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kQ and LM741 for the operational amplifier with dc bias 4.5 V. Robust Stabilization of Singular-Impulsive-Delayed

The upper trace shows the input triangular waveform with a frequency Systems With Nonlinear Perturbations

of 500 mHz. The bottom trace shows the rectangular waveform at the

output of the operational amplifier. Thus, a good differentiation actioghi-Hong Guan, C. W. Chan, Andrew Y. T. Leung, and Guanrong Chen
is obtained by using the proposed circuit. It was not necessary to add a

resistor between the negative input terminal of the isolation operational

amplifier and ground since a dc input to a differentiator produces a zerg/\PStract—Many dynamic systems in physics, chemistry, biology, engi-
fieering, and information science have impulsive dynamical behaviors due

output voltage. to abrupt jumps at certain instants during the dynamical process, and these
complex dynamic behaviors can be modeled by singular impulsive differen-

. - ; ; : jal systems. This paper formulates and studies a model for singular impul-
D. Comparison Among the Theoretical, Simulation, and Experlmen%’f\\/e delayed systems with uncertainty from nonlinear perturbations. Sev-

Results eral fundamental issues such as global exponential robust stabilization of

The simulation and experimental results verify the predicted frUch systems are established. A simple approach to the design of a robust
impulsive controller is then presented. A numerical example is given for

quency ranges of (7) for the integrator ar_]d (14) for the qiﬁerentiat_c?ﬂustration of the theoretical results. Meanwhile, some new results and re-
Note also that the clean waveforms of Figs. 10 and 11 indicate higifed properties associated with theM -matrices and time-delay dynamic

signal to noise ratios for both circuits. systems are derived and discussed.

It should be pointed out that the case of infinftewith the feedback  |ndex Terms—impulsive systems, nonlinear perturbation, robust stabi-
resistorkr removed, produced good experimental and simulation rization, singular systems, time-delay, uncertainty.
sults which were omitted for brevity.

|. INTRODUCTION

VI. CoNnCLUSION In recent years, considerable efforts have been devoted to the

An active-network synthesis of inverse system design is presentatialysis and synthesis of singular systems (known also as descriptor
The synthesis is general and can be applied with different impedand&stems, semistate systems, differential algebraic systems, generalized
Its application to invert a passive differentiator resulted in a versatiféate-space systems, etc.). These systems arise naturally in various
low-frequency differential integrator. Its application to invert a passivigelds including electrical networks [25], robotics [22], [23], social,
RC integrator yielded a versatile low-frequency differential differenbiological, and multisector economic systems [21], [29], dynamics of
tiator. Each employs a single time constant, has a resistive input, dRgrmal nuclear reactors [26], automatic control systems [27], among
a reasonably higlp value. Simulation and experimental results verifynany others such as singular perturbation systems. Progress in the
the theoretical expectations. The active-network synthesis can be @gestigation of singular systems can be found in books [1], [4], [6],
plied to obtain other varied realizations. The differential integrators afié] and survey papers [5], [15], [16].
differentiators could easily be modified to obtain inverting and non- Although most singular systems are analyzed either in the contin-
inverting integrators and differentiators by simply grounding one &fous- or discrete-time setting, many singular systems exhibit both
the two inputs in each of the differential configurations. Additionallycontinuous-time and discrete-time behaviors. Examples include many
the limited bandwidths of the circuits mitigates the contribution of thévolutionary processes, especially those in biological systems such as
noise and yield output waveforms with large signal to noise ratios. biological neural networks and bursting rhythm models in pathology.

Other examples exist in optimal control of economic systems,
frequency-modulated signal processing systems, and some flying
ACKNOWLEDGMENT object motions. These systems are characterized by abrupt changes
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instantaneous jump at the initial time [20]. For singular systems withith the initial conditions
time delays, infinite impulses as well as finite jumps can occur in the
solutions of the systems [6], [17]. Therefore, it is very important, and
indeed necessary, to study singular impulsive systems, perhaps also
with time delays.

