<table>
<thead>
<tr>
<th>Title</th>
<th>Globicatella bacteraemia identified by 16S ribosomal RNA gene sequencing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Lau, SKP; Woo, PCY; Li, NKH; Teng, JLL; Leung, KW; Ng, KHL; Que, TL; Yuen, KY</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal Of Clinical Pathology, 2006, v. 59 n. 3, p. 303-307</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2006</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/45166</td>
</tr>
<tr>
<td>Rights</td>
<td>Journal of Clinical Pathology. Copyright © B M J Publishing Group.; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Globicatella bacteraemia identified by 16S ribosomal RNA gene sequencing

S K P Lau, P C Y Woo, N K H Li, J L L Teng, K-W Leung, K H L Ng, T-L Que and K-Y Yuen

doi:10.1136/jcp.2005.028878

Updated information and services can be found at:
http://jcp.bmj.com/cgi/content/full/59/3/303

These include:

References
This article cites 22 articles, 18 of which can be accessed free at:
http://jcp.bmj.com/cgi/content/full/59/3/303#BIBL

1 online articles that cite this article can be accessed at:
http://jcp.bmj.com/cgi/content/full/59/3/303#otherarticles

Rapid responses
You can respond to this article at:
http://jcp.bmj.com/cgi/eletter-submit/59/3/303

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Notes

To order reprints of this article go to:
http://www.bmjournals.com/cgi/reprintform

To subscribe to Journal of Clinical Pathology go to:
http://www.bmjournals.com/subscriptions/
Globicatella bacteraemia identified by 16S ribosomal RNA gene sequencing

S K P Lau, P C Y Woo, N K H Li, J L L Teng, K-W Leung, K H L Ng, T-L Que, K-Y Yuen

Background: Globicatella are streptococcus-like organisms that have been rarely isolated from clinical specimens. Their epidemiology and clinical significance remain largely unknown.

Aims: To describe two cases of Globicatella bacteraemia identified by 16S ribosomal RNA (rRNA) gene sequencing.

Methods: Two unidentified streptococcus-like bacteria isolated from blood cultures of patients were subjected to 16S rRNA gene sequencing.

Results: Two cases of Globicatella bacteraemia were identified by 16S rRNA gene sequencing. In the first case, a gram positive coccus was isolated from the blood culture of an 80 year old woman with diabetes mellitus and nosocomial sepsis, who died the day after developing the bacteraemia. The bacterium was unidentified by conventional phenotypic tests, the Vitek (gram positive identification) and the ATB expression (ID32 Strep) systems. In the second case, a similar bacterium was isolated from the blood culture of a 92 year old woman with polymicrobial acute pyelonephritis complicated by septic shock, who subsequently recovered after antibiotic treatment. 16S rRNA gene sequencing of the two isolates showed 0.5% nucleotide difference from that of G. sanguinis and 0.7% nucleotide difference from that of G. sanguinis, indicating that they were Globicatella species.

Conclusions: Because Globicatella is rarely encountered in clinical microbiology laboratories, it may have been overlooked or misidentified in these cases. 16S rRNA gene sequencing is a useful tool to better characterise the epidemiology and clinical significance of Globicatella.
RESULTS

Patients and identification of the bacterial strains by conventional methods and commercially available systems

Patient 1
An 80 year old Chinese woman was admitted to hospital because of a 3 month history of chronic diarrhoea. She had been passing loose stool with mucus 2–3 times a day. She had diabetes mellitus, hypertension, and gouty arthritis, and was being treated with warfarin. On admission, she was afebrile. Abdominal examination did not reveal an obvious focus of infection. Her total leukocyte count was 36.3 x10⁹/l, haemoglobin level 9.8 g/dl, and platelet count 457 x10⁹/l. Her serum urea was 19.3 mmol/l, creatinine 211 µmol/l, alkaline phosphatase 115 IU/l, and alanine aminotransferase 87 IU/l. Blood cultures were performed. However, she continued to deteriorate and succumbed on the next day.

