<table>
<thead>
<tr>
<th>Title</th>
<th>Paediatric hepatoblastoma and hepatocellular carcinoma: retrospective study.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Chan, KL; Fan, ST; Tam, PK; Chiang, AK; Chan, GC; Ha, SY</td>
</tr>
<tr>
<td>Citation</td>
<td>Hong Kong Medical Journal = Xianggang Yi Xue Za Zhi / Hong Kong Academy Of Medicine, 2002, v. 8 n. 1, p. 13-17</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2002</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/45232</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Paediatric hepatoblastoma and hepatocellular carcinoma: retrospective study

Objective. To compare and contrast clinical characteristics and outcomes of hepatoblastoma or hepatocellular carcinoma in paediatric patients.

Design. Retrospective study.

Setting. University teaching hospital, Hong Kong.

Patients and methods. Medical records of 22 paediatric patients with hepatoblastoma (n=11) or hepatocellular carcinoma (n=11) admitted to Queen Mary Hospital between 1989 and 2000 were reviewed. Data gathered included demographic data, results of liver function tests, hepatitis A, B, and C titres, and α-fetoprotein levels, and imaging studies including chest X-ray, ultrasound study, computed tomography scan, and magnetic resonance imaging/hepatic angiogram for tumour staging and resectability.

Results. The mean age of patients with hepatoblastoma was 18 months (range, 5 months to 3 years), while that of patients with hepatocellular carcinoma was 10.2 years (range, 2 to 16 years). Females predominated in the hepatoblastoma group (female: male, 8:3) and males in the hepatocellular carcinoma group (male: female, 10:1). None of the patients with hepatoblastoma were hepatitis B surface antigen positive, in contrast to 64% of the hepatocellular carcinoma group. Only 45% of the hepatocellular carcinomas were resectable at presentation and this figure remained unchanged following chemotherapy. A total of 91% of hepatoblastomas were resectable, four at presentation, and a further six after chemotherapy. Tumour rupture was more common in patients with hepatoblastoma than in those with hepatocellular carcinoma (36% versus 9% of cases, respectively). Mortality rates were considerably higher among the hepatocellular carcinoma group than the hepatoblastoma group in this series.

Conclusion. Childhood hepatoblastoma and hepatocellular carcinoma differ with respect to age and tumour stage at presentation, hepatitis B surface antigen status, tendency to rupture, chemosensitivity, and prognosis.

Key words: Carcinoma, hepatocellular; Child; Hepatoblastoma; Infant; Liver neoplasms
Introduction

Primary neoplasms of the liver constitute 0.5% to 2.0% of paediatric tumours in large series, and malignant epithelial neoplasms constitute two thirds of the primary hepatic tumours in infancy and childhood. Exelby et al found that hepatoblastoma (HB) and hepatocellular carcinoma (HCC) were the most common primary epithelial liver tumours in children following a large questionnaire survey conducted in the US. A previous study at the Queen Mary Hospital suggested that HB and HCC may be equally common in the Hong Kong paediatric population.

After studying 47 cases of HB and HCC, Ishak and Glunz concluded in 1967 that patients with HCC had a poor prognosis regardless of the treatment offered but that surgical excision for HB did influence survival. Since this early study, there have been significant improvements in the results from hepatic resection and with preoperative chemotherapy for initially unresectable HB. Paediatric patients treated at Queen Mary Hospital for HB or HCC were reviewed in order to compare these tumours with respect to patient age and stage of tumour at presentation, associated factors, resectability, response to chemotherapy, and overall prognosis given recent advances in treatment.

Methods

The medical records of all paediatric patients with HB or HCC admitted to Queen Mary Hospital between 1989 and 2000 were reviewed. The diagnosis of HB or HCC was confirmed histologically. Laboratory investigations completed included liver function tests, hepatitis A, B, and C titres, and serum α-fetoprotein levels. Imaging studies included chest X-ray, ultrasonography, computed tomography (CT) scan, and hepatic angiography with or without magnetic resonance imaging for tumour staging and resectability. The International Society of Paediatric Oncology (SIOP) method of staging was used: Stage I, one liver segment involved; Stage II, two segments involved; Stage III, three segments involved or two isolated, separate segments involved; Stage IV, all four segments involved. The segments were delineated using Couinaud’s liver segments. Substaging was indicated by subscripts to the above stages, such as ‘m’ for metastasis, or ‘p’ for portal vein involvement.