On top of the singular, impulsive, and time-delayed features of suéfere
dynamic systems, there might also be uncertainties such as perturbds € R"*, & = (1, 22)" state vector withi, + ny = n;
tions, usually arising from modeling errors, data-measurement errorst: € B™%, u = (w1, u2)”  control vector withm, +ms = m;

z;(t) = & (t), to—7<t< i=1,2 (2.2)

changes in environmental conditions, and component variations, etcdi, Bi, andC known real constant matrices of ap-
These altogether lead the system to an unexpectedly complicated sit- propriate dimensions;

uation, thereby leading to very complex dynamical behaviors. In thefi(t, (t), x(t — 7)) nonlinear uncertain vertor function
design of a controller for such a complex system, it is important to en- with fi(t, 0, 0) = Oforallt € J;
sure that the system be stable with respect to these uncertainties. Robust™> 0 IS a constant.

stabilization is a concept addressing this issue of stability for uncertd#gre, Dx:, Dv; and Dw; denote the distributional derivatives of the
systems. In particular, robust stabilization for a singular and delayBnctionsz; € R"¢, v, andw;, respectivelyv;, wi: Ry — R are
system has recently attracted increasing interest (see, e.g., [7], [igmctions of bounded variation and right-continuous on every compact
[6], [17], [28] and the references therein). These existing studies, hofbinterval ofJ. This implies thatDv; and Dw; can be identified
ever, are not for impulsive type of control systems. with the Lebesgue—Stieltjes measure, which have the effect of suddenly
Given the above background, this paper attempts to study the f§anging the state of the system at the points of discontinuity afd
bust stabilization problem for a complex dynamic system of the sitt- Moreover,g;: [to — 7, to] — R"‘ are functions of bounded vari-
gular, impulsive, and time-delayed type with uncertainties from no@tion and right-continuous. Finally, the initial condition is denoted by
linear perturbations. This work is based on our previous investigatioli Vectord() = (1 (f), ¢2(1))".
on singular and impulsive systems [11], [19]. Basically, in this paper, I general, afunction of bounded variation and right-continuous con-
we first introduce a model for singular impulsive delayed system wiffists of two parts: one is an absolutely continuous function and the
nonlinear perturbations, and then study its exponential robust stabiligder is a singular function. When discontinuous points of the func-
tion problem. tion are isolated and at most countable, the singular part has the form
The paper is organized as follows. In Section I, the singular imx—, @ (t). Without loss of generality, we therefore assume that
pulsive delayed system is described and modeled, and in Section lIl,

some preliminary results are derived and discussed. The main result g

of global exponential robust-stabilization criteria for the established vi(t) =t + Zaika (t)

model is given in Section IV, where a systematic design procedure for k=1

obtaining a robust impulsive controller is presented. For illustration, a o

numerical example is described in Section V. Finally, some conclusions wit)=t+ > BaHe(t), i=1,2 (2.3)
are drawn in Section VI. k=1

wherea;; andg;;, are constants, with discontinui in
Il. PROBLEM FORMULATION erea;;, andJ;,. are constants, with discontinuity points

Let Ry = [0, +0), J = [to, +oc), (to > 0) andR™ denote the

n-dimensional Euclidean space. The norm:ds || z|| := 3", |2 <tz <o <l <oeey ol =00
and|z| := (|z1], - .., |2])7, wherez = (z1, ..., z.)” € R". Sim-
ilarly, for A = (aij)nxn € R"*" wheret; > to, andH(t) are the Heaviside functions defined by
n ( 0, t<tg
Al = max ;s Al = (laiiDnxn Hi () :{
Il = mx Dol 141 = (s s L isn

Temin(A) = A2 (AT 4)

— “‘min

w(A) = m]ax {(l‘j‘j + Z |("ij|}

i=1,i#j

It is easy to see that

Dv, =1+ Zaiké(t — tk)
k=1

whereu(A) and Amin (A) are the matrix measure and the minimum oo
eigenvalue of4, respectively. We use the notatiot{a;;) > B(b;;) Dw, =1+ Z Bsnd(t — tr)
and(z1, ..., z.)" > (y1, ..., y»)? to mean thaw;; > b;; and k=1
zi > y; foralli, j = 1, ..., n, respectively. The identity matrix of
ordern is denoted ag,,, or simply, if no confusion arises. whereé(t) is the Dirac impulse function.
Consider the following nonlinear uncertain time-delay impulsive and Provided that all the states are available, the robust-state feedback
singular dynamic system: controlleru;(t) are given by
Dy = [Ai21(t) + Bixi(t — 7)|Dvi + Chrug i (t) = Kz (t) Du; (2.4)
+f1(t, x(t), z(t — 7)) Dw, ”1
0 = [A222(t) + Baao(t — 7)]Dvs + Cous 1) wherel{; is a constant matrix (called thgain matrixhereatfter) of ap-