On day 2 post-incubation, the aerobic blood culture bottle showed a gram positive coccus (isolate 1). It grew on sheep blood agar as greyish white, α-haemolytic colonies of 0.5 mm in diameter after 24 hours of incubation at 37°C in ambient air. There was enhancement of growth in 5% CO₂ and anaerobic environment. It also grew on MacConkey agar but did not grow in 6.5% NaCl. It was positive for pyrrolidonyl arylamidase and esculin, and negative for catalase, arginine, or hippurate hydrolysis, bile aesculin, and Voges-Proskauer tests. It was non-groupable with Lancefield groups A, B, C, D, E, or G antisera. Both the Vitek and ATB expression systems showed that it was “unidentified” (table 1). It was susceptible to vancomycin (MIC 0.25 µg/ml), intermediate susceptible to penicillin (MIC 2 µg/ml), and resistant to and cephotaxime (MIC 4 µg/ml), erythromycin, clindamycin, and neomycin.

Patient 2
A 92-year-old Chinese woman was admitted to hospital because of fever and productive cough with yellow sputum for one day. She had dementia, congestive heart failure, and history of recurrent urinary tract infection. She was bed ridden and was put on nasogastric tube feeding. On admission, her oral temperature was 39.5°C. Physical examination did not reveal an obvious focus of infection. Her total leukocyte count was 36.3 x10⁹/l, haemoglobin level 11.1 g/dl, and platelet count 95 x10⁹/l. Her renal and liver function tests were within normal limits. Blood cultures were performed. She went into septic shock soon after admission and empirical intravenous cefazidime was administered. Urine microscopy showed the presence of numerous leucocytes and bacteria. Urine culture recovered Pseudomonas aeruginosa with bacterial count >100 000 cfu/ml. Ultrasonography of the kidneys only showed the presence of a renal stone on the right side with no evidence of obstructive uropathy. Antibiotic was switched to intravenous cefazidime. Her fever responded and she was discharged after 2 weeks of antibiotics.

On day 2 post-incubation, the aerobic blood culture bottle turned positive with a gram negative bacillus and two gram positive cocci. The gram negative bacillus and one of the gram positive cocci were identified as Pseudomonas aeruginosa and Streptococcus sanguis respectively. The other gram positive coccus (isolate 2) possessed phenotypic characteristics similar to isolate 1 (table 1). It was susceptible to vancomycin (MIC 0.25 µg/ml) and clindamycin, intermediate susceptible to penicillin (MIC 1 µg/ml) and cephotaxime (MIC 2 µg/ml), and resistant to erythromycin and neomycin.

16S ribosomal RNA gene sequencing and phylogenetic analysis

PCR of the 16S rRNA gene of both isolates showed bands at about 1450 bp. The 16S rRNA gene sequences of the two isolates were identical and had 0.5% nucleotide difference from G. sulfidifaciens (GenBank accession no. AJ297627), 0.7% nucleotide difference from G. sanguinis (GenBank accession no. S50214), 3.69% nucleotide difference from Facklamia hominis (GenBank accession no. Y10772), 4.9% difference from Aerophora tauta (GenBank accession no. AJ279038), and 5.5% difference from F. languida (GenBank accession no. Y18053), indicating that the two isolates belong to the genus Globicatella (fig 1).

Based on their phenotypic and genotypic data, the two isolates could not be assigned to a particular species of the genus Globicatella. Phenotypically, they resembled G. sanguinis in the production of pyrrolidonylarylaminidase and the negative H₂S and β-glucuronidase production. On the other hand, they resembled G. sulfidifaciens in that they did not use mannitol and did not produce N-acetyl-β-glucosaminidase.

PCR, gel electrophoresis, and 16S ribosomal RNA gene sequencing

PCR amplification and DNA sequencing of the 16S rRNA gene was performed according to our previous publications. Briefly, DNase I treated distilled water and PCR master mix (dNTPs, PCR buffer, and Taq polymerase) were used in all PCR reactions by adding 1 U of DNase I (Pharmacia, Sweden) to 40 µl of distilled water or PCR master mix, incubating the mixture at 25°C for 15 minutes, and subsequently at 95°C for 10 minutes to inactive the DNase I. The bacterial DNA extract and control were amplified with 0.5 µmol/l primers (LPW975 5'-AGTGGATCCCTGGCTCAG-3' and LPW205 5'-CTTGGTACGACTTCACCC-3'; Gibco BRL Rockville, MD, USA). The PCR mixture (50 µl) contained bacterial DNA, PCR buffer (10 mmol/l Tris-HCl pH 8.3, 50 mmol/l KCl, 2 mmol/l MgCl₂, and 0.01% gelatin), 200 µmol/l of each dNTP and 1.0 U Taq polymerase (Boehringer Mannheim, Germany). The mixtures were amplified in an automated thermal cycler (Perkin-Elmer Cetus, Couda, The Netherlands), using 40 cycles of 94°C for 1 minute, 60°C for 1 minute, and 72°C for 2 minutes, with a final extension at 72°C for 10 minutes. DNase I treated distilled water was used as the negative control. A 10 µl sample of each amplified product was electrophoresed in 1.5% (w/v) agarose gel, with a molecular weight marker (4x174 Hae III digest.; Boehringer Mannheim, Germany) in parallel. Electrophoresis in Tris-borate EDTA buffer was performed at 100 V for 1.5 hours. The gel was stained with ethidium bromide (0.5 µg/ml) for 15 minutes, rinsed, and photographed under 312 nm ultraviolet light illumination.

