<table>
<thead>
<tr>
<th>Title</th>
<th>Left ventricular function in beta thalassaemia major</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Lau, KC; Li, AM; Hui, PW; Yeung, CY</td>
</tr>
<tr>
<td>Citation</td>
<td>Archives of Disease in Childhood, 1989, v. 64 n. 7, p. 1046-1051</td>
</tr>
<tr>
<td>Issued Date</td>
<td>1989</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/45213</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.; Archives of Disease in Childhood. Copyright © B M J Publishing Group.</td>
</tr>
</tbody>
</table>
Left ventricular function in β thalassaemia major

K C LAU, A M C LI, P W HUI, AND C Y YEUNG

Department of Paediatrics, University of Hong Kong

SUMMARY The left ventricular dimension and posterior wall dynamics were studied by computer assisted analysis of M mode echocardiography in 25 normal children (group 1) and 32 transfusion dependent children with β thalassaemia major who had no evidence of heart failure (group 2). Twenty seven of those in group 2 remained well but five died of cardiac decompensation within 12 months. Compared with group 1, the left ventricular fractional shortening and ejection fraction were normal in those in group 2 who survived but diminished in those who died. Evaluation of left ventricular dimension and posterior wall dynamics during systole (peak shortening rate, peak velocity of circumferential fibre shortening, and peak posterior wall thickening rate) showed similar findings in that only the group who died had abnormal values. The left ventricular dimension and posterior wall diastolic dynamics (peak relaxation rate, normalised peak relaxation, peak wall thinning, and normalised peak wall thinning rate), however, showed progressively slower rates in all the children in group 2. The findings suggest that left ventricular diastolic dysfunction occurs early in myocardial impairment in patients with β thalassaemia major. When there are abnormalities in both diastole and systole, the myocardial impairment is advanced and the prognosis is poor.

Iron overloading is inevitable in children with β thalassaemia major because of repeated blood transfusions and enhanced gastrointestinal absorption. When cardiac impairment from iron deposition is severe enough to be clinically obvious, the disease is advanced and the subsequent survival is brief.1, 2 Henry et al used conventional M mode echocardiography to study these patients and found that most had normal resting left ventricular ejection fractions; some who had low values, however, died within six months.3 Leon et al used radionuclide cineangiography to measure the left ventricular ejection fraction during exercise and found that the index in the thalassaemic patients did not increase as in normal subjects but either dropped or remained unchanged.4 Normally, however, the ejection fraction does not change appreciably during submaximal exercise, and it is often difficult to exercise young children enough. Computer assisted analysis of M mode echocardiography, developed by Gibson and Brown,5 has been used to evaluate left ventricular function in various kinds of myocardial diseases,6-14 but its use in children with β thalassaemia major has not been reported. We report our experience with computer assisted analysis of M mode echocardiography to evaluate the left ventricular function in these patients.

Patients and methods

The subjects were divided into two groups. Group 1 comprised 25 normal schoolchildren to serve as controls. Group 2 comprised 32 children with homozygous β thalassaemia who needed regular blood transfusion; none had clinical evidence of heart failure and at the time of study none was on iron chelation treatment. In the follow up period, 27 in group 2 remained well but five developed overt congestive heart failure and died within 12 months of the initial echocardiographic study. The two groups were comparable for age, sex, weight, and height (table 1).

The echocardiographic study was performed by one of us (KCL) when the subjects were at rest, and in group 2 one week after a blood transfusion when their haemoglobin concentration was more than 110 g/l. If the Hg concentration was less than this, the echocardiographic study was not carried out. Electrocardiogram, phonocardiogram, and cross-sectional echocardiograms were carried out with an Advanced Technology Laboratory MK 600 sector scanning system. Firstly, a subjective assessment of left ventricular regional contraction was obtained by using the left ventricular long axis, short axis and apical four chambered views. To obtain the M mode echocardiographic beam was directed ventricular short mitral valve. The were recorded with the phonoc with a 1