+fa(t, 2(t), 2(t — 7)) Dws propriate dimension. Obviously, () is an impulsive controller.
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Substituting (2.4) into (2.1) yields a nonlinear uncertain closed-loop Remark 3.2: Lemma 3.1 and Definition 3.1 imply that if system
time-delay singular and impulsive dynamical systems, in the form of3.1) is stable with a decay rate then inequality (3.5) holds. For the
estimate of (3.5), we have the refined result given in Lemma 3.2 below.

Dz, = [Aix1(t) + Biai(t — 7)] Doy Lemma 3.2: If ag = max{Re(s)|det Q(s) = 0}, then for any
+f1(t, @(t), «(t — 7)) Dw 2.5) —a > ag, the fundamental solutioX (¢) of (3.1) satisfies the in-
0 = [Aa22(t) + Bawa(t — 7)] Duvs = equality
+ fa(t, x(t), (t — 7)) Dws n
0 el =T D IXOI< Y exp(—at). £ >0, (3.6)
™
where /
. . Proof: It follows from Lemma 3.1 thaf (¢) has the expression
A=A+ Ch Ky As = As + C2 K. (2.6) of (3.4). For simplicity, the following notation is used
Now, the problem is to find some conditions for robust conirgt ), . T 1 peHT
given by (2.4), such that the overall nonlinear uncertain time-delay sin- / = = lim — /
© 2T ol ioo T—oo 20T J._ip

gular impulsive system (2.5) is asymptotically stable in the presence of

nonlinear uncertainties. . - .
wherec is some sufficiently large real number. First, we want to show

IIl. TIME-DELAY AND IMPULSIVE SYSTEMS that
In this section, some necessary concepts and refined properties asso- / Q (s)exp(st) ds = QY(s) exp(st) ds (3.7)
ciated with time-delay systems and impulsive systems are derived and J(«) (=)
discussed.
Consider the following time-delay system: wherec > —a. Consider the integration of the functigp™' (s)e*’
along the boundary of the box in the complex plane, with boundary
x'(t) = Ax(t) + Bx(t — 1) (3.1) L1 M, L, M;, in the counterclockwise direction, where

2 (t) = Aw(t) + Bx(t — 1) + f(1). (3.2 Lii{e4it—T<E<T) Lot{—a+it T <é<T)
It is well known that the asymptotic stability of (3.1) implies that the M;: {oc +iT: —a <o < ¢} Mo:{o —iT: —a <o <c}.
solution A of equation
Since) ™' (s) has no zeros in the box and on its boundary, it follows
det Q(A) =0, Q(A):=Al — A— B exp(—Ar) (3.3) thatQ (s)e®! is an analytic function in the box, leading to

satisfies Ré\) < 0, and vice versa. " " " " 1
Definition 3.1 [24]: System (3.1) is said to able with decay rate {/T1 + /M1 + /T‘2 + /M2 } Q7 (s)exp(st)ds = 0.
«, if the solution of (3.1) satisfies R&) + « < 0 for somea > 0.
Remark 3.1: There are many results associated with the estimate-phys, (3.7) is verified if we can show that
the decay rate for the time-delay system (3.1). For instaneg(fd ) —
a > || Bl exp(Ta), then system (3.1) is stable with the decay rate

[24] Q™' (s) exp(st)ds — 0 Q™' (s)exp(st)ds — 0 (3.8)

' M M.

