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Nonequivalence of two flavors of oblivious transfer at the quantum level
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Though all-or-nothing oblivious transfer and one-out-of-two oblivious transfer are equivalent in classical
cryptography, we here show that a protocol built upon secure quantum all-or-nothing oblivious transfer cannot
satisfy the rigorous definition of quantum one-out-of-two oblivious transfer due to the nature of quantum
cryptography. Thus the securities of the two oblivious transfer protocols are not equivalent at the quantum

level.
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I. INTRODUCTION

The mystery of quantum cryptography has long intrigued
scientists. On one hand, several cryptographic tasks such as
the quantum conjugate coding [1] and the well-known quan-
tum key distribution [2-4] have had great success. They
achieved theoretically unbreakable security which can never
be reached by their classical counterparts. But, on the other
hand, some no-go theorems were established, indicating that
quantum cryptography is not always powerful for any task.
In particular, the Meyers-Lo-Chau (MLC) no-go theorem
[5.,6] rules out the possibility of nonrelativistic uncondition-
ally secure quantum bit commitment (QBC), and the Lo’s
insecurity proof of ideal one-sided two-party quantum secure
computations [7] indicates that a one-out-of-two oblivious
transfer is impossible either.

Oblivious transfer (OT) is an important concept found to
be very useful in designing multiparty cryptography proto-
cols [8]. There are two major flavors of OTs. The original
one [1,9] is simply known as oblivious transfer, while some-
times it is also referred to as all-or-nothing OT. Another re-
lated notion was proposed later, which is called one-out-of-
two OT [10]. In classical cryptography, it was shown that
these two are computationally equivalent [11]. Essentially, a
protocol was presented in Ref. [11] to illustrate that secure
all-or-nothing OT can lead to secure one-out-of-two OT. Fur-
thermore, it was believed that secure one-out-of-two OT can
lead to secure bit commitment (BC) [7]. This standard clas-
sical reduction chain reveals the connection between the se-
curity of OT and BC protocols at the classical level.

Very recently, a quantum all-or-nothing OT protocol was
developed [12]. This OT does not rigorously satisfy the re-
quirement of ideal one-sided two-party quantum secure com-
putation protocols, on which the Lo’s insecurity proof was
based. Thus it could remain unconditionally secure against
the cheating strategy in the Lo’s proof. Nevertheless, at first
glance, this result would conflict with the Lo’s conclusion
and in turn with the MLC no-go theorem (i.e., secure quan-
tum one-out-of-two OT and QBC would be possible) if the
mentioned standard classical reduction were justified.

But intriguingly, it has also been realized that “reductions
and relations between classical cryptographic tasks need not
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necessarily apply to their quantum equivalents” [13]. Indeed,
it will be shown in this paper that once we intend to build an
one-out-of-two OT protocol on a secure quantum all-or-
nothing OT protocol with the method developed in Ref. [11],
it is impossible that the resultant protocol can satisfy the
rigorous definition of one-out-of-two OT on which the Lo’s
proof was based. In this sense, secure quantum all-or-nothing
OT does not imply secure quantum one-out-of-two OT, i.e.,
the above classical reduction chain is broken in the present
quantum cryptography case. As a result, there exists no logi-
cal conflict between the existence of secure quantum all-or-
nothing OT protocol and the MLC no-go theorem of QBC,
giving more room for quantum cryptography applications.
The paper is organized as follows. In Secs. II and III, the
definitions of two flavors of OTs will be stated precisely and
a brief review on their classical equivalence will be pre-
sented. The nonequivalence of these two OTs at the quantum
level will be revealed in Sec. IV, along with its impact on the
security of the protocols. In Sec. V, it will be indicated that
the breaking of the reduction chain is not simply a matter of
the definition, rather is originated from the nature of quan-
tum cryptography itself. A detailed elaboration on one crucial
conclusion in Sec. IV is presented in the Appendix.

II. DEFINITIONS

Let us first state precisely the definitions of different OTs
on which the study in this paper is based. In Ref. [11], where
the classical equivalence between these OTs was proven, the
definitions of all-or-nothing OT and one-out-of-two OT were
summarized as follows:

Definition A: all-or-nothing OT

(A-1) Alice knows one bit b.

(A-ii) Bob gets bit b from Alice with the probability 1/2.

(A-iii) Bob knows whether he got b or not.

(A-iv) Alice does not know whether Bob got b or not.

Definition B: one-out-of-two OT

(B-i) Alice knows two bits b, and b;.

