were followed up at two weeks, six weeks, and three months. Treatment success was defined as clearance of the stone at three months based on a good quality plain kidney-ureter-bladder film or by intravenous urography if indicated. Initial fragmentation, but incomplete clearance, was considered an indication for retreatment. Ureteric stones with poor response, persistent fragments with minimal progress, or failed repeat ESWL were criteria for auxiliary intervention.

Results

Treatment parameters
A total of 227 sessions were conducted on 184 patients (mean, 1.23 sessions; range, 1-5 sessions). The mean number of shock waves given was 2816 (SD 116). The maximum voltage used was 24 kV (SD 0.34). Intravenous sedo-analgesia was required in 113 (61%) patients.

Success rates
The overall success rate of ESWL was 77% (142/184 cases; 77% for upper, 69% for middle, and 81% for lower ureteric stones) (Table 1). Middle ureteric stones had less favourable results, but the difference was not significant. The stone size distribution is shown in Table 2, and the size of the stone affected the outcome significantly (p < 0.05). Stones greater than 10 mm in maximal diameter were less likely to be successfully treated. The success rates for the years 1991, 1992, and 1993 were 74%, 76%, and 85%, respectively.

Final outcome
Patients whose treatment with ESWL was unsuccessful, received ureteroscopic lithotripsy, percutaneous nephroscopy with antegrade ureterolithotripsy, or open operation as indicated. The final outcome is shown in Table 3. Four patients who failed to have the stone cleared at three months did not receive any subsequent intervention. In two of these patients, auxiliary interventions were scheduled, however, spontaneous stone passage and clearance occurred before the planned procedures had been undertaken (at 16 and 20 weeks post-treatment, respectively). They remained in the failed treatment group in the subsequent analysis. The remaining two patients did not receive further treatment because of underlying medical conditions.

Ureteric lithotripsy, percutaneous nephroscopy with antegrade ureterolithotripsy, and open ureterolithotomy were categorised as major secondary interventions and accounted for 21% of cases (38/184).

Discussion
Watson et al reported on the efficacy of the Dornier MFL 5000 Lithotripter in 1993, quoting a success rate of 72% for single treatments and 81% for repeated treatments. In their series, they included retrograde manipulation for upper ureteric stone series and subsequent ESWL. Our overall results of 77% are

<table>
<thead>
<tr>
<th>Table 1. Stone location and success rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ureter location</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Upper</td>
</tr>
<tr>
<td>Middle</td>
</tr>
<tr>
<td>Lower</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>χ² test, p = 0.60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2. Stone size and success rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stone size (mm)</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>≤10</td>
</tr>
<tr>
<td>11-20</td>
</tr>
<tr>
<td>≥21</td>
</tr>
<tr>
<td>χ² test, p = 0.006</td>
</tr>
</tbody>
</table>
comparable. In fact, we have better results for upper ureteric stones without the need of retrograde manipulation as part of the treatment procedure. While retrograde manipulation and subsequent shock wave lithotripsy (i.e. push-hang) may be considered minimally invasive procedures, such manipulation has not been a routine practice in recently reported series where in situ ESWL have success rates in the range of 81% to 90% using various lithotripters.1,5-12 Admittedly, our results are not as good as the best reports, but they have improved with increasing experience.

It should also be noted that an intrinsic difference in fragmentation capacity exists between different lithotripter models. Generally, the first generation lithotripters are more powerful, with the Dornier HM3 being the prototype model. The second and third generation lithotripters tend to be less powerful, but treatment can be conducted using minimal analgesia.13 In fact, a multicentre trial (1822 patients) studying various second generation machines concluded that second generation ESWL is less effective than first generation ESWL.14 The decreased effectiveness results in an increased number of shocks given, decreased stone-free rate, and an increased retreatment rate. However, there is also a recent major study (13864 patients) which reported no statistically significant difference between a second generation lithotripter (Medstone STS) and the gold standard unmodified Dornier HM3 instrument.15 It is difficult to compare different machines, because some use fluoroscopic or ultrasound localisation, or different forms of shock wave energy (i.e. spark gap, electromagnetic, piezoelectric). Recent reports using various models are listed in Table 4.

Our success rates are very similar to the multi-centre study reported by Ehreth et al in 1994 using the same model.3 In their series, 18.5% of patients required general or regional anaesthesia, and 75% needed some form of sedo-analgesia. In our series, only 61% of patients required intravenous sedo-analgesia. This has a significant bearing on the practice of outpatient or day case urology services.

We could not show any significant difference between success rates for different stone locations and sizes. The fact that treatment has been extended to the

Table 3. Final outcome of extracorporeal shock wave lithotripsy (n=184)

<table>
<thead>
<tr>
<th>Treatment given</th>
<th>No. of patients</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESWL (successful)</td>
<td>142</td>
<td>77</td>
</tr>
<tr>
<td>ESWL (unsuccessful)</td>
<td>42</td>
<td>23</td>
</tr>
<tr>
<td>Ureteroscopic lithotripsy</td>
<td>21</td>
<td>11</td>
</tr>
<tr>
<td>Percutaneous nephrolithotripsy</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Open ureterolithotomy</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>No further treatment</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Stone clearance after three</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>months</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Success rate for in situ treatment of ureteral calculi using various lithotripters