Lemma 3.1 [13]: The following time-delay matrix system ' :

. ; ’ asT — oo.
X'(t)=AX(t)+ BX(t—7) X(t)e R"*" For ann x n matrix P, let || P||s = A{Z(PPT), whereP” is

the conjugate transpose matrix®Bfand\ ... (PP" ) is the maximum

with initial condition eigenvalue ofPP*. Then||P|| < /n||P|)-. It is now readily shown

0. t<0 that
X(t) = { o
e 1=0 10~ (=)l
has a unique solution an> 0 given by = max \; {Q—1 (_g)(Qifl(s))T}
) 1 retico 'y 1
X(t)= = Q" (s)exp(ts)ds, t>0 (3.4) = : (3.9
27 Jomioo min; A; {Q—l(s)(Q—l(s))T}

whereQ(s) is given by (3.3)¢ > 3, 3 = ||A|| + ||B|, andX(#) is and

also a matrix-valued function of bounded variation on every compact ) T

subinterval ofJ. Ai {Q* (s) (Q—l(s)> }

In addition, for any—a > max{Re(\)|det Q(X) = 0}, there ex-
ists a constandd = M («) such that =\ {(51 —A—B-—¢"") (W)T}
X < M exp(=at), 20, (3.5) > 15]% + Amin (AAT) + Apin (BB )e 7277
ol A RT |, —7Re(s ¢ / ¢ —7Re(s
In Lemma 3.1,X (¢) is called thefundamental solutiorr funda- —2[AB" [l =205 Al = 2Js]l|Be ).

mental solution matriof (3.1). (3.10)
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Choose€l; such that

2

(l2 Ll'z 1/2
+%[Amin(AAT)—I—)\min(BBT)eZ“T—2||ABT||e‘”] > i

forallT > T,. If T > 1T, ands € M, then (3.9) and (3.10) implies
that

||Q71(‘5)||2) S [(02+T2)+/\min(-444T)+/\min(BBT)62aT
—2|AB||e* 2V F T2 (|| Al + | Blle*")] !
4

< —
=72

namely,[|Q~" (s)||> < 2/T. Therefore

‘ / Q' (s)e’ ds
My

<Vn

Q '(s)e* ds

My

2

Q7" ()llle™]

v max
T>Tqg, s€My

Zf e+ a)—0

/ ds
My

IA

asT — oo. Similarly, || f,, @~ '(s)e* ds|| — 0 asT — oc. Thus,
(3.8) holds.

Next, letTy be as above. IE(s) = Q@ '(s) — (I/(s — aw)), then

Mo

G(s) =Q7'(5) {f— @} —Q7'(s) [%

(a%s) S—0g

2 oT
1G(s)ll2 < Fzllaol+lIAllz+[|Bll2e™]

fors = —a 44T, |T| > To. Accordingly

/ G(s)e* ds
(=)

<n / G(s)e*t ds
()

2

<vn max IG(5)l2]e*| / ds
s=—a-+il), |[1'|>1g (—a)
< V2 (ol + 11A4lls + 1 Bll2e") exp(—at) = 0 (3.11)

asT — oo. Furthermore

/ (s — )™ ' Te™ ds
(=)

<n / (s — o)™ ' Te™ ds
(o) ,
< - i . 711 . st " I .,
- \/ﬁ s:—n/-‘fl-lil%X‘T‘zTO ||(‘S CYO) ||Z|e | /(700 o
< ﬁ exp(—at), t> 0. (3.12)
T
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It follows from (3.4), (3.7), (3.11) and (3.12) that

‘ Q! (s)exp(st)ds
(c)

Xl =

Q™' (s) exp(st) ds
(—a)

IN

/‘ G(s)exp(st)ds
(=)

+ / (s — ap)™' I exp(st)ds
(o)

vn

< Y— exp(—at), t > 0.
m
This completes the proof. O

Lemma 3.3 [12]: The general solution of (3.1) with initial condition

;L’(t) = Op—1 (t) t e [t;,»,_1 -7, t]‘-,_1] (313)
is given by
w(t) =Xt —tp—1)dp—1(te—1)
ly 1
—I—B/ X(t—s—7)or—1(s)ds, t >ty
tp—_1—T
where ¢,_1(t) is an arbitrarily given initial function on

[ti—1 — 7, tr—1] and X (¢) is the fundamental solution matrix
of system (3.1).
By Lemmas 3.1 and 3.3, the following result is immediate.
Lemma 3.4: The general solution of system (3.2) with initial con-
dition (3.13) is given by

2(t) =Xt — th—1)Or—1(tr-1)
by 1
+ B/
tp—_1—T

-t
+/ X(t—s)f(s)ds, t>tp 1
te—1

X(t—s—7)dr—1(s)ds

whereX (¢) is the fundamental solution matrix of (3.1).

