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LMIs—A Fundamental Tool in Analysis
and Controller Design for Discrete Linear
Repetitive Processes

K. Galkowski, Eric Rogers, S. Xu, J. Lar8enior Memberand D. H. Owens

Abstract—Discrete linear repetitive processes are a distinct class function on the next pass and hence contributes to the dynamics
of two-dimensional (2-D) linear systems with applications in areas of the new pass profilgs,1(t), 0 <t < «, k > 0.
ranging from long-wall coal cutting through to iterative learning Physical examples of repetitive processes include long-wall

control schemes. The feature which makes them distinct from other . . .
classes of 2-D linear systems is that information propagation in €0& cutting and metal rolling operations (see, for example, [1]).

one of the two distinct directions only occurs over a finite dura- AlSO |n recent years applications hav_e arisen_w_here adopting a
tion. This, in turn, means that a distinct systems theory must be repetitive process setting for analysis has distinct advantages

developed for them. In this paper, an LMl approach is used to pro-  gver alternatives. Examples of these so-called algorithmic

S?gfezgsly;%ntiﬂgagé;z\g :)efsggﬁt‘r’; tgfhset;tggt}’o?ﬁg:ls?Lghseesfe_applications of repetitive processes include classes of iterative
sults are, in the main, for processes with singular dynamics and for |€arning control schemes [3], denoted by ILC in this paper,

those with so-called dynamic boundary conditions. Unlike other and iterative algorithms for solving nonlinear dynamic optimal
classes of 2-D linear systems, these feedback control laws have aontrol problems based on the maximum principle [4]. In the
firm physical basis, and the LMI setting is also shown to provide case of ILC for the linear dynamics case, the stability theory for
a (potentially) very powerful setting in which to characterize the = g _ca|led differential and discrete linear repetitive processes is
robustness properties of these processes. . - . .
the essential basis for a rigorous stability/convergence theory.
Index Terms—tinear matrix inequalities, repetitive processes, Attempts to control these processes using standard [or
stability and control. one-dimensional (1-D)] systems theory/algorithms fail (except
in a few very restrictive special cases) precisely because such an
l. INTRODUCTION approach ignores their inherent two-dimensional (2-D) systems
structure, i.e., information propagation occurs from pass to

HE ESSENTIAL unique characteristic of a repetitive, Ogass and along a given pass. In seeking a rigorous foundation

th mﬁ It|pasts ]E)Locess_|s Zignzs of swe;apsd, ;eY[”edd pa:; Swhich to develop a control theory for these processes it
rough a set of dynamics defined over a fixed finite auratigl 5,5 1o attempt to exploit structural links which exist

known as the pass length. On each pass an output, termedbt een, in particular, the class of so-called discrete linear

pass profile, is produced which acts as a forcing function on, a etitive processes and 2-D linear systems described by the

hence contributes to, the next pass profile. This, in turn, Ieadse ensively studied Roesser [5] or Fornasini-Marchesini [6]

the unique control problem for these processes in that the out {’élte—space models. The discrete linear repetitive processes
sequence of pass profiles generated can contain oscillations sidered in this paper are distinct from such 2-D linear

mcilter_:\ste '3 amphftude Ilndth]f P{.”‘SS Lc;tpass dlréactlotn.th systems in the sense that information propagation in one of
0 Introduce a formal definition, et < +oc denote the pass y,q separate directions (along the pass) only occurs over
length (assumed constant). Then in a repetitive process the P2fiRite duration and hence large key elements of existing 2-D
ile 4 <t< i i i
profile (¢), 0 < ¢ < o, generated on padsacts as a forcing systems theory can either be: 1) not be applied, or 2) only
applied after significant modifications.
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plemented by direct application of well-known 1-D linear syspass profile. Hence the structure of (2) must be extended to
tems tests. include this case (and others).

One critical area for these processes which has not receivedh terms of analysis, it is clearly of prime importance to start
much attention to date is that of the specification and designwith the a general form of boundary conditions with subsequent
control schemes. The work already reported in this area hasspecialization to particular cases as required. Other work [2]
ther focused on a particular application, e.g., ILC [3], where theas concluded that the most general set results from replacing
control laws used are explicitly tailored to the needs of that area,,1 (0), £ > 0, in (2) by
or considered cases (see, for example, [2]) where strong struc-
tural constraints have been placed on the underlying process dy-
namics. Clearly, therefore, there is a need for a general theory
which is applicable to the widest possible classes of dynamics
and which results in systematic controller design procedureswhereJ,,, 0 < p < «— 1, aren x m matrices with constant en-

In this paper, we start from previous preliminary work to defies. For ease of terminology, we will refer to the constant pass
velop some highly significant new results in this key area usirggiate vector sequence of (2) as ‘static’ and those of the form of
an LMI setting for analysis. Unlike other classes of 2-D linegB) as ‘dynamic’ (to signify that in the former case they are inde-
systems (e.g., those described by the well known Roesser [5pendent of the previous pass profile and (explicitly) dependent
Fornasini-Marchesini [6] state-space models) the control lawsthe latter case).
considered have a well defined physical basis—a key issue irin the state-space model of (1), the current pass (state and pass
terms of eventual implementation. A major conclusion from tharofile) dynamics only (explicitly) depend on the previous pass
results in this paper is that the LMI setting is a powerful new togirofile and, as such, are termed unit memory. More generally, a
for the analysis and, in particular, the specification and desigiscrete nonunit memory linear repetitive process with memory
of control schemes for discrete linear repetitive processes. Thaagth A/ > 1 is described by the following state-space model
is based on the fact established for this first time in this papever0 < p < a—-1, £k >0
that, in contrast to previous work/approaches, the LMI setting M1
allows us to treat (either open loop or closed loop under allow- .
able control law) the most general form of boundary conditions,xk“(p +1) = Az (p) + Buaya (p) + ;) Biyr—i(p)
uncertainty in the defining state-space model matrices, and sin- -
gularity in the along the pass dynamics. The next section gives
the required background results.