For unresectable tumours, biopsies were taken and systemic chemotherapy commenced to reduce tumour size, following the Paediatric Oncology Group regimens. The induction drug used was carboplatin (500 mg/m²), followed by a triple drug regimen of carboplatin (500 mg/m²), vincristine (1.5 mg/m²), and 5-fluorouracil (600 mg/m²). Blood was taken from the patients after 3 weeks to assess recovery of leucocyte and platelet counts. The cycle of chemotherapy was repeated if leucocyte and platelet counts were normal. Transarterial oily chemoembolisation (TOCE) treatment with cisplatin was given to patients with inoperable, locally extensive HCC. Imaging studies were repeated regularly to assess tumour response and resectability.

Patients with ruptured tumours confirmed on CT scan underwent immediate cardiovascular resuscitation. Depending on the stage of the tumour as seen on the CT scan and the condition of the patient, stoppage of bleeding was accomplished by transcatheter hepatic artery embolisation, selective hepatic artery ligation, or hepatic resection. Only clinically stable, small tumours were resected as an emergency procedure.

Results

Between 1989 and 2000, 22 patients were treated for HB (n=11) and HCC (n=11) in Queen Mary Hospital (Table 1). The mean age of patients with HB was 18 months (range, 5 months-3 years), while that of patients with HCC was 10.2 years (range, 2-16 years). Females predominated among the patients with HB (male:female, 3:8), and males among those with HCC (male:female, 10:1). While 64% (7/11) of the HCC patients were hepatitis B surface antigen (HBsAg) positive, none of the patients with HB were HBsAg positive. Younger patients with HCC (2, 5, and 8 years) also were negative for HBsAg. The mean serum alpha-fetoprotein level was higher for patients with HB (28183 µg/L; normal level, <10 µg/L) than the HCC patients (4216 µg/L).

The induction drug used was carboplatin (500 mg/m²), followed by a triple drug regimen of carboplatin (500 mg/m²), vincristine (1.5 mg/m²), and 5-fluorouracil (600 mg/m²). Blood was taken from the patients after 3 weeks to assess recovery of leucocyte and platelet counts. The cycle of chemotherapy was repeated if leucocyte and platelet counts were normal. Transarterial oily chemoembolisation (TOCE) treatment with cisplatin was given to patients with inoperable, locally extensive HCC. Imaging studies were repeated regularly to assess tumour response and resectability.

Patients with ruptured tumours confirmed on CT scan underwent immediate cardiovascular resuscitation. Depending on the stage of the tumour as seen on the CT scan and the condition of the patient, stoppage of bleeding was accomplished by transcatheter hepatic artery embolisation, selective hepatic artery ligation, or hepatic resection. Only clinically stable, small tumours were resected as an emergency procedure.

Table 1. Characteristics of patients with hepatoblastoma or hepatocellular carcinoma at presentation

<table>
<thead>
<tr>
<th></th>
<th>Mean age (range)</th>
<th>Sex (male: female)</th>
<th>Hepatitis B surface antigen status positive No. (%)</th>
<th>Mean serum alpha-fetoprotein level (µg/L)</th>
<th>Resectable tumour at presentation or following chemotherapy No. (%)</th>
<th>Tumour rupture No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatoblastoma (n=11)</td>
<td>18 months (5 months-3 years)</td>
<td>3:8</td>
<td>0 (0)</td>
<td>28183</td>
<td>10 (91)</td>
<td>4 (36)</td>
</tr>
<tr>
<td>Hepatocellular carcinoma (n=11)</td>
<td>10.2 years (2-16 years)</td>
<td>10:1</td>
<td>7 (64)</td>
<td>4216</td>
<td>5 (45)</td>
<td>1 (9)</td>
</tr>
</tbody>
</table>
The HCC tumours demonstrated a tendency to enlarge and infiltrate early in the clinical course (Table 2), with seven (64%) patients found to have Stage IV tumours at presentation. A Stage I HCC was identified in a patient with neonatal hepatitis, with follow-up ultrasound scanning locating a 2-cm nodule at the left lateral hepatic segment. This patient has since been tumour-free for 3 years following left lateral segmentectomy.

A total of 15 hepatic resections were performed: five for HCC (45%) and 10 for HB (91%). Six patients had HB tumours deemed suitable for resection following chemotherapy treatment, while such a response to chemotherapy was not seen in any patients with unresectable HCC. Operations included right lobectomy (n=6), right trisegmentectomy (n=2), left trisegmentectomy (n=3), left lobectomy (n=1), left lateral segmentectomy (n=1), and left lateral segmentectomy with partial gastrectomy and transverse colectomy (n=1). The right lateral segmentectomy involved resection of segments six and seven only in order to preserve as much liver tissue as possible. Blood loss during surgery ranged from 250 cc to 1750 cc (mean, 525 cc). There was no operative mortality.

One patient experienced subphrenic haematoma formation and required a second operation for blood evacuation. All other patients had an uneventful recovery postsurgery.