IV. ROBUST STABILIZATION

In this section, we discuss the robust stabilization problem of system
(2.1), or effectively, the robust-stability problem of the closed-loop
system (2.5).

Assume that, —tx_1 > 67,6 > 1

£i(t, w(t), x(t = )| Scallz@ + cizllx( = 7).

i=1,2 4.1)

and system

A1:E1 (t) —|— B1,7:1 (t bl T)

zi(t) =
is stable with decay rate; > 0, wherec;; are constants and,, B

are given by (2.5) and (2.6). It follows from Remark 3.2 and Lemma
3.2 that there exists a constavfi, such that

(4.2)

X1 (¢ = )l < Mo expl—ai(t =), t>s  (4.3)
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whereX; (¢) is the fundamental solution matrix of system (4.2) &g  whereX(¢) is the fundamental solution matrix of (4.2), together with
can be taken adf, = /n /. For convenience, define the following (4.3) and (4.1). This leads to

notation: [|By[jev
. len (o <280 (14 200 e s -t
Bk = Inin{ a-rniu( '11 a]L) T min (A2O<2L )} M
ﬁl \/72 "t
— (IB1klerr + |Baklear) (4.4) —I—/tk 1 Mo exp[—ai(t—s)]
1
B =g~ ez ()l +l|lz2(s) D +erz(lla (s—7) |

1 +||z2(s—7)|])] ds (4.8)
e = g-tmax{{[Broll. | Bzosi [}

wheret € [ty—1, t1), a1 > 0 andc;; are given by (4.1) and (4.3), and
+ (IB1xlerz + [Baxle22)] (4.5)  dik—1ll = sup,, | _rerci_, 0i—1 ()]
P(a) = (pi;(@))2x2 (4.6) Multiplying both sides of (4.8) byxp[a(t — t_1)], wherea is
given by assumption 2), yields
wherea;;, andj;, are defined by (2.3), and
" llz1 ()| expla(t—t,—1)]
FA% Ny

(c11 + c12e™7) By lleo1r
— < My <1+&) |I¢1l~'—1|l
piz(a) =pi1(@) o

pi(a) =

pa1(« L ¢ co0e™T + ! My exp[—(a1—a)(t—s
pai(a) = P (c21 + c22e™7) /tk_1 p[—( )(t—s)]
N fen(llen ()14 (o) explals =t )] +e1ze™

12
— VT2 ear + (caz + || B
Tmin (442) [pZI (()ZZ ” || ]

with M, given by (4.3).
Theorem 4.1:For the closed-loop system (2.5), and f0|J‘et

paz(a) =
“(lei(s=7) ||+ |a2(s—7)||) expla(s—T—tr—1)]} ds. (4.9)

k=1,2,. -+, aSsume that: yi(t) = sup  {||zi(s)|| expla(s—tr=1)]}, i=1,2.
1) (Tmin(Az) > 0,60, > 0; tp_1—7<s<t
2) there exists a constantsatisfyingd < « < ay such thatl — . (4.10)
P(a) is an M-matrix: Then, it follows from (4.8)—(4.10) that
3) max{e*", (Br + vee*")} < My < ¢ wherec is a constantj, By||le™t™
and~, are given by (4.4) and (4.5). yi(t) < Mo <1 + %) o1kl
Then,(In(cM)/67) — o < 0 implies that (2.5) is robustly exponen- Mo

tially stable in the large, and the solution of (2.5) has the following

[(e11 + er12e™T) (ya (1) + y2(1))],

. o —
estimate:
1 t € [thot, tr). (4.11)
et < |B]|M exp Kln(“”) —oz) (t—to)} >t _
ot Fort € [tr—1, tx), the second equation of (4.7) becomes
whereM = Mo(1 + (|| B1]|e®*™ /a)||(I — P(a)) ||, and My is Asws(t) = —Boxo(t — 7) — folt, x(t), x(t — 7))

given by (4.3). )
Proof: It follows readily from (2.3) thatv} and w/ exist on Which leads to

[ti—1, ti). Thus, fort € [tr_1, t1), (2.5) becomes HA'_z»rz(f)H Bl (=) + conl|2(B)]] + conlla(t—7)]].