The PCR products were gel purified using the QIAquick PCR purification kit (QIAgen, Hilden, Germany). Both strands of the PCR product were sequenced twice with an ABI 377 automated sequencer according to manufacturers' instructions (Perkin-Elmer, Foster City, CA, USA), using the PCR primers. The sequences of the PCR products were compared with known 16S rRNA gene sequences in GenBank (hwww.ncbi.nlm.nih.gov) by multiple sequence alignment using the Clustal W program. Phylogenetic tree construction was performed using Clustal X (version 1.81) and the neighbour joining method with GrowTree (Genetics Computer Group Inc., San Diego, USA). In total, 1360 nucleotide positions were included in the analysis.

In total, 1360 nucleotide positions were included in the analysis.

Clinical symptoms and findings

On admission, her oral temperature was 39.5°C. Physical examination did not reveal an obvious focus of infection. Her total leukocyte count was 36.3 x10⁹/l, haemoglobin level 9.8 g/dl, and platelet count 457 x10⁹/l. Her serum urea was 19.3 mmol/l, creatinine 211 µmol/l, albumin 30 g/l, globulin 36 g/l, bilirubin 7 µmol/l, alkaline phosphatase 115 IU/l, and alanine aminotransferase 87 IU/l. Blood cultures were performed. However, she continued to deteriorate and succumbed on the next day.

On day 2 post-incubation, the aerobic blood culture bottle showed a gram positive coccus (isolate 1). It grew on sheep blood agar as greyish white, α-haemolytic colonies of 0.5 mm in diameter after 24 hours of incubation at 37°C in ambient air. There was enhancement of growth in 5% CO₂ and anaerobic environment. It also grew on MacConkey agar but did not grow in 6.5% NaCl. It was positive for pyrrolidonyl arylamidase and esculin, and negative for catalase, arginine, or hippurate hydrolysis, bile aesculin, and Voges-Proskauer tests. It was non-groupable with Lancefield groups A, B, C, D, E, or G antisera. Both the Vitek and ATB expression systems showed that it was “unidentified” (table 1). It was susceptible to vancomycin (MIC 0.25 µg/ml), intermediate susceptible to penicillin (MIC 2 µg/ml), and resistant to and cephotaxime (MIC 4 µg/ml), erythromycin, clindamycin, and neomycin.

16S ribosomal RNA gene sequencing and phylogenetic analysis

PCR of the 16S rRNA gene of both isolates showed bands at about 1450 bp. The 16S rRNA gene sequences of the two isolates were identical and had 0.5% nucleotide difference from G. sulfidifaciens (GenBank accession no. AJ297627), 0.7% nucleotide difference from G. sanguinis (GenBank accession no. S50214), 3.69% nucleotide difference from Facklamia hominis (GenBank accession no. Y10772), 4.9% difference from Aerophora tauta (GenBank accession no. AJ279038), and 5.5% difference from F. languida (GenBank accession no. Y18053), indicating that the two isolates belong to the genus Globicatella (fig 1).

Based on their phenotypic and genotypic data, the two isolates could not be assigned to a particular species of the genus Globicatella. Phenotypically, they resembled G. sanguinis in the production of pyrrolidonylarylaminidase and the negative H₂S and β-glucuronidase production. On the other hand, they resembled G. sulfidifaciens in that they did not use mannitol and did not produce N-acetyl-β-glucosaminidase.

www.jclinpath.com
However, like G. sanguinis, isolate 1 used ribose, while isolate 2, like G. sulfidifaciens, did not (Table 1). Genotypically, the 16S rRNA gene sequences of the two isolates were close to both G. sulfidifaciens and G. sanguinis, which possess highly homologous 16S rRNA sequences with only 0.8% difference. Therefore, the identification of more strains of Globicatella and correlation of their phenotypic characteristics with 16S rRNA gene sequences should help in defining the number of different species within the genus.

