

Reply to “Comment on ‘Quantum convolutional error-correcting codes’”

H. F. Chau*

Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong and Center of Theoretical and Computational Physics,
University of Hong Kong, Pokfulam Road, Hong Kong
(Received 29 March 2005; published 5 August 2005)

In their Comment, de Almeida and Palazzo [Phys. Rev. A **72**, 026301 (2005)] discovered an error in my earlier paper concerning the construction of quantum convolutional codes [Phys. Rev. A **58**, 905 (1998)]. This error can be repaired by modifying the method of code construction.

DOI: 10.1103/PhysRevA.72.026302

PACS number(s): 03.67.Pp, 89.70.+c

de Almeida and Palazzo [1] found a counterexample showing the invalidity of Theorems 2 and 3 in my earlier paper [2]. Their counterexample is correct; and the source of error lies with the proof of Lemma 2 in Ref. [2]. In fact, Lemma 2 is not correct and Theorem 3 should be modified as follows. (It is straightforward to extend the modified theorem to cover the case of qudits.)

Theorem 3. Let C_1 be a classical (block or convolutional) code of rate r_1 and distance d_1 and let C_2 be the $[n_2 = d_2, 1, d_2]$ majority vote classical code of rate r_2 , namely, the one that maps $|t\rangle$ to $\otimes_{j=1}^{n_2} |t\rangle$. We construct a quantum code C by first encoding a quantum state by C_1 , then by applying a Hadamard transform to every resultant qubit, and finally by encoding each of the Hadamard transformed qubits by C_2 . The rate and minimum distance of code C equal $r_1 r_2$ and $\min(d_1^\perp, d_2)$, respectively, where d_1^\perp is the minimum distance of the (classical) dual code of C_1 .

Proof. Clearly, the rate of code C equals $r_1 r_2$. So, we only need to show that its minimum distance is $\min(d_1^\perp, d_2)$. Let us examine the classical code C_1 and the quantum code C in the stabilizer formalism. We denote the operation of applying

σ_x (σ_z) to the i th qubit by X_i (Z_i). The encoded operation that flips the spin of the i th unencoded qubit for the classical code C_1 can be expressed in the form $X_1^{f_1(1)} \circ X_2^{f_1(2)} \circ \dots \equiv \prod_{j \geq 1} X_j^{f_1(j)}$, where f_i is a binary valued function. The dual code of C_1 is a linear space spanned by vectors in the form $\prod_{j \geq 1} X_j^{g_s(j)}$, where g_s 's are some binary valued functions. Since C_2 is the majority vote code, from our construction of C , the encoded operation that flips the spin (shifts the phase) of the i th unencoded qubit for the quantum code C is given by $\prod_{j \geq 1} \prod_{k=1}^{n_2} Z_{n_2(j-1)+k}^{f_2(j)} (\prod_{j \geq 1} \prod_{k=1}^{n_2} X_{n_2(j-1)+k}^{f_2(j)})$. Furthermore, the stabilizer of C equals the span of $\{Z_{n_2(m-1)+1} \circ Z_{n_2(m-1)+\ell} \circ \dots \circ Z_{n_2(m-1)+n_2} \prod_{j \geq 1} \prod_{k=1}^{n_2} X_{n_2(j-1)+k}^{g_s(j)} : \ell = 2, 3, \dots, n_2 \text{ and } m, s \geq 1\}$. So just like CCS codes, the spin-flip and phase-shift errors in the quantum code C can be corrected separately. After explicitly writing down the encoded operations and the generators of the stabilizer for the (degenerate) quantum code C , it is straightforward to check that C detects all spin errors happening to less than d_2 qubits. Moreover, all phase-shift errors involving less than $\min(d_1^\perp, d_2)$ qubits are in the stabilizer. Thus, the minimum distance of code C is $\min(d_1^\perp, d_2)$. \square

This work is supported by the RGC Grant HKU 7010/04P of the HKSAR Government.

*Electronic address: hfchau@hkusua.hku.hk

[1] A. C. A. de Almeida and R. Palazzo, Jr., Phys. Rev. A **72**, 026301 (2005).

[2] H. F. Chau, Phys. Rev. A **58**, 905 (1998).