a—1
wrg1(0) = dryr + Y Jyur(p) ®3)
p=0

M—-1
Y1(p) = Coiy1 () + Duri (D) + Y Dy ().
j=0

(4)

The state-space model of a discrete linear repetitive procgﬂs model clearly reduces to (.1) wha = 1 (termed t_he unit .
has the following form oved < p < ar— 1, k > 0 memory case) and can be s_ubject to boundary conditions which
are the natural generalization of (2) or (3) (and hence are not
explicitly detailed at this stage).
Tt (p+1) = Avi (p) + Burt1 (p) + Boyr(p) The abstract model-based stability theory for linear constant
Yr+1(p) = Capy1(p) + Durt1(p) + Doyr(p). (1) pass length repetitive processes consists of the distinct concepts
_ ) of so-called asymptotic and stability along the pass respectively.
Here, on pasg, z(p) is then x 1 state vectoryx(p) is the  Recognizing the unique control problem for these processes,
m x 1 vector pass profile, andy(p) is ther x 1 vector of  agymptotic stability demands a form of bounded input bounded
control inputs. To complete the process description, it is N€gytpyt (BIBO) stability over the (finite and constant) pass length
essary to specify the boundary conditions, i.e., the initial pass |n particular, this property is defined in terms of the norm
profile vectory,(p) and the pass state initial vector sequencg; the underlying function space and it holds provided bounded
{21(0)}r>1. The simplest possible form of these is where, igequences of inputs (on each pass, the corresponding element in
particular, the pass state initial vector sequence is independgfi sequence is formed the state initial conditions on this pass
of the previous pass profile dynamics. Such conditions take thgy any control inputs and disturbances which are applied on

Il. BACKGROUND

form it) produce bounded sequences of pass profiles. If this is indeed
the case, then the resulting pass profile sequence is guaranteed to
Tr+1(0) = diy1, k=0 converge to a steady or so-called limit profile which for all cases
yo(p) = f(p), 0<p<a-1 (2) considered here is described by a 1-D discrete linear systems

state-space model.

wheredy41 is ann x 1 vector with known constant entries and The fact that the pass length is finite and constant means that
the entries in then x 1 vector f(p) are known functions gf.  this limit profile may not have acceptable along the pass dy-

In some cases, the boundary conditions (2) are simphamics, where the most basic requirement is stability of the limit
not strong enough to ‘adequately’ model the underlying dyrofile as a 1-D discrete linear system, i.e., all eigenvalues of the
namics—even for preliminary simulation/control analysis. Fatate matrix have modulus strictly less than unity. (Examples are
example, the optimal control application [4] requires the use efsily generated to highlight this fact). Hence, in general, it will
pass state initial vectors which are a function of the previolre the stronger property of stability along the pass which will be
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required as it prevents this problem from arising by demanding Proof: This is, in effect, a proof that the LMI condition
the BIBO property uniformly, i.e., with respect to the pass lengttf (7) is a sufficient condition for (5) to hold and proceeds as
a. follows.
In the case of processes described by (1) and (2), severarlhe first step is to note that by use of Lemma 1, (7) is equiv-
equivalent sets of necessary and sufficient conditions for stdent to
bility along the pass have been reported (see, for example, [8]) -
but here it is the following set which is required. Q- A PAy >0 8
Theorem 1: Discrete linear repetitive processes described land

(1) and (2) are stable along the pass if, and only if, the 2D ch%TPA + ATPA2 (Q _ AQFPAQ)_I A;FPAI Lo-P<u.
acteristic polynomial

)
L In — ZlA —ZlBo
C(z1,722) :=det 0l I, — 22D0:| 0
Y (21,22) e U? (5) Q — |22|2A§PA2 >0 (10)