Table 1: Comparision of Mean (range) age (years)

<table>
<thead>
<tr>
<th>Sex</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

| Weight (kg) | 11 |

| Height (cm) | 11 |

end systolic d' (1—end systolic d' (4) ejection fraction (5) Teichholz et al15 (6) end systolic w thickening (end s wall thickness)—1

(B) Left ventri

(1) Systole (a) peak systolic rate of lc and (b) peak v
Table 1 Comparability of the groups

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survived (n=27)</td>
<td>Died (n=5)</td>
</tr>
<tr>
<td>Mean (range) age (years)</td>
<td>9.5 (7-13)</td>
</tr>
<tr>
<td>Sex:</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>13</td>
</tr>
<tr>
<td>Female</td>
<td>12</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>19.5-33</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>115-140</td>
</tr>
</tbody>
</table>

Echocardiographic tracings, the M mode ultrasonic beam was directed along the centre of the left ventricular short axis at the level of the tip of the mitral valve. The M mode echocardiographic tracings were recorded with maximal expansion together with the phonocardiograms and electrocardiograms at a paper speed of 100 mm/s. Only those high quality tracings with uninterrupted endocardial and epicardial surfaces were chosen. The echocardiograms were digitised by the method of Gibson and Brown with a Hewlett Packard 9874A digitiser (resolution 0.0025 cm, relative accuracy 0.0125 cm) and processed by a Hewlett Packard 9836A computer. End diastole and end systole were taken to occur at the onset of Q wave of the electrocardiogram and A2 of the phonocardiogram, respectively. The left ventricular posterior septal endocardial and posterior wall endocardial and epicardial surfaces were digitised continuously. The digitised data were plotted with a Hewlett Packard 2671G graphic printer (figure). If the plot was satisfactory and free from artefacts, the left ventricular dimension, posterior wall thickness, and their respective rates of change with time were determined; otherwise, the digitisation was repeated. At least three consecutive cardiac cycles were digitised and the mean value calculated.

The following indices of left ventricular dimension and posterior wall were obtained:

(A) Conventional left ventricular M mode echocardiographic indices—(1) end diastolic dimension, (2) end systolic dimension, (3) fractional shortening (1-end systolic dimension/end diastolic dimension), (4) ejection fraction (calculated from the formula of Teichholz et al\(^{25}\)), (5) end diastolic wall thickness, (6) end systolic wall thickness, and (7) wall fractional thickening (end systolic wall thickness/end diastolic wall thickness) - 1.

(B) Left ventricular dimension dynamic indices—(1) Systole (a) peak dimension shortening rate (peak systolic rate of left ventricular dimension change), and (b) peak velocity of circumferential fibre shortening (peak systolic rate of left ventricular dimension change/end diastolic dimension). (2) Diastole (a) peak dimension relaxation rate (peak diastolic rate of left ventricular dimension change), and (b) normalised peak dimension relaxation rate (peak diastolic rate of left ventricular dimension change/end diastolic dimension).

(C) Left ventricular posterior wall dynamic indices—(1) Systole (a) peak wall thickening rate (peak systolic wall thickening rate), and (b) normalised peak wall thickening rate (peak systolic wall thickening rate/end diastolic wall thickness). (2) Diastole (a) peak wall thinning rate (peak diastolic wall thinning rate), and (b) normalised peak wall thinning rate (peak diastolic wall thinning rate/end diastolic wall thickness).

In 10 patients the echocardiographic examination and digitisation were repeated by the same worker (KCL) and the results of the two studies were compared.

The results for both groups were expressed as the mean (1 SD), and the t test (Bonferroni\(^{19}\)) was used for comparison. The differences were taken to be significant when the p value was <0.05.

Results

The mean heart rates in the two groups were similar.