(B-ii) Bob gets bit b; and not b; with Pr(j=0)=Pr(j=1)
=1/2.
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(B-iii) Bob knows which of b, or b; he got.

(B-iv) Alice does not know which b; Bob got.

In the Lo’s insecurity proof of ideal one-sided two-party
quantum secure computations [7], a more rigorous definition
of one-out-of-two OT was specifically introduced as follows:

Definition C: rigorous one-out-of-two OT

(C-i) Alice inputs i, which is a pair of messages (m,m;).

(C-ii) Bob inputs j=0 or 1.

(C-iii) At the end of the protocol, Bob learns about
the message m;, but not the other message my7, i.e., the
protocol is an ideal one-sided two-party secure computation
flmg,my,j=0)=mq and f(mg,m,,j=1)=m;.

(C-iv) Alice does not know which n; Bob got.

Meanwhile, the definition of ideal one-sided two-party
quantum secure computations used in the Lo’s proof reads:

Definition D: ideal one-sided two-party secure computa-
tion

Suppose Alice has a private (i.e., secret)
ie{l,2,...,n} and Bob has a private input j € {1,2,...,m}.
Alice helps Bob to compute a prescribed function
fi,j)e{l,2,...,p} in such a way that, at the end of the
protocol:

(a) Bob learns f{(i,j) unambiguously;

(b) Alice learns nothing [about j or f(i,})];

(c) Bob knows nothing about i more than what logically
follows from the values of j and f(i,j).

Obviously, definition C is a special case of definition D.
In Ref. [7] it is proven that any protocol satisfying definition
D is insecure. Therefore as a corollary, there should not exist
a secure quantum one-out-of-two OT protocol which satisfies
definition C rigorously.

input

II1. CLASSICAL EQUIVALENCE

The proof of the classical equivalence between the two
flavors of OTs is provided in Ref. [11]. The major part of the
proof is the following procedure, showing how secure one-
out-of-two OT can be implemented upon secure all-or-
nothing OT.

Protocol P:

(1) Alice and Bob agree on a security parameter s;

(2) Alice chooses at random Ks bits r;, 7y, ..., ks

(3) For each of these Ks bits Alice uses the all-or-nothing
OT protocol to disclose the bit 7, to Bob;

(4) Bob selects U={i,,i5,... ’i%} and Vv
:{i%H g2y ,izas} where a,=Ks/3 with UNV=Q and
such that he knows Ty, for each k; e U;

(5) Bob sends (X,Y)=(U,V) or (X,Y)=(V,U) to Alice
according to a random bit j;

(6) Alice computes o=, xr, and c; =B, yr,;

(7) Alice returns to Bob by®cy and b, ®c;;

(8) Bob computes @, 7, € {co,c;} and uses it to get his
secret bit b;.

IV. NONEQUIVALENCE AT THE QUANTUM LEVEL

The two definitions of one-out-of-two OT (definitions B
and C) seem to be consistent with each other, however, here
we show that, at the quantum level, if a secure quantum
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all-or-nothing OT protocol satisfies definition A and can be
used as a “black box,” a protocol P built upon it via the
above procedure does not satisfy definition C rigorously,
though it satisfies definition B.

The meaningful deviation from definition C lies in (C-i)
and (C-iii). Consider Alice’s input i in protocol P. In step (7)
of the protocol, we can see that i includes not only the secret
bits by and b, but also ¢, and c;. The steps (5) and (6) show
that ¢y and ¢; depend not only on Alice’s input ry,75, ..., g,
but also on how Bob selects X, Y, U, and V, i.e., they depend
on Bob’s input j. Therefore, protocol P cannot be viewed as
a black box function f(i(my,m,),j), where i and j are the
private inputs of Alice and Bob, respectively. Instead, it has
the form f(i(my,m,,j),j), where Alice’s input i will be var-
ied according to Bob’s input j, and its value is not deter-
mined until Bob’s input has been completed. That is, proto-
col P does not rigorously satisfy definition C, nor definition
D, as the description of the function f is different.

Though the difference seems tiny at first glance, its im-
pact on the security of protocol P at the quantum level is
significant. This can be seen from two aspects.