wherel72 = {(z, ) and hence (using this last fact and (9)) we havehat , z;) €

Suppose now that - ) denotes the spectral radius of its argu
ment, i.e., in the case (as in this paper) of a matrix compute jts , - “ “ “ “ Ay L
set of eigenvalues and then compute the largest modulus of AT PAL+ [Pl AT PA2 (Q B |Z?|2A§PA2)
members of this set. Then, (5) gives the necessary conditions % Agpjh +Q-P<0 (11)
that(Dy) < 1 (asymptotic stability) and(A) < 1 (essen-
tially the dynamics along the first pass are uniformly boundédtlis a standard fact that for any two matricks and NV of the
with respect to the pass length) which should be verified befosame dimensiong/ +M* < N+M*N~*M, wherex denotes
proceeding further with any stability analysis. (Also, asymphe complex conjugate operation. Settihfy = 7z A3 PA;,
totic stability for all possible values of the pass length is a ne& = Q—|z|?>AJ P A, we conclude from (11) that(z1, z2) €
essary condition for stability along the pass.) The conditior&?
for asymptotic stability and stability along the pass of (1) with . - . .
boundary conditions (3) for all cases treated in this paper will (211 + 2242)" P21 Ay +2242) = P <0
be given in context later as it develops.
The following result is crucial to the analysis in this pape{hat
This result is very well known and its proof can, for example,
be found in [9]. det(Inpm — 21 AL — 22A2) 20 V(z,2) € T2 (12)
Lemma 1: Given constant matrice®’, L, V' of appropriate
dimensions wherd& = W7 andV = VT > 0, thenW 4+ which is equivalent to (5) and hence the proof is complete.
LTV L < 0if, and only if In recent work, [2], the following result has been established.
Theorem 3: Discrete linear repetitive processes described by
w LT (1) and (2) are stable along the passlifymmetric matrices
[L —V—l} <0. Wi, > 0,W, > 0and@ > 0 such that the so-called 2-D
Lyapunov equation
The matrixW + LTV L is known as the Schur complement of
V.

(71A1 +72A2) < 1,V (21, 72) € U2 This, inturn, implies

W-—ATWA=Q (13)

holds, whered := A; + A, is the so-called augmented plant
[ll. BASIC LMI STABILITY ANALYSIS matrix andW = diag{W;, Ws}.
he Hence, it follows immediately that the 2D Lyapunov condi-
tion for stability along the pass also has an LMI interpretation.
This, in turn, means that the performance information [2] avail-
} able for discrete linear repetitive processes via this last theorem

To express the result of Theorem 1 in LMI terms, define t
following matrices from the state-space model of (1)

AI:[A Boy AQI[O 0

0 0 C Dy (6) is also available in the LMI setting.

IV. EXTENSIONS OF THEBASIC LMI-B ASED

Then, we have the following sufficient condition for stability
STABILITY ANALYSIS

along the pass of processes described by (1) and (2).
Theorem 2: Discrete linear repetitive processes described by The stability result (Theorem 2) is perhaps not that surprising
(1) and (2) are stable along the passlisymmetric matrices given very similar results already available in the 2D linear
P > 0and@ > 0 satisfying the following LMI systems area in general—see, for example, [10]. For discrete
linear repetitive processes, however, there is a need to deal
with the dynamic boundary conditions and other forms of
dynamics such as those which are singular along the pass

ATPA,+Q—-P  ATPA,

ATpi,  Atpi,-q|<%
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(in a form which will be made precise later). In this sectiothe so-called global pass profile, state and input super-vectors,
we develop new results which show that the LMI approadiespectively, for (1) as

can be applied to all relevant cases of the detailed dynamic

structure of (unit and nonunit memory) discrete linear repetitive v ((1))
processes with dynamic boundary conditions, and also singular Y() = Ul§ )
along the pass dynamics. This is in contrast to previously :
reported results where different approaches had to be applied Lui(a — 1)
to the various cases in order to get tractable stability tests. r (1)
Also, it will be subsequently shown that the LMI approach, xy(2)
again in contrast to other approaches, provides a ‘sufficiently X(1) := .
tractable’ basis on which to answer (in the main) currently .

open questions on the structure and design of control schemes. Lg(@)

In particular, we will show how a powerful form of feedback - w(0)
control law (a combination of current pass state feedback and U(l) = (1) (14)
feedforward action based on the previous pass profile) can be T :
designed using the LMI approach without the need to impose Lw(a— 1)

restrictions on the open loop process dynamics (including

the form of the boundary conditions.) Moreover, we will alsd hen, the 1-D equivalent model is given by

show that the LMI setting is a (potentially) very powerful
method for addressing stability analysis and controller design
for cases where there is uncertainty associated with the process
dynamics—a critical area for which no substantial results are
currently available.

Y(I+1) = oY (1) + AU(I) + 04,

X(1) =T'Y () + ZU() + Vd; (15)

ahd the defining matrices are constructed from appropriate en-

tries of the matrices which define (1) and (3). For the purposes
of stability analysis, however, it is only the detailed structures
of & andA which are required, as shown in (16) and (17) at the
bottom of the page.

Consider the case of unit memory processes with the dynami(;rhe following result [11], [13] gives a necessary and suffi-

boundary conditions of the form of (3). Then clearly an exterrent condition fpr asym_ptotic stab_ili_ty in this case. .
sion of the results given in the previous section would prove Theorem 4: Discrete I|r_1ear repet|t|v_e Processes described by
‘very difficult’ (if not impossible). As an alternative, we pro—(l) and (3) are asymptotically stable if, and onlyrif®) < 1.

ceed via the equivalent 1-D discrete linear systems state-spicélso' the extra condition for stability along the pass is that the

A. Dynamic Boundary Conditions

model of the underlying dynamics developed in [11]. A ke D characteristic polynomial’(z, z») satisfies (5) and hence

feature of this 1-D equivalent model is that it is (unlike othe 1S cor_ldltlon can also be dealt with by the LMI l.)ased anal_ygs
f98ect|on I1l. Note also that a necessary and sufficient condition

1-D equivalent models for 2-D linear systems, such as tho T 410 hold i ina the 1-D di i
for Roesser/Foransini-Marchesini state-space model struct QIgheorem 4 to hold is (using the 1-D discrete linear systems