Conventional M mode echocardiographic indices (table 2)

The mean end diastolic dimension and end systolic dimension of those in group 2 who survived were significantly larger than those in group 1 (p<0.05). Likewise the corresponding values among those in group 2 who died were also significantly larger than in both group 1 and group 2 who survived. The fractional shortening and ejection fraction of group 2 who survived were not significantly different from those in group 1, but those of group 2 who died were significantly diminished (p<0.001).

Although the mean end systolic wall thickness of group 2 (particularly those who died) was significantly greater than group 1, the mean end systolic wall thickness of the three groups was not significantly different. Thus the left ventricular wall fractional thickening was significantly reduced in group 2 survivors (p<0.01) and even more reduced in group 2 patients who died (p<0.001).

Left ventricular dimension dynamic changes (table 3)

The systolic dynamic changes (peak dimension shortening rate and velocity of circumferential fibre shortening) of group 2 survivors were not significantly different from group 1, but only group 2
Figure. After digitisation the computer plots out the echogram (A). If the plot is satisfactory it will then plot the dimension change (B); the rate of dimension change (C); the normalised rate of dimension change (D); the posterior wall thickness (E); the rate of change of wall thickness (F); and the normalised rate of change of wall thickness (G).
patients who died showed significantly abnormal values (p<0.05 and p<0.01, respectively). The diastolic dynamic changes, however (peak dimension relaxation rate and normalised peak dimension relaxation rate) of group 2 survivors were already depressed (p<0.01 and p<0.001, respectively) and those of group 2 who died were more depressed.

Table 2 Conventional indices of M mode echocardiography

<table>
<thead>
<tr>
<th>Mean (SD) measurement</th>
<th>Group 1</th>
<th>Group 2</th>
<th>p Values Group 1 v group 2, survived</th>
<th>p Values Group 1 v group 2, died</th>
<th>p Values Group 2, survived v group 2, died</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left ventricular end diastolic dimension (cm)</td>
<td>3.87 (0.33)</td>
<td>4.25 (0.57)</td>
<td>5.07 (0.57)</td>
<td><0.05</td>
<td><0.001</td>
</tr>
<tr>
<td>Left ventricular end systolic dimension (cm)</td>
<td>2.45 (0.17)</td>
<td>2.82 (0.5)</td>
<td>3.92 (0.6)</td>
<td><0.05</td>
<td><0.001</td>
</tr>
<tr>
<td>Fractional shortening (%)</td>
<td>35.5 (4.5)</td>
<td>33.0 (3.8)</td>
<td>22.25 (7.5)</td>
<td><0.05</td>
<td><0.001</td>
</tr>
<tr>
<td>Ejection fraction</td>
<td>64.0 (5.0)</td>
<td>59.5 (7.5)</td>
<td>37.05 (17.0)</td>
<td>>0.1</td>
<td><0.001</td>
</tr>
<tr>
<td>Left ventricular wall end diastolic thickness (cm)</td>
<td>0.41 (0.06)</td>
<td>0.52 (0.1)</td>
<td>0.7 (0.27)</td>
<td><0.01</td>
<td><0.001</td>
</tr>
<tr>
<td>Left ventricular wall end systolic thickness (cm)</td>
<td>0.95 (0.1)</td>
<td>1.02 (0.17)</td>
<td>1.05 (0.27)</td>
<td>>0.3</td>
<td>>0.5</td>
</tr>
<tr>
<td>Wall fractional thickening</td>
<td>1.35 (0.25)</td>
<td>1.0 (0.39)</td>
<td>0.54 (0.26)</td>
<td><0.01</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Table 3 Left ventricular dimension dynamics