Survival rates were higher overall for patients with HB than for those with HCC (Fig): median survival of 3 years versus 5 months, respectively (P=0.0001, log rank test). One patient with HB and tumour rupture (undiagnosed) died shortly after admission. Another patient with HB and raised α-fetoprotein levels 9 months after hepatic resection, was found to have three secondary tumours (one in the left lobe and two in the right lobe) on CT of the thorax. Left thoracotomy and partial pulmonary resection for the removal of the left nodule confirmed the secondary tumours histologically. The patient is awaiting further surgery to remove the right nodules. All other HB patients are well without evidence of disease. Of the patients with HCC, only three are still alive. One is without evidence of disease while two have persistent HCC and are undergoing TOCE treatment for tumour control.

Table 2. Tumour stage at presentation according to the International Society of Paediatric Oncology staging method

<table>
<thead>
<tr>
<th></th>
<th>Hepatoblastoma</th>
<th>Hepatocellular carcinoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage I</td>
<td>1 (9)</td>
<td>1 (9)</td>
</tr>
<tr>
<td>Stage II</td>
<td>3 (27)</td>
<td>1 (9)</td>
</tr>
<tr>
<td>Stage III</td>
<td>7 (64)</td>
<td>1 (9)</td>
</tr>
<tr>
<td>Stage IV extension</td>
<td></td>
<td>1 (9)</td>
</tr>
<tr>
<td>Stage III portal vein</td>
<td>1 (9)</td>
<td></td>
</tr>
<tr>
<td>Stage III metastasis</td>
<td>1 (9)</td>
<td></td>
</tr>
<tr>
<td>Stage IV</td>
<td>6 (55)</td>
<td></td>
</tr>
<tr>
<td>Stage IV metastasis</td>
<td>1 (9)</td>
<td></td>
</tr>
</tbody>
</table>

Fig. Survival curve for patients with hepatoblastoma and hepatocellular carcinoma
mortality rate, suggesting that they make poor candidates for liver transplantation. In this study, the only patient who survived for 3 years was one identified on a screening ultrasound study for postneonatal hepatitis. Screening for early disease may enhance the survival rate of patients with HCC.

The SIOP staging system for paediatric hepatic tumours has been confirmed as useful for comparing results of different treatment options. It is a preoperative clinical staging system, with the emphasis on local extension and vascular invasion. The system differs from the International Union Against Cancer (UICC) TNM staging system commonly used in adults. Modification of the adult UICC TNM staging system, placing greater emphasis on vascular invasion has been suggested by Izumi et al and Staudacher et al following their studies investigating treatment results of patients with HCC. The SIOP staging system addresses the infiltrative status of tumours and this may explain its prognostic accuracy with respect to paediatric hepatic tumours, especially paediatric HCC which is very infiltrative and aggressive (Table 2).

Rupture has not been included as a variable in the SIOP staging system. In selected patients and with appropriate treatment, survival is possible. The mechanism of spontaneous rupture of liver tumour is unknown. It may be related to venous congestion, haemorrhage, central necrosis, or trauma. Embolisation, emergency hepatectomy, and selective hepatic artery ligation are reported treatments and were successfully applied in this study to arrest postresection bleeding. The preferred treatment depends on the general condition of the patient, tumour size, and the experience of the surgeon. Selective hepatic artery ligation did not appear to affect postligation chemotherapy for the patients in this study. There were apparently sufficient collateral vessels remaining to allow postoperative chemotherapy to control the tumour. Rupture in HB did not appear to negatively influence patient survival, except in the patient in whom the diagnosis of ruptured HB was not made.

The prognosis for paediatric patients with HCC appears poor. The resection rate in this study was 45%, and the median survival time in this series only 5 months. Hepatitis B surface antigen tests were positive in 64% of the patients overall. Those who tested positive were the older patients in the group. In younger patients, the development of HCC has been attributed to a variety of conditions, including tyrosinaemia, biliary atresia, idiopathic neonatal hepatitis, and neonatal iron storage disease. Idiopathic neonatal hepatitis was found in one of the current patients.

Universal hepatitis B vaccination is known to decrease the incidence of HCC. Since hepatitis vaccination has commenced in Hong Kong, the local incidence of HCC is expected to decrease.

The aetiology of HB is currently unknown. All of the patients with HB in the current series were HBsAg negative. Prematurity has been shown to be associated with HB but the exact mechanism is unclear. The alteration of genes involved with cell cycle control and cell growth, as well as chromatin modification, have been noted in patients with HB. Similar genetic aberrations, such as p53 mutations, have also been found in patients with HCC. The use of molecular techniques to investigate these tumours and the differences between them still remains to be addressed in research studies.

Conclusion
Paediatric HB and HCC demonstrate marked differences in their clinical course. These differences should be kept in mind when planning management for paediatric patients with HB or HCC, and counselling patients and their families.

References