[12]) defined in terms of vectors whose dimensions remain co apunov.equatlop) thaﬁta_symmetnp matrixy” > 0 suqh that
stant as the process evolves and block matrix elements with corn= fqllowmg LM is satisfied (we will make use of this result
stant entries defined in terms of the matrices in (1) and (3). ater in the paper)

To give the basic form of the 1-D equivalent model, first intro- [ -w otw

ducevy(p) == yk—1(p), 0 < p < a—1,1:=k+1, and define we W } <0 (18)

Do+ ClJy CJy CJu1
C(Bo + AJ()) (Do + CAJl) CAJ,_1
b = CA(BO + A]()) C(BO + AQ.]l) CAQ.]Q_l (16)

_OAO‘72(BO + AJ()) OAaig(Bo + A2J1)

(Do + CAailg]a_l)

D 0 0 -ee 0
CB D 0 - 0
A= CAB CB D - 0 (17)

| CA*—2B CA°—3B CA** ... D
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Consider now the nonunit memory case. Then, the naturalLemma 2: The following hold in respect of systems de-
generalization of the boundary conditions of (2) for this caseribed by (23).
is 1) For any regular, impulse-free pd¥, A) 3 two real non-

T31(0) =dyy1, k=0 singular matricess’ and7” such that

y—j(p)=f-jp), 0<p<a-1 0<j<M-1["

(19) SET = {

Now, introduce the substitutions = & + 1 and i (p) =
vig1(p), 0 < p < a- 1,_l =2~ le_ -M,... 0,1, 2) A descriptor system of the form (23) is stable if and only
Then, the dynamics of discrete nonunit memory linear repet- ¢ the sub-matrix4; in the above decomposition is stable.
itive processes described by (4) and (19) are equivalentlyrye singular discrete linear repetitive processes considered in

I, 0

b 0] s[4 0]

0 In—h

described by this paper have a somewhat similar structure to (23) in the sense
M—1 that the current pass state dynamics are governed by
zi(p+1) = Az(p) + Bu(p) + ) Bju—;(p)
; T Expi(p+1) = Azpy1(p) + Burti(p) + Bovw(p)  (24)

M-—1
with singular matrix®. Hence the dynamics here are singular
=C D Dv_; 20 ;
vi1(p) zu(p) + Dualp) + EZ:O sui=i(p) - (20) along the pass. Note also we could consider cases where the

dynamics are singular from pass to pass but such processes are

wherel > 1, 0 < p < a — 1, and boundary conditions are  of little interest in terms of applications.
Suppose now that the matr® has rankh, whereh < n.
w(0)=d, 121 Then, the following result extends Lemma 2 to discrete linear
vi(p) = fi(p), 0<p<a-1, 2-M<j<1(21) repetitive processes with dynamics which are singular along the
rﬁ{:\ss in the sense defined by (24).

Lemma 3: Suppose that the matri has rank:, and that the
pair (£, A) is regular and impulse-free. Thehsquare nonsin-

In the case of the dynamic boundary conditions for nonu
memory processes, the natural generalization of (3) is

M-la-1 gular matrices” and.S such that
T41(0) = dipr+ Y > Jpun—i(p), k>0 (22) .

J=0 p=0 sEr = | In 0}
It now follows immediately that the 1-D equivalent model-based :j 0 0
analysis given above generalizes in a natural manner to this case SAT = |1 }
and hence the details are omitted here. Later in the paper we L 0 T
will develop the LMI based asymptotic stability condition (18) SBy = 301}
for this case into an equivalent result which is numerically more | Bo2
tractable for both open loop and closed loop (under a suitably [ By
defined control law). Next, we give the first substantial results SB = BJ

on the stability of processes with singular dynamics along the o )
pass. Here again we will see the power and versatility of the Proof: Thisis a straightforward consequence of Lemma 2

LMI based approach. and hence the details are omitted here. O
Applying these transforms to the discrete linear repetitive
B. Processes With Singular Dynamics process state equation of (24) is equivalent to introducing the

In what follows, we extend the results given so far in thi§&V state variable

paper to the case of discrete linear repetitive processes of the ~ . wi(p)

form (1) when the dynamics along the pass are singular (in the ax(p) =T an(p) = [gk(p)}

form made precise below). For brevity, we only consider unit

memory processes of the form described by (1) and (2), whavaerew,(p) € R", a1.(p) € R*" and left multiplying (24)

the latter are taken as zero without loss of generality. This is bd®¢ S. This gives the complete state-space model (i.e., the result

cause the analysis which follows can be generalized in a natuétransforming (24) and the pass profile update equation) of a

manner to all other processes considered in this paper. singular along the pass discrete linear repetitive process as

As starting point, we require the following well known result

for singular 1-D discrete linear systems with state-space modedx+1(p + 1) = Aiwit1(p) + Brur+1(p) + Bowyr(p) (25)

Ba(p+1) = Ax(p) + Bu(p) (23) 0 = ok11(p) + Bouk+1(p) + Boaur(p)  (26)
Yr41(p) = Crwrg1(p) + Coopg1(p)

where z denotes then x 1 state vector and; denotes the + Dugy1(p) + Dor(p) (27)

7 x 1 vector of control inputs. The matrik’ is singular, i.e.,

rank £ = h < n. Also, see e.g., [14], such systems are termatdhere[C; Cs] = CT.