<table>
<thead>
<tr>
<th>Mean (SD) measurement</th>
<th>Group 1</th>
<th>Group 2</th>
<th>p Values Group 1 v group 2, survived</th>
<th>p Values Group 1 v group 2, died</th>
<th>p Values Group 2, survived v group 2, died</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak left ventricular shortening rate (cm/s)</td>
<td>8.79 (1.50)</td>
<td>8.84 (1.88)</td>
<td>6.49 (1.78)</td>
<td>>0.9</td>
<td><0.05</td>
</tr>
<tr>
<td>Peak velocity of circumferential fibre shortening (circumference/s)</td>
<td>2.2 (0.5)</td>
<td>2.1 (0.4)</td>
<td>1.3 (0.3)</td>
<td>>0.9</td>
<td><0.001</td>
</tr>
<tr>
<td>Peak left ventricular dimension relaxation rate (cm)</td>
<td>16.34 (4.10)</td>
<td>12.80 (2.00)</td>
<td>8.9 (2.3)</td>
<td><0.01</td>
<td><0.001</td>
</tr>
<tr>
<td>Normalised peak left ventricular dimension relaxation rate (circumference/s)</td>
<td>4.2 (1.0)</td>
<td>3.1 (0.6)</td>
<td>1.9 (0.8)</td>
<td><0.001</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Table 4 Left ventricular posterior wall dynamics

<table>
<thead>
<tr>
<th>Mean (SD) measurement</th>
<th>Group 1</th>
<th>Group 2</th>
<th>p Values Group 1 v group 2, survived</th>
<th>p Values Group 1 v group 2, died</th>
<th>p Values Group 2, survived v group 2, died</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak wall thickening rate (cm/s)</td>
<td>3.69 (0.75)</td>
<td>3.62 (0.81)</td>
<td>3.75 (1.2)</td>
<td>>0.9</td>
<td>>0.9</td>
</tr>
<tr>
<td>Normalised peak wall thickening rate/cm/s</td>
<td>6.4 (1.3)</td>
<td>5.36 (1.5)</td>
<td>4.64 (2.6)</td>
<td>>0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>Peak wall thickening rate (cm/s)</td>
<td>11.56 (2.8)</td>
<td>6.92 (2.3)</td>
<td>4.64 (0.8)</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Normalised peak wall thickening rate/cm/s</td>
<td>29.1 (8.2)</td>
<td>14.0 (5.8)</td>
<td>7.2 (1.7)</td>
<td><0.001</td>
<td><0.001</td>
</tr>
</tbody>
</table>
Depressed (p<0.05). The same was true when the peak wall thinning rate was normalised by the left ventricular wall end diastolic thickness.

Cross sectional echocardiographic evaluation of left ventricular motion showed no dyskinesia in any of the subjects studied.

The mean intraobserver variation of all the static indices between two studies of the same patient was 4.5 (1.5–5)% and that of dynamic indices was 7.5 (2)%.

Discussion

Desferrioxamine given subcutaneously was first introduced to treat thalassaemic patients in our unit in 1979, and by now almost all patients are on iron chelation treatment at home. Since 1981 these patients have had regular echocardiographic studies, and the data in the present report represent our earlier experience with patients before chelation treatment was started. The patients were grouped retrospectively according to their outcome because it seemed reasonable to assume that the myocardial state of group 2 patients who subsequently died of cardiac compensation was preretalional, while that of the group 2 survivors was only mildly deranged. Thus theoretically the patients studied had different degrees of myocardial dysfunction. Although the mean age of the group 2 patients who died was marginally greater than the other groups, their mean body sizes (height and weight) were not significantly different.

Computer assisted analysis of M mode echocardiography is an established method of assessing myocardial function. It has been used to study a large variety of cardiac disorders in both adults and children. Provided that adequate precautions are taken (selecting only the good quality echocardiograms with continuous leading edges of the septal and wall surfaces for digitisation, high speed recording of maximally expanded echocardiographic tracings, recording the left ventricular endocardium at the level of the tip of the mitral valve as a constant site of reference, and taking the mean of the results of at least three cardiac cycles) the results obtained are reliable, reproducible, and interpretable. The reproducibility of computer assisted analysis of M mode echocardiography has been previously shown and the present study confirms it. As only one of us (KCL) was responsible for recording and digitising the echocardiograms, the variation was low. The rates of systolic and diastolic changes vary little with heart rate; these indices, which are obtained by non-invasive means, may be ideal for monitoring myocardial performance. The method, however, has not previously been used to evaluate the myocardial function of thalassaemic patients.