2y (t) = [levl(t) + By (t — T)] + fi(t, a(t), 2(t — 7)) (4.12)
0= [ngg(t) + Boxo(t — T)] + folt, x(t), z(t — 7)), Since
f E [tk_l, fk)- (47) - min 4
o o) > 22222 )
Let the initial condition of system (4.7) be v,
2i(t) = din_1(t) t € [thoy — T th1] andemin(A2) > 0, we have, from (4.12), the following:
and®; (1) = (d1x_1(t), d26—1(1))T, wheres;,_ () is a function [lz2 (2)]) < ‘/_2 I B2|lllz2(t = 7)|| 4 co1||z(#)]|
of bounded variation and right- cont|nuous[on_1 — 7, thet]. Tmin(A2)
By Lemma 3.3, it follows from (4.7) with the associated initial con- + caallz(t = 7)||]-
dition that fort € [t;_1, t%) Moreover,
21 (t) =X1(t — the1)O1h—1 (tr—1) ,
. y2(t) < %{(f’m + c22¢" )y (1)
R Tmin 2
B Xi(t—s5s—=7)p1k—1(5)ds or
e / e o)l + [ + (c22 + | Bal)e™ o (1))

(4.13)

-t
Xi(t—s)fi(s, 2(s), x(s — . )
* /tk*l 1t = )il 2(5), (s — 7)) ds wherey; (t) are defined by (4.10).
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Combining (4.11) and (4.13), we obtain

1T
y(t) < My <1 1 1Bl
(a5}

t € [th—1, tr),

) Wi+ P(a)y(h)
(4.14)
wherey(t) = (y1(t), y2(t)T, ¥imy = ([|pre—1ll. OF, P(a) is

given by (4.6), and — P(«) is anM-matrix. Thus, from Lemma A3
in the Appendix, (4.14) implies that

x1T
y(t) < Mo (1 + %) (T P(a) Wy 1.
ay
t € [te—1, tr)
which reduces to

[|x(®)|| < M||Pr-1]|| exp[—alt — tr—1)], t € [tr—1, tk)

(4.15)
wherex(t) = (21 (t), 22(t)", M = Mo(1+(||By||le“*" /o)) ||(I—
P(a)) 1.

On the other hand, system (2.5) implies that

i (tr) — 21 (ty — h)

/‘ ’ [(A121(s) + Biwi(s — 7)) dvi(s)
ty—h

+f1(s, x(s), x(s — 7)) dw (s)]
and
.fk .
0= / [(Azxg(s) + Boxa(s — 7)) dva(s)
th—h
+fals, 2(s), 2(s — 7)) dwa(s)]
whereh > 0 is sufficiently small, ags — 0T, which reduces to
w1 (ty) — a1 (ty ) = Avoaga (tr) + Braggas (t — 7)
+,81kfl(tka I(tlw",)7 I(tk - T))
0 = Asaora(ty) + Boavapwa (t, — 7)
+52k fa(tr, 2(ty), x(ty — 7))
or

(I — Klau,)wl (t};) =T (t;) + Bl(l"]kél“/l(tk - T)
+Be fi(te, o(ty), w(ty — 7))
Asaapwa(ty) = —Boawgaa(te — 7)
_,32k7f2<tk‘7 J}(tk), J}(t],,-, - T))
It follows from (4.16) and (4.1) that

(4.16)

Omin (I - K1(111.")
v,
Sl O+ IBraak |l (Fe — )]
+ Bl (ennllz(to)ll 4 crzllz(te — 7))

ll1 (£l

(4.17)
NS
< |[Bzovziell|v2(te — 7))
+ 1 Bzel(en llatto) || + caalle(tr = 7))

2 (t0 )l

(4.18)
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wheref;, is given by (4.4). Based on assumption 1), we immediately

arrive at
latll < Bulla(E) ) + wlla(te = )] (4.19)

whereg, and~, are defined by (4.5).