impulse-free if the degree @kt(sE — A) is equal torank E, Hence, on solving (26) for;41(p) and inserting the result

and regular ildet(sE — A) is not identically zero. in (27) yields the equivalent model of the form (1) as (25) de-
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scribing the current pass state dynamics, and the current pass W, = {Wn 0 } >0 (32)
profile dynamics described by 0 Wss

i1 (p) = Crwnir (p) + Durg1(p) + Down(p)  (28) Also introduce

. . I, 0 0
whereD = D — (s By, Dy = Dy — C>By». Hence, we see that V=0 —Bp IL._u (33)
the static part of the along the pass dynamics of a discrete linear 0o I, 0

repetitive process with singular dynamics has a very significant

effect on the overall process dynamics. This is evident in ti&@d then pre- and post-multiply (30) by and its transpose re-

following result which is simply Theorem 1 applied to the disspectively to obtain the equivalent condition

crete linear repetitive process with current pass state dynamics ATW A N W 0

described by (25) and current pass profile dynamics by (28). L e CTWoarC! } [ 01 0} ,
Theorem 5: Discrete linear repetitive processes described by * 22+ €3 Wasla

(25) and (28) with boundary conditions (2) are stable along the A= [Al ]—?01} (34)

pass if, and only if C Dy

I,— A —2By and x denotes a submatrix block of compatible dimensions

C'(z1, 22) = det I D } #0 whose exact structure is not relevant to what follows.
m — 224/

—2z2C
72 v —o Now, we can selecat > 0 such that the following two condi-
(z1.22) € U ions simultaneously hold
In order to apply the results of Theorem 5 to a given example, it Wi, 0
is first necessary to compute the decomposition (25)—(27) and [ 0 ng} +el>0
hence (28). Then, j[h_e result o_f _Theorem 2_c_an be used to obt %T(Wl +eDA N W, tel 0
an LMI based sufficient condition for stability along the pass. Was + OTWaaO 0 ol
Note also that the only requirement here is that the require 227 2 Trast2 35)

decomposition actually exists.
For numerical work, note that the essential step of obtainiRgys is the equivalent LM condition to (13) of Theorem 3 for

(25) and (28) c0L_JId be numerlc_al_ly_ |II-cond|t|on_ed. Hence _'lthis case and the proof is complete. 0

would be of considerable benefit if it were possible to obtain

a set of necessary gnd sufﬂment condmon; f(_)r stability along, | MI B ASED CONTROLLER DESIGN—STATIC BOUNDARY

the pass which avoided this step. Here this is left as an area CONDITIONS

for further research with the note that the natural combination ) o )

of Theorems 2 and 4 when the matric@sandQ do not have  In terms of the design of control schemes, it is instructive

any structure imposed on them (apart from being symmetric afgjconsider first the case of static boundary conditions for unit

positive definite) is not possible. memory processes since the results obtained generalize in a nat-
It is possible to generalize the approach of [2] and, in partiéfal manner to the case of dynamic boundary conditions. Also,

ular Theorem 3 here, which employs a block diagonal matré Shown later, further analysis is possible in this latter case.

W, to the singular case. The actual result is as follows. In terms of the design of control schemes for discrete linear
Theorem 6: Consider singular discrete linear repetitive protepetitive processes, most of the reported work has been done in

cesses described by (25) and (28) with boundary conditions (8¢ ILC area where it has become clear that the most powerful

Then such processes are stable along the pass if the followfigtrol action comes from feedback action on the current pass

LMI is feasible augmented by feedforward action from the previous pass (or
the previousM passes in the non unit memory case). Here, we
ATWA < ETWE (29) consider a control law of the following form ovér < p <
ETWE >0 @0 «-Lkz0
where the symmetric matrikV = diag{W,, W,}, andE = upt1(p) = Kizu1(p) + Koun(p) = K [x’“’é(f)} (36)
diag{E I} Yr\P

Proof: Consider (29) and (30) applied to the decomposethereK; andK, are appropriately dimensioned matrices to be
model of (25)—(28), i.e., (with a compatible decomposition afesigned. Suppose also that this control law is applied to pro-
W1 and writing W33 = Ws) cesses described by (1) and (2). Then, applying Theorem 1 to
the resulting state-space model gives the necessary and suffi-
cient condition for stability along the pass as shown in (37) at
the bottom of the next page.

At this stage, we can give the following result which provides

A? 0 ClT W1 1 W1 2 0
0 L., CF||WEL W 0
B BL DY 0 0 W

A1 0  Bn Win 0 0 easily verified necessary conditions for the existence of a con-
x| 0 ILi.p Boe|<| 0O 0 0 (31) trol law of the form (36) which guarantees closed loop stability
C1 G Dy 0 0 Ws along the pass. The proof of this result is obvious from (37) and

and is hence omitted here.
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Lemma 4: The following three conditions are necessary fowherea(~ ') andb(z; ') are polynomials i, with real co-
stability along the pass of processes described by (1) and ¢#¥cients. This then means thatis a principal integral domain
under a control law of the form (36). and suppose that andG are matrices with real entries and of

a) (4, B) as a 1-D discrete linear system (i.e., state matriimensionsi x d andd x h, respectively. Then, it is a standard

A and input matrixB) can be stabilized closed loop by dact that if the pail( , G) is R-reachable, i.e., evety € R? is
state feedback control law. anR-linear combination of the columns 6, FG, . . ., Fi-ia,

b) (Do, D) as a 1-D linear system (i.e., state matkly and thenforevery\;, 1 << < d € R, 3K of dimension: x d such

input matrix D) can be stabilized closed loop by a statéhat
feedback control law. d

c) (A, B) as a 1-D linear system (i.e., state matrixand det (214 — (F + GK)) = [[( = M) (43)

input matrix 3) can be stabilized closed loop by a state

feedback control law wher8 := [BY D?]|7 and A is _
the augmented plant matrpd = A; + A,). These facts and Lemma 5 lead to the following.