Dilatation of left ventricular chambers in patients with thalassaemia has previously been shown, and the results of the present study confirm this. Henry et al showed that the fractional shortening or ejectional fraction, which were better indices of myocardial function, were only abnormal when the myocardial impairment in thalassaemia was extreme. This phenomenon was also confirmed by our results, as those indices were still normal in group 2 survivors, but abnormal in those who died. We also found that although both the systolic and diastolic dimensional and posterior wall dynamic indices were abnormal in those with preretalional myocardial dysfunction, abnormalities of the diastolic dynamic indices alone were already present. The diastolic abnormalities seemed to become more pronounced as the myocardial impairment worsened. When the diastolic indices were normalised by the corresponding end diastolic dimension or wall thickness, an attempt to take account of chronic volume overloading and body sizes made the abnormalities more obvious. There was, however, considerable overlap among groups. Further evaluation in a longitudinal manner is necessary to confirm the usefulness of the method in monitoring these patients' myocardial function.

The phenomenon of abnormal left ventricular diastolic function with otherwise normal systolic function detected by computer assisted analysis of M mode echocardiography has been shown in such conditions as systemic hypertension and postoperative aortic stenosis, in which pathological left ventricular hypertrophy is present. Using the same method, Shapiro and Smith have shown that in normal subjects physiological hypertrophy of the left ventricular wall from physical training does not give rise to any early diastolic abnormalities. These studies confirm our belief that the depressed diastolic indices found in our group 2 patients who survived are evidence of myocardial impairment from iron deposition rather than the simple result of myocardial hypertrophy secondary to chronic anaemia. Our evaluation of a small group of patients with thalassaemia intermedia who were chronically anaemic but who were not receiving blood transfusions showed normal diastolic findings, which accords with this suggestion (unpublished observations). Additionally, our present finding of a progressive increase in end diastolic wall thickness in group 2 without the corresponding increase in end systolic wall thickness has similar implications. This again suggests that the isolated increase in end diastolic wall thickness is not the result of simple hypertrophy of the myocardial contractile fibres alone, otherwise both their end systolic and end diastolic wall thicknesses would be correspondingly increased. The an appreciable possibly reaction together with the pathologic abnormalities of the early function process. Were functions are fibrosis and fibrosis will re-chelation is a chelation treat myocardial dys than reverting treatment of early institution of the development. Further long term issue.

Grossman and the signs and now previously been performance diastolic prop. Our findings of the absence of evah transfusion de results show that the analysis of M n of left ventrie with β thalassaemia dysfunction be appear earlier different grad both the basis present the m the prognosis further research method used mechanisms of effect of iron.

References

1 Engle MA, Erff of chronic, sec Circulation 196...
in patients
and his. Henry
tening or
indices of
mal when
ermia was
irmed by
ormal in
who died.
estic and
1 dynamic
retensive
if the di-
more wors-
ated by the
or wall of
chronic the
borne-
, co-
the in-

ventricular
al systolic
alysis of
n such
ostopersa-
le of the
Using the
n in hy of
the g
not
malities.
ressed
tients who
apartment
nt of pa-
chronically
od trans-
g, which
observe-
pro-
ase in end
ions. This
in end of
ile fibres
and end-

increased. Their myocardiums must have contained
an appreciable proportion of non-contractile tissue, possibly reactive or replacement fibrosis, or both, possibly with myocardial cell death secondary to
myocardial iron deposition. This is in keeping with the pathologic findings in hearts with haemo-
chromatosis. Thus it is likely that the diastolic
abnormalities found in the thalassaemic patients are the early functional result of such a pathological
process. When both the diastolic and systolic
functions are affected, severe myocardial cell loss and fibrosis must have been present. Whether
fibrosis will regress with successful iron removal by
chelation is unknown. If the answer is no, iron
chelation treatment may only halt the progression of
myocardial dysfunction that is already present rather than reversing it. This would imply that optimal
treatment of thalassaemic patients should include
early institution of iron chelating drugs well before
the development of any myocardial dysfunction.
Further longitudinal studies are required to clarify
the issue.