From (4.15) and (4.19), we can obtain the following results: When

k= 1,takedo(t) = B(t) = (¢1(t), ¢=(t))*,t € [to — 7, to], SO that

(Ol < [BIM expl-a(t —to)],  t€[to,t)  (4.20)
which reduces to

e ()] < 1[I exp[—a(ts — to)] (4.21)

eI < BulleE O+ llet = 7). (4.22)

Whenk = 2, naturally, takeb, (¢t) = x(t),t € [t1 — 7, t1], SO thatin
view of (4.20)-(4.22)

(@] = sup =)
t—r<t<ty
<||®|M exp[—a(ts — to)] max{e™”, 1 + 11e“"}

<@

MMy exp[—a(ts — to)]
where}M; is given in assumption 3). Thus, fore [¢1, t2)

()] < 11 [1M expl=a(t — 1)
< ||| MP My exp[—alt — to)].

Generally, as € [te—1, tx),

()| < (1R M*My - - My exp[—alt — to)]. (4.23)
SinceMy < ¢, tp —te—1 > 67,(6 > 1)andcM > 1
MMMy - My < (M)
< exp |:ln(¢l\([) (tr—1 — fo):|
ot
< exp {M (t — to):| (4.24)
o7
wheret € [ti_1, ti). From (4.23) and (4.24), we have
(Ol < 9] exp [(1“(;"”’ —) (t—to)} Ltz
oT
(4.25)
This completes the proof. O

Remark 4.1: For assumption 2) in Theorem 4.1,7if— P(0) is an

M -matrix, then by Lemma A2 in the Appendix there exists a constant

a, 0 < o < o such thatl — P(«) is anM -matrix.
Note that the matriceb— 4, a1, andAszaz; may be invertible. To
study this case, we introduce the following notation:

0 =1 —cu||(I = Arain) " Binl| = car||(Azazn) ™" G|

- 1 _ _
B = ||(I = Arawr) | (4.26)
Oy
1 L L
= w2l = Araai) ™ Buell + eoall(Azazn) ™" B
k
+ max{||({ — Zla1k)71B1a1l,,||, ||Z;132||}]
(4.27)
P(a) = (pij(@))2xz (4.28)

Observe thaljz|| = ||x1]| + ||«=||. Therefore, (4.17) and (4.18) reduce

to

Ol (o)l <llwr (B) |+ [max{[[ Byog|l, | Baazw ||} +F1kler
+182k |c22)]llx(te = 7) |

wherepi1(a) = p11(a), p12(a) = p12(a), given by (4.6), and
Par () = || A2 | (c21 + c22¢™7)

2271B2||(.’“T.

P22(@) =par (o) +
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If A, is invertible, then it follows from (4.7) that
llw2(Dl] < 1[4 Bellll2(t = )
—- -1
+ 142 l(ear |zl + coalx(t = 7))

wherep;;(«) are given by (4.28), then the conclusion of
Corollary 4.1 holds withM = [My/(1 — 7(a)](1 +
(IBulle™*™/an)).

which leads to V. CONTROLLER DESIGN WITH AN EXAMPLE

y2(t) < p21(a)yi(t) + paz(a)y2(b).
Moreover, together with (4.11), it yields

B ayT N
vy <2t (14 Py Py

(€3]

In this section, we describe a systematic-design procedure for the ro-
bust impulsive control law developed above, for the singular impulsive
delayed system (2.1). The procedure is established on the basis of the
analysis given in Section IV above. An example is given to illustrate
this design procedure, which also serves for interpretation of the theo-
retical results obtained in the paper.

t € [te—1, te). The suggested design procedure is based on Theorems 4.1 and 4.2,

If the matrices] — A1« andA,as;, are invertible, then it follows and is summarized as follows.
from (4.16) that Step 1) For the system (2.1), select the gain malfixsuch that

er(tr) = (I = Ayany) o2 (67) + Brawpan (te — 7) the sys_tem 4.2) is stabl_e with decay rate > 0. For
convenience, one may pick a constant > 0 such that
+ Bukfr(te, x(te), a(tr — 7))] (A — a1 > || Bi|[exp(ray).
Step 2) Select the gain matrix. and compute mi (A2) andé,
which are defined by (4.4). § ... (A2) > 0 andé; > 0,
then go to Step 3; otherwise, go back to Step 1.
Step 3) Pick a constant, 0 < « < ay, and then calculat®(«)
or n(«), which are given by (4.6) and (4.29), respectively.
If I — P(«) is anM-matrix or ifn(«) < 1, then go to Step