DISCUSSION

We describe two cases of Globicatella bacteraemia characterised by 16S rRNA gene sequencing. The two isolates were unidentified by conventional biochemical tests and commercial identification systems, and were only confirmed to be Globicatella species after 16S rRNA gene sequencing. In retrospect, the phenotypic characteristics of the two blood culture isolates actually closely resembled those of Globicatella (Table 1). They are facultative anaerobic, catalase negative, α-haemolytic, gram positive cocci. Similar to G. sanguinis and G. sulfidifaciens, arginine is not hydrolysed, urease not produced, and Voges-Proskauer test negative for the two isolates. While both G. sanguinis and G. sulfidifaciens grow in 6.5% NaCl, one of our isolates did not. Identification of more isolates of Globicatella would help delineate the phenotypic characteristics and variations within the genus. As Globicatella is rarely encountered in clinical laboratories, most technicians and microbiologists are not familiar with their phenotypic characteristics and identification. As a result, the bacterium may be overlooked when isolated or reported as unidentified streptococcus-like organisms. 16S rRNA gene sequencing will continue to be useful in the characterisation of rarely encountered bacteria and defining their clinical significance."
more readily available in clinical laboratories, this molecular tool is probably the most practical approach to identify these bacteria.

The clinical significance of the two isolates in our two patients is evident by their isolation from blood in association with the development of fever and neutrophilia. Their infections have been severe because the first patient died soon after the bacteremia and the second was complicated by septic shock. While the source of the bacteremia in the first patient could not be identified, the second case probably represents a case of polymicrobial acute pyelonephritis complicated by bacteremia. *S. sanguis* and *P. aeruginosa*, which were concomitantly isolated from the blood of the second patient, are known pathogens of the urinary tract and can reside in the gastrointestinal tract. Moreover, *G. sanguis* has also been isolated from the urine of patients with urinary tract infections. Therefore, *Globicatella* is likely to be an uncommon cause of urinary tract infections and may have originated from the gut. However, only *P. aeruginosa* was recovered in her urine. This may be explained by the slower growth of *Globicatella* and *S. sanguis* as opposed to the larger colonies of *P. aeruginosa*. Nevertheless, as the second patient had mixed infections, the role of *Globicatella* in this case still remains to be determined. Further studies are required to investigate the role of *Globicatella* in human infections.

Figure 1 Phylogenetic tree showing the relationships of the two blood culture isolates to *Globicatella* and members of other related genera. The tree was constructed by using the neighbour joining method. The scale bar indicates the estimated number of substitutions per 100 bases using the Jukes-Cantor correction. Names and accession numbers are given as cited in the GenBank database.

ACKNOWLEDGEMENTS

This work was partly supported by the University Development Fund, and the Committee of Research and Conference Grant, The University of Hong Kong: Research Fund for the Control of Infectious Diseases of the Health, Welfare and Food Bureau of the Hong Kong SAR Government; and the William Benter Infectious Disease Fund.

Authors’ affiliations

* S K P Lau, P C Y Woo, N K H Li, J L Teng, K - W Leung, K - y Yuen, Department of Microbiology, University of Hong Kong, Hong Kong
* S K P Lau, P C Y Woo, K - y Yuen, Center of Infection and Immunology, University of Hong Kong, Hong Kong
* S K P Lau, P C Y Woo, K - y Yuen, State Key Laboratory of Emerging Infectious Diseases of the Health, Welfare and Food Bureau of the Hong Kong SAR Government; and the William Benter Infectious Disease Fund

REFERENCES

TAKE HOME MESSAGES

- *Globicatella* are streptococcus-like organisms that have been rarely isolated from clinical specimens, whose epidemiology and clinical significance remain largely unknown.
- Using 16S RNA sequencing, two cases were identified as *Globicatella* spp.
- The infections were severe, leading to death in one case and septic shock in the other.
- Further studies are required to investigate the role of *Globicatella* in human infections.