On one hand, protocol P is not covered by the cheating
strategy in the Lo’s no-go proof of ideal one-sided two-party
quantum secure computations [7], since it is not ideal. Ac-
cording to the strategy, Bob can change the value of j from j,
to j, by applying a unitary transformation to his own quan-
tum machine. Therefore he can learn f(i(mg,m;),j;) and
Sf(i(my,m,),j,) simultaneously without being found by Alice.
However, for the function f(i(mgy,m;,j),j), the value
Sf(i(my,my,j,),j,) is meaningless. Without the help of Alice,
Bob cannot change i from i(mgy,m;,j,) to i(mgy,m,J,).
Hence he cannot learn  f(i(mg,m;,j;),j;) and
Sfli(my,my,j,),j,) simultaneously by himself. Namely,
though the cheating strategy works for any protocol satisfy-
ing definition D, it does not work for protocol P. A rigorous
elaboration is detailed in the Appendix.

On the other hand, though protocol P remains secure
against Lo’s cheating, new security problems arise when it is
used to build other protocols. As argued in the Introduction
of Ref. [7], to ensure that the standard classical reduction can
apply to quantum cryptographic protocols, “one must be al-
lowed to use a quantum cryptographic protocol as a ‘black
box’ primitive in building up more sophisticated protocols
and to analyze the security of those new protocols with clas-
sical probability theory.” However, as mentioned above, pro-
tocol P cannot be used as such a black box since the se-
quence of the participants’ inputs is important, i.e., we have
to deal with the details of the protocol when it is used to
build up sophisticated quantum protocols. Therefore its ap-
plications in quantum cryptography may not be as powerful
as it was expected [8] from a rigorous quantum one-out-of-
two OT.

A significant example is that the quantum all-or-nothing
OT [12] cannot be used to implement secure QBC with the
scenario described in Ref. [14]. The reason lies in that step
(2) of the protocol COMMIT in Ref. [14] will become inex-
ecutable, since Alice’s input cannot be completed before
Bob’s input is entered in protocol P. Also, the protocol COM-
MIT is merely one block of the BC process [15]. It does not
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satisfy the rigorous security requirement of BC even if it is
made executable. It needs to be repeated many times in par-
allel to form a full BC protocol, as described in Ref. [15].
However, at the quantum level, this may leave room for the
participant to perform quantum collective measurement on
the inputs of all these one block BCs together. Then the
security of the full protocol cannot be analyzed simply with
classical probability theory, since protocol P is not an ideal
black box. There may also exist other approaches to build
QBC on protocol P. But due to the presence of the MLC
no-go theorem, the resultant QBC protocol is inevitably ei-
ther unbinding or unconcealed. That is, even the protocol
COMMIT can be modified to be secure against Alice (e.g., by
using protocol P reversely), it may not be secure against Bob
since his input will depend on Alice’s in this case. In this
sense, the classical reduction chain from all-or-nothing OT to
BC mentioned in the Introduction is broken in the present
quantum case, since protocol P built upon quantum all-or-
nothing OT is not a rigorous quantum one-out-of-two OT
that can lead to a secure QBC protocol.

V. ORIGIN OF THE NONEQUIVALENCE

It is valuable to dig out the underlying reason why proto-
col P does not satisfy the rigorous definition C. An illusion is
naively aroused that the reason is due to a relaxed definition
A of all-or-nothing OT used in the present work. However,
this is not really the case. In fact, we never need to deal with
the details of the all-or-nothing OT in Sec. IV; we simply use
it as a black box. Even when the most rigorous definition of
all-or-nothing OT is used, the discussion in that the section is
still valid. Thus it is not a matter of the definition that the
classical equivalence between the two flavors of OTs cannot
be applied to the present quantum case.

The real origin of the nonequivalence may be dug out
from a careful comparison between Egs. (A13) and (A15) in
the Appendix. One can see clearly that protocol P will be-
come insecure if there does not exist a system D. That is, if
Alice does not introduce the quantum system D in Eq. (A5),
protocol P will show no difference from the protocols satis-
fying definition D. In classical cryptography, Alice surely
does not have such a system, and thus the two flavors of OTs
are equivalent. While in quantum cryptography, if Alice does
not make full use of the computational power but simply
executes the protocol with the quantum system A alone, she
cannot defeat Bob’s cheating. The difference between proto-
col P and a rigorous one-out-of-two OT can only be mani-
fested when the protocol is indeed executed at the quantum
level. In this sense, the underlying origin is the nature of
quantum cryptography itself.