Clearly, these conditions should be verified before proceedin%-rgigr?g)1 Za:reDizggfg Iz:gr?gr;rtehpeetgglsesprz((:j?esrstisedaecst(':cr)ir?eo? ?ﬁ’e
u i

further with a given design example. ( ; _ ; T —1ar
It can be shown [8] that processes described by (1) and gNtro! law (36) with gain matrik = [K; K (27)]" where
1 is anr x n matrix andK(z; 1) € R™™ if:

are stable along the pass if, and onlyrifDy) < 1, 7(A4) < 1,

=1

and all eigenvalues of the transfer function matrix a) (4, B) as a 1-D discrete linear system is stabilized closed
loop by a state feedback control law with gain mafiix.
G(z1) = C(z I, — A)™'By + Do (38)  b) Forsomek; stabilizing(A, B), the pair(Z, M;) defined

. ) in (39) and (40), respectively, afé-reachable.
have modulus strictly less than unitjjz;| = 1. Hence we  1he major difficulty with existence type results of the form of
have the following set of necessary and sufficient conditions f@f,oorem 7 is that they are not really feasible as general purpose

closed loop stability along the pass. _ algorithms for control systems design. In the remainder of this
Lemma 5: Discrete linear repetitive processes described ction, we show that the design of control laws of the form

(1) and (2) are stable along the pass under the action of @ js highly tractable in an LMI setting (at a cost of sufficient

control law (36) if, and only if : but not necessary conditions for closed loop stability along the
a) A+ BK; andDy + DK are 1-D linear systems stable;pass).

and Introduce the matrices
b) (C+ DK)(z1 I, — (A+BK))~'(By+ BK3) + Do +
DK, with |27 | < 1is 1-D linear systems stable. By = [B} C By= [ 0} _
This shows that designing (36) to ensure stability along pass 0 D

when the resulting control law is appli_ed to processes describﬁqen, we have the following result which is simply Theorem 2
by (1) and (2) can be reduced to applying the 1-D pole placem%’btplied to the closed loop system.

problem (twice) for 1-D discrete linear time invariant systems Theorem 8: Suppose that a discrete linear repetitive process

and then stabilizing another 1-D system with a complex para¥ ihe form described by (1) and (2) is subjected to a control

eter. . . law of the form (36). Then, the resulting closed-loop process is
This latter problem has been the subject of work over t Sable along the passdfsymmetric matrice®® > 0 andQ > 0
years in a number of areas and one approach is based on

(R that we get (44) shown at the bottom of the next page
. .y . —1 .
re-wnEl{]g con(_jltlor‘(ibl) abovg as the requirement thétz; )+ The difficulty with the matrix inequality of Theorem 8 is that
My (27 1)Ky with |27 7| < 1is 1-D stable, where

it is nonlinear in its parameters. It can, however, be converted

F (Zl—l) — Do+ P (Zl—l) B, (39) into th_e foII(_)wmg resultvyhere.each ofthemequahtles is a strict
A _ LMI with a linear constraint which also gives a formula for com-

Mi(2') =D+ P (') B (40) puting K in (36).

and ) Theorem 9: The condition of Theorem 8 is equivalent to the

(C+DKy)adj (I, — 2 '(A+ BKy)) requirement thall symmetric matrice3” > 0,Z > 0, and an

Pa) == det (I, — z; *(A + BKy)) (41) arbitrary matrixV'such that the following LMI holds.
Now write Z-Y 0 Y AT 4+ NTBT
b 0 -z YAT + NTBT | <o.
R— Vl—l ca (7Y #0, 751_1| <1 (42) AlY + BIN A;Y + BoN -Y
a (zl ) (45)

In—zl(A—i—BKl) —Zl(B0+BK2)

rr2
“a(C+DK) I —m(Do+ DKy | 70 Vv €U S

Co(z1, 22) := det [
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Also if (45) holds, a stabilizingg for the control law (36) is Fis a possibly time varying matrix subject only to the constraint
given by that FTF < 1.
. The LMI sufficient condition for stability along the pass given
K =NY—" (46) " in Theorem 2 applied in this case is equivalent to the existence

Proof: Apply the Schur's complement formula toOf symmetric matrices” > 0 andQ > 0 such that

(44), followed by the congruence transformation. dgfined ATPA+G <0 (51)
by diag(P~t,P~1, P~1). Then introduce the substitutions
Z=P7'QP ' >0,Y = P! > 0to obtain where
Z-Y 0 v (4F + K7BY) A=A As] Q:[PEQ _OQ}
0 —Z Y (AY + KTBT) | <O0. ) . . :
. . . . ( 2t 2 ) and we now have the following result which follows immedi-
(A1 + BIK)Y (A2 + BK)Y -Y ately from re-arranging (51).