Grossman and Mclaurin suggested that many of
the signs and symptoms of cardiac failure that had
previously been attributed to abnormal early systolic
performance may be caused largely by altered
diastolic properties of the ventricular chambers. Our
findings confirm this, and point to the import-
ance of evaluating the diastolic functions of the
transfusion dependent thalassaemic patients. Our
results show that with the use of computer assisted
analysis of M mode echocardiography, abnormalities of
left ventricular function are detected in children with
β thalassaemia major before their myocardial
dysfunction becomes overt. Abnormalities in diastole
appear earlier and may be used to differentiate
different grades of myocardial dysfunction. When
both the diastolic and systolic abnormalities are present
the myocardial dysfunction is terminal and the
prognosis is poor. Our study should stimulate
further research to validate the usefulness of the
method used and to cast further light on the
mechanisms of myocardial dysfunction as well as the
effect of iron chelation treatment in these patients.

References

Engle MA. Cardiac involvement in Cooley’s anemia. Ann NY

Henry WL, Nienhuis WA, Wiener M, Miller R, Canale VC,
Piomelli S. Echocardiographic abnormalities in patients with
transfusion-dependent anemia and secondary myocardial iron

cardiac dysfunction in patients with severe β-thalassemia and

Gibson DG, Brown DJ. Measurement of instantaneous left
ventricular dimension and filling rate in man, using echocardi-

Upton MT, Gibson DG, Brown DJ. Echocardiographic assess-
ment of abnormal left ventricular relaxation in man. Br Heart J

Gibson DG, Trail TA, Hall RJC, Brown DJ. Echocardiographic
features of secondary left ventricular hypertrophy. Br Heart J
1979;41:54–9.

Sutton MG, Tadjuk AJ, Gibson DG, Brown DJ, Seward JB,
Guliani ER. Echocardiographic assessment of left ventricular
filling and septal and posterior wall dynamics in idiopathic

Venco A, Sutton MG SJ, Gibson DG, Brown DJ. Noninvasive
assessment of left ventricular function after correction of severe

Friedman MJ, Sahn DJ, Burris H, Allen HD, Goldberg SJ.
Computerized echocardiographic analysis to detect abnormal
systolic and diastolic left ventricular function in children with

Kugler JD, Gutgesell HP, Nihill MR. Instantaneous rates of left
ventricular wall motion in infants and children. Pediatr Cardiol

Goldberg SJ, Feldman L, Reinenee C, Stern L, Sahn DJ, Allen
HD. Echocardiographic determination of constriction and
relaxation measurements of the left ventricular wall in normal
subjects and patients with muscular dystrophy. Circulation

Sutton MS, Meyer RA. Left ventricular function in persistent
pulmonary hypertension of the newborn. Br Heart J 1983;50:
340–9.

Johns GG, Arjunan K, Meyer RA, Engel P, Kaplan S.
Differentiation of constrictive pericarditis and restrictive cardi-
omyopathy using digitized echocardiography. J Am Coll Cardiol

Teichholz LE, Kreulen T, Herman MV, Gorlin R. Problems in
echocardiographic volume determination: echocardiographic
angiographic correlations in the presence and absence of

Glantz SA. Primer of biostatistics. New York: McGraw-Hill,
1981:84–90.

Shapiro LM, Smith RG. Effect of training on left ventricular
structure and function. An echocardiographic study. Br Heart J

Buja LM, Roberts WC. Iron in the heart: etiology and clinical

Grossman W, Mclaurin LP. Diastolic properties of the left

Correspondence and requests for reprints to Dr KC Lau, Paediatric
Cardiac Unit, The Grantham Hospital, 125 Wong Chuk Hang
Road, Aberdeen, Hong Kong.

Accepted 26 October 1988