VI. SUMMARY

We have shown that though one-out-of-two OT can be
built upon all-or-nothing OT in classical cryptography, a pro-
tocol P built upon a secure quantum all-or-nothing OT pro-
tocol via the same method cannot satisfy the rigorous defi-
nition C of quantum one-out-of-two OT. That is, this
classical equivalence between these OTs cannot be rigor-
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ously applied to quantum cryptography. Therefore there is
not any logical conflict between the existence of secure
quantum all-or-nothing OT [12] and the MLC no-go theorem
of QBC [5,6]. This finding demonstrates intriguingly that
reductions and relations between classical cryptographic
tasks need careful reexamination in quantum cases.

We thank Hoi-Kwong Lo for valuable discussions. The
work was supported by an RGC grant of Hong Kong (Grant
No. HKU7045/05P), the URC fund of HKU, the NSFC
(Grant No. 10429401), and the Foundation of Zhongshan
University Advanced Research Center.

APPENDIX A: DEFEATING THE LO’S CHEATING
STRATEGY

Here we elaborate in more detail that protocol P is secure
against the cheating strategy in the Lo’s no-go proof of ideal
one-sided two-party quantum secure computations [7]. For
convenience, let us first recall the Lo’s cheating strategy in
more detail. According to Sec. III of Ref. [7], in any protocol
satisfying definition D, Alice and Bob’s actions on their
quantum machines can be summarized as an overall unitary
transformation U applied to the initial state |u);, € H, ® Hp,
ie.,

|u>fin = U|M>in' (Al)
When both parties are honest, |u”);,=i), ®|j); and
") jin = [03) = (D)4 ® 1)) (A2)

Therefore the density matrix that Bob has at the end of pro-
tocol is

Pi’j = TrA|Uij><Uij|' (A3)

Bob can cheat in this protocol, because given ji,J,
e{1,2,...,m}, there exists a unitary transformation U712
such that

U gt (U2 = ph (A4)
for all i. It means that Bob can change the value of j from j,
to j, by applying a unitary transformation independent of i to
the state of his quantum machine. This Eq. (A4) may be
derived as follows [7].

Alice may entangle the state of her quantum machine A
with her quantum dice D and prepares the initial state

1
=2 |idp @ |ida- (AS)
N
She keeps D for herself and uses the second register A to

execute the protocol. Supposing that Bob’s input is j;, the
initial state is

1

|’4/>in=?2 [Dp ® |4 © 1j1)5- (A6)
Vn

At the end of the protocol, it follows from Egs. (Al) and

(A6) that the total wave function of the combined system D,
A, and B is
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1
[03,0= =2 litp © Ullida © i) (A7)

Similarly, if Bob’s input is j,, the total wave function at the
end will be

1
o= =2 It © Ullita © i) (A8)

Due to the requirement (b) in definition D, the reduced
density matrices in Alice’s hand for the two cases j=j; and
Jj=j, must be the same, i.e.,

pz;}llice = TI'B|Uj1><Uj1| = TrB|U«iz><sz| = p;\zlice. (A9)

Equivalently, |v f|> and |v jz) have the same Schmidt decom-
position

|Ujl> = Ek: aladap @ B (A10)
and

|Uj2> = % aflaap ® |BLs- (A11)

Now consider the unitary transformation U/1V2 that rotates
|85 to |B) . Notice that it acts on Hy alone and yet, as can
be seen from Egs. (A10) and (All), it rotates |UJ'1> to |vj2>,

ie.,
lv;,) = U172, ). (A12)

Since
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1

\n
[see Egs. (A2), (A7), and (A8)], by multiplying Eq. (A12) by
(i on the left, one finds that

|Uij2> = U“"'2|Uijl>- (A14)
Taking the trace of [v;; Xv;; | over Hy and using Eq. (A14),
Eq. (A4) can be obtained.

Note that all these equations are just those presented in
the Lo’s proof [7]. We now consider protocol P, where Al-
ice’s input i is dependent of Bob’s input j. In the above
proof, all i in the equations should be replaced by i(j) from
the very beginning. Consequently, Eq. (A13) becomes

1
pli(lvy) = Flvig)- (A15)
\n
In this case multiplying Eq. (A12) by {i»| (i,=i(j,) for
short) on the left cannot give Eq. (A14) any more. Instead,
the result is

|Ui2j2> = Ujl’szil’i2|Uilj1>, (A16)

where U'2= |i,)(i;|p. Then Eq. (A4) is replaced by

Ui yivhpivi(giviygivi)=! = piz, (A17)

Note that U2 is the unitary operation on Alice’s side. This
implies that without Alice’s help, Bob cannot change the
density matrix he has from p’1¥! to p2/2. That is why Bob’s
cheating strategy fails in protocol P.
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