Use of (46) now completes the proof. 0 Theorem 10:Discrete linear repetitive processes described

by (1) and (2) whose defining matrices have the uncertainty
structure defined above are stable along the passyfnmetric

_ . B matricesP” > 0, @ > 0 such that
In this section, we develop an LMI approach to stability anal-

ysis in the presence of uncertainty in the process definition—a (A+ HFE)T'P(A+ HFE)+Q <0 (52)

key problem area for which no substantial results currently exist

In particular, recall the definition of the augmented plant matri¥

A :.211 + A, and define the so-called augmented plantinput g7 _ (B, H], F=LoF B-=hLokE

matrix as¥ = [BY D?]*. Then, we treat the case when these

matrices are subject to additive perturbations defined as follovesi1d® denotes the Kronecker product of two matrices.
Also it can be shown that, for any choice@f 3 P > 0 such

VI. ROBUSTNESS—STATIC BOUNDARY CONDITIONS

here

Ap=A+ DA, ¥, =V 4+ AV (47)  that (52) holds if, and only iff a scalar > 0 such that
where —P L4 cHHT 4
P ZTGHH -1 EATAE Al <0 (53)
—  [AA AB, AB BB +Q
AA = , AU = . . . . -
AC ADy AD Now, we are in a position to characterize stability along the

Also, we assume that the uncertainties here have the followiRgSS Under the uncertainty structure defined above. Here there
typical structure: are two cases of interest, the first of which is open loop and the

second is closed loop under a control law of the form (36). The-
orem 11 gives an LMI based sufficient condition for the former
case and Theorem 12 for the latter.

. Theorem 11:Discrete linear repetitive processes described
57 (1) and (2) whose defining matrices have the uncertainty
structure defined above are stable along the passyfnmetric
matricesP > 0 and@ > 0 and a real scalarsuch that the LMI

H

I~ A\p]z{HQ

} FE Ep] (48)
where the matrices on the right-hand side are of compatible 8
mensions.

Now, introduce the following matrices

e AA AB, e 0 0 shown in (54) at the bottom of the next page holds.

Al = [ 0 0 } Ady = [AC ADo} Proof: Followsimmediately on applying the Schur’'s com-
. AB - 0 plement formula to (52) and use of (53). O
AV, = [ 0 } AU,y = {AD} . Theorem 12:Discrete linear repetitive processes described

by (1) and (2) whose defining matrices have the uncertainty
Then, we can writes A and AW in the form structure defined above are stable along the pass under the con-
trol law (36) with K defined by (46) if3 a scalare > 0 and
AA = AA, + AA, = H FE, + H,FE, (49) matricesY” > 0, Z > 0, andN such that the LMI shown in (55)
AU = AU, + AUy = H FEy + HyFEy (50) at the bottom of the next page holds.
Proof: This involves extensive, but routine manipulations

whereH; = [HT 0]”, andH, = [0 H]]”. Note here thaHf; and hence here we only give the main steps. The first step is to
andZ;, ¢ = 1,2, are known matrices with constant entries anthterpret (52) for the closed loop system obtained by applying

(AT + KTBL) PCAL + BiK) +Q =P (AT + KTBT) P(Ay + BoK)

(A + KFBE) PO+ Buk) (A5 + K7 BE) Py + o) — 0| (44
2 2 1 1 2 2 2 2
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(36) to the process. Then apply in turn Theorems 8-11 to this Proof: Follows immediately on applying a congruence

system. O transformation to (58) defined byiag(W —*, W 1) and then
replacing—! by W.
VII. CONTROLLER DESIGN—DYNAMIC BOUNDARY Write the control law (56) in the form
CONDITIONS .
We consider first the unit memory case and start with the w(p) = — Z Kpu(j) (59)

application of a control law of the following form expressed
in terms of the 1-D equivalent model (15)—(17) of a discrete
unit memory linear repetitive process with dynamic boundanyr on, recovering the original process variabjgép),
conditions

=0

a—1
U(l) = -KY(0). (56) w1 (p) = = Y Kpjyw(i) (60)
=0
Note here that this control law (and the natural generalization to ’
the nonunit memory case (see later in this section)) is defingthere K = [K,;]j=0..a—1p=0..a—1- Then, in phys-

only in terms of the output equation (that for updati¥@!)) ical terms, we see that control vectar;, 1 (p) applied

of the 1-D equivalent model. The reason for this is that the staie any point on a given pass computed using this law
equation in this 1-D equivalent model has no dynamic updatingepends on the complete previous pass profile vector
Also, interpreting (18) for asymptotic stability in this case giveg, (), 0 < p < a — 1, and this could lead to implementation
that this property holds & a symmetric matri¥? > 0 andK difficulties. To simplify the structure, we can require that in

such that Theorem 13W = diag(Wy, W1,...,Wu_1) = W, N =
W OTW — KTATW diag(Ng, N1,...,Na—1) = N, where W; and N; are
Wb — WAK W <0. (57) matrices of dimensions: x m andr x m respectively. Then

the control law takes the form
This, however, is not in the LMI form since it involves the

product of two matricesi andW, which have _to be designed.. ur11(p) = —K,un(p) = _NPWP—ka(p) (61)
We have, however, the following result which removes this
problem. which introduces a considerable simplification in implementa-