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Lithotripter model</th>
<th>No. of patients</th>
<th>Success rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First generation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cass10</td>
<td>1995</td>
<td>Dornier HM3</td>
<td>462</td>
<td>82</td>
</tr>
<tr>
<td>Benizri7</td>
<td>1992</td>
<td>Dornier HM3</td>
<td>170</td>
<td>90</td>
</tr>
<tr>
<td>Second generation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cass10</td>
<td>1995</td>
<td>Medstone STS</td>
<td>931</td>
<td>83</td>
</tr>
<tr>
<td>Farsi11</td>
<td>1994</td>
<td>Siemens Lithostar</td>
<td>248</td>
<td>89</td>
</tr>
<tr>
<td>Merhej12</td>
<td>1994</td>
<td>Wolf Piezolith 2300</td>
<td>332</td>
<td>81</td>
</tr>
<tr>
<td>Third generation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ehreth3</td>
<td>1994</td>
<td>Dornier MFL 5000</td>
<td>323 (middle & lower)</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>658 (upper & renal)</td>
<td>67</td>
</tr>
<tr>
<td>Watson2</td>
<td>1993</td>
<td>Dornier MFL 5000</td>
<td>241</td>
<td>81</td>
</tr>
<tr>
<td>Rassweiler1</td>
<td>1992</td>
<td>Storz Modulith SL20</td>
<td>138</td>
<td>81-85</td>
</tr>
</tbody>
</table>
mid-ureter is a result of the improvement in lithotripter technology.2,10,13 This was previously considered a "no-
where zone" because it is difficult to access by the
antegrade percutaneous or retrograde ureteroscopic
route for intracorporeal treatment, and difficult to lo-
calise and position for extracorporeal treatment. Firstly,
a dual stone localisation system incorporating fluo-
scopy and ultrasonography makes stone localisation
possible in more than 95% of cases. Secondly, replace-
ment of the conventional water bath by a water cush-
ion gives the patient a comfortable prone position.
Lastly, there is accumulating evidence that shock waves
transmitted through the abdomen in the prone posi-
tion do not produce significant harmful effects. The
real long term effect on the intraabdominal contents is
not known, although it is considered to be minimal. A
reduction in the number and power of shock waves
may be advisable.

Fluoroscopy has been our preferred localisation
modality—including stones overlying the sacroiliac
joint—as it is convenient to use, does not require ex-
pertise in diagnostic radiology, and is successful in
localising the stones in most instances. Real-time
fluoroscopic imaging and intravenous contrast injec-
tion often help in difficult situations. Good bowel
preparation is also important. The occasional difficult-
to-treat stones are small symptomatic ones which cause
minimal obstruction. These may benefit from
endoureological intervention, should they prove unsuit-
able for ESWL treatment.

Stone size affects the success rate significantly, and
this finding has important clinical implications. Pro-
vided that the stone receives adequate unit shock waves
(number of shock waves per unit stone diameter), a
giant stone is not an absolute contraindication for
ESWL.8,16 Success may be enhanced by perseverance.5
However, the need for multiple treatment sessions and
the prolonged lag period to stone clearance are impor-
tant considerations in a busy lithotripter unit. In fact,
these are important constraints and concerns when
choosing the mode of treatment.

We treated more than 250 patients in the study
period, and ESWL was selected as the primary treat-
ment in approximately 70% of cases. The reasons for
using other treatment modalities included bilateral
ureteric stones with obstructive uropathy, ureteric stone
in patients with only one functioning kidney, giant
stone size, the presence of a concomitant urological
condition requiring surgical intervention, and others.
However, indications were often relative rather than
absolute. The clinician’s preference, patient’s wishes,
and the disease status were all considered. The short-
age of treatment sessions affected our choice signifi-
cantly.

Because of a reasonably long waiting list, we tend to
offer fewer endoureological procedures to patients
with a significantly obstructed system, to avoid renal
function impairment occurring due to prolonged ob-
struction. For lower ureteric stones in particular, we
discuss the advantages and disadvantages of both
ureteroscopy (85% success rate) and ESWL, and al-
low patients to choose between the two. It should be
noted that such a policy is more a reflection of our
shortage of facilities, rather than a statement about the
merits of either treatment type.

Extracorporeal shock wave lithotripsy, using the
Dornier MFL 5000 Lithotripter has successfully
cleared stones in 77% of our patients. It is the primary
treatment of choice in most instances, because of its
non-invasive nature and reasonable success rate. Since
its introduction, the treatment strategy for ureteric
stones has altered significantly, and most patients can
now benefit from this non-invasive modality.

References

1. Rassweiler J, Henkel TO, Joyce AD, Kohrmann KU, Manning
M, Alken P. Extracorporeal shock wave lithotripsy of ureteric
2. Watson AB, James AN. Extracorporeal shock wave lithotripsy
for ureteric calculi with the Dornier MFL 5000 lithotripter unit
wave lithotripsy: multicenter study of kidney and upper ureter
versus middle and lower ureter treatments. J Urol 1994;
152:1379-85.
4. Yip KH, Tam PC, Chow WM, Cheung MC. In situ extracor-
porereal shock wave lithotripsy using the Dornier MFL 5000.
5. Hofbauer J, Tuerk C, Hobarth K, Hasun R, Marberger M.
ESWL in situ or ureteroscopy for ureteric stones? World J Urol
1993;11:54-8.
6. Anderson KR, Keetch DW, Albala DM, Chandhoke PS,
McClennan BL, Clayman RV. Optimal therapy for the distal
ureteral stone extracorporeal shock wave lithotripsy versus
Extracorporeal lithotripsy of ureteric calculi using the Dornier
8. Netto NR, Lemos GC, Claro JF. Extracorporeal shock-wave
Ureteric stone management using a second generation
10. Cass AS. Comparison of first generation (Dornier HM3) and
second generation (Medstone STS) lithotripters: treatment
results with 13 864 renal and ureteral calculi. J Urol