Theorem 13: Suppose that a discrete linear repetitive proceggn terms since now the complete previous pass dependence has
described by (1) and (3) is subject (via its 1-D equivalent modgéen replaced by a point to point dependence.
representation) to a feedback control law of the form (56). ThenAnother possible simplification is to require that the con-

the resulting closed loop system is asymptotically stable if, af@ller is constant along the pass, i.e., assuming that =
only if, 3 a symmetric matri®¥¥” > 0 and a matrixV such that N; = N, which yields the controller

-W wel — NTAT

W — AN W <0. (58) w1 (p) = —Ky(p) = —NW " g (p). (62)
Also, if this condition holds, a stabilizing feedback controller i§his requirement is, however, more strict and hence more diffi-
defined byK = NW 1, O cult to satisfy than the previous one.
—P PA, PA, PH, PH,
ATP Q-P+<ElE 0 0 0
A7 P 0 -Q+e¢ETE; 0 0 <0 (54)
HP 0 0 —eI 0
HIP 0 0 0 —el
T =Y AY+BIN AY+BN eH eH 0 0 1
YA + N'BF Z-Y 0 0 0 YEI+NTEY 0
YA + N'BY 0 -Z 0 0 0 YET + NTET
eH] 0 0 —el 0 0 0 <0 (55)
eHY 0 0 0 —el 0 0
0 EiY + EON 0 0 0 —el 0
L 0 0 E\Y + EsN 0 0 0 —el i
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It is also possible to re-formulate Theorem 13 into a more Finally, note that if the stronger property of stability along the
computationally attractive form by simplifying the form of un-pass is required, then the controller emerging from the asymp-
derlying matrices. This first requires two intermediate resultstic stability design must also satisfy (5) of Theorem 1 inter-
for the open loop case (Lemmas 6 and 7 below). preted closed loop. As noted previously, this can be addressed

First write the matrix® of the 1-D equivalent model as = using the LMI based analysis of Section IlI.
® + ©.7, where the matrixp is obtained from (16) by setting In order to apply the above analysis to the case of a dis-
J; =0,4i=0,1,...,a — 1. Note that the matriX©J can be crete nonunit memory linear repetitive process with dynamic
rewritten as®J = CAJ where boundary conditions, the basic route is to first construct the 1-D
equivalent model. Now, however, the dimension of the vector re-
placingY (1) in (56) is considerably larger but all of the results
given above for the unit memory case above generalize in a nat-
ural manner. Hence they are not explicitly given here except to
note thatk" in (56) now expands t& = [Ko K; -+ Ka—1].

C = ||diag{I, A4, A%, ..., A" 1}|| diag{C}a

A = ||diag{I, A, A%, ... A 1} tdiag{l, A, A% ... A*"1}
Jo Jo1
J=1|: : (63)

Jo Ja—1 VIIl. CONCLUSION
This paper has developed an LMI based approach to stability
ong the pass of discrete linear repetitive processes-a distinct
ass of 2-D linear systems of both theoretical and applications
einterest. Much of the previous work on these processes had fo-
Cused on stability theory and other systems theoretic properties
such as controllability and observability and the general area of
control systems design had been the subject of very little (in rel-
ative terms) work. In particular, there was a lack of an approach
to stability analysis/tests which could also serve as a firm basis

for control systems specification and design. Here, it has been
Proof: This is a direct consequence of previous assumﬁhown that an LMI setting has very great potential in this gen-

tions and Theorem 10. eral area.

Applying Schur complements and appropriate congruenceThiS last claim has been justified by showing that LMI based

transforms enables Lemma 6 to be restated in the followisiility analysis can be extended naturally from the simplest
form which is more attractive in terms of onward analysis. €€ of linear dynamics and static boundary conditions to in-

Lemma 7: Discrete unit memory linear repetitive processeSude dynamic boundary conditions and also processes where

described by (1) and (3) are asymptotically stablg & sym- the dynamics are singular along the pass in a well defined and
metric matrixW > 0 and a real scalar > 0 such that relevant sense. Moreover, the stability analysis has been shown

to be a systematic computationally attractive basis for the design
of control laws, where here this has been demonstrated by the

where|| - || denotes any convenient matrix norm. Hence, notin{g
that||A|| = 1 allows us to employ a result similar to Theoren&I
10.

Lemma 6: Discrete unit memory linear repetitive process
described by (1) and (3) are asymptotically stablé & sym-
metric matrixW > 0 and a real scalar > 0 such that

P

-W=t +ecC”
eIy —Ww

b < 0.

(64)

-W Wé wWC o0

TW —w 0 &JT design of a particularly powerful control law, motivated from
CTW 0 —eI o0 |°< 0. ®9)  theiLc application area, combining current pass state feedback
0 ed 0 —f with feedforward action from the previous pass (or passes in

the non unit memory case) for all the forms of discrete linear
The following result uses the LMI of (65) to obtain the fol+epetitive process dynamics considered. Also it has been shown
lowing alternative to Theorem 13. that this LMI setting can be used to study the critical problem
Theorem 14: Consider a discrete linear repetitive process def stability analysis and controller design in the presence of un-
scribed by (1) and (3). Then this process is asymptotically stalgertainty in the process model description (the beginnings of a
under the action of the feedback law (56 ik symmetric ma- robust control theory/design algorithms).
trix W > 0, a matrix/V and a positive constaatsuch that
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