2o(ty) = —(Avaay) "' [Baovapaa(ty — 7)
+ Pak falte, x(te), x(tr — 7))].
These imply that
el < Bl O + Alle(ts — 1)l

provided thatd, > 0. Similar to the inference of Theorem 4.1, we
obtain the following result.
Corollary 4.1: For the closed-loop system (2.5), assume that
1) 6 > 0,1 — Aja1x andAsa are invertiblek =1, 2, .. .
2) there exists a constantsatisfyingd < o < «; such thatl —
P(a) is an M -matrix;
3) max{e®", (Br + %e*")} < My < ¢, wherec is a constant.

4; otherwise, go back to Step 2.

Step 4) Computenax{e“”, (Sr + we*")} < My, where3, and
~, are given by (4.5). IVl < ¢, then go to Step 5; other-
wise, go back to Step 3.

Step 5) Calculate the constanfl/ with the expressions
M = (i, /m)(L+ (IBille™ fa DI — P(a))™"|
or M = (n, /(1 = n(a))m)(1 + (|| Bi|le*" [ar)). If
(In(¢M)/é7) — « < 0, then go to Step 6; otherwise, go

Then, the conclusion of Theorem 4.1 holds with/ =
Mo(1 + (|Bille®> Ja)I(I — P(a))™"||, where 8k, Br, .,
andP(«) are given by (4.26)—(4.28).

Theorem 4.2: If assumption 2) of Theorem 4.1 is replaced by the
following condition:

2) there exists a constantsatisfyingd < « < a; such that
(4.29)

where p;;j(«) are given by (4.6), then the conclusion o
Theorem 4.1 holds withMd = My/(1 — n(a))(1 +
(IBille™*™ /ar)).
Proof: Similar to the argument used in Theorem 4.1, we obtain
the inequalities (4.11) and (4.13). If we define

y(t) = mlax{yi(fﬂé' € [tk—1 -7 t]'/ =1, 2}

then, by assumption 2)(4.11) and (4.13), we have

back to Step 1.
Step 6) Substitute the decentralized gain matrisesand K>, de-
termined in Step 2, into (2.4) to obtain the controlie(t)
for the system (2.1).
Remark 5.1: From Corollaries 4.1 and 4.2, we can derive a similar
control design procedure for system (2.1); the details are omitted for
brevity.
f Example: Consider the uncertain, delayed, singular and impulsive
system (2.1) and (2.2) with nonlinear perturbations, where= 2,
ny = 2andn = 4

1 2 0 1 10
n=(o 3) B=(14) o=( 1)
-1 0 10 0 1
A2:< 1 2) BQ:<1 1) CQ:<1 0)

and with nonlinear perturbatiof (¢, «(t), «(¢ — 7)) satisfying (4.1),
with ¢11 = 2,¢c19 =1,c01 =1, co0 = 2, l’,j(t), andlL',j(t) giVen by
(2.3), wherety, — t—1 > 67, 7 = 1/10, and

1 -~ _ D
= — Ve = — 311 =
g 10 ik 4
1

n(a) = max{pii(x) + pi2(a), p21(a) + p22(a)} < 1

y(t) < My <1 + 7” 1(|)J€ ) [[o1k—1|] + n{a)y(t)
1

namely

Z\IU ||B1||(3a17—
yt) L ——— (14— Dyge—
) < o (14 I oy,

t € [thon, tr)
Now, one can easily design a robust impulsive controller by fol-

which reduces to (4.15) withh/ = [Mo/(1 — n(@)(1 + |owing the above procedure, such that system (2.1) specified above is
(IB1[[e™*™/a1)). The rest of the proof is similar to that of Theoremgyponentially stable:

4.1, therefore, details are omitted. - —46
! ’ Step 1) Seleck’; =
Corollary 4.2: If assumption 2)of Corollary 4.1 is replaced by the P1) b=

following condition: — . —45 0
1 . L. A=A+ G K, =
2) there exists a constaatsatisfyingd < « < a; such that 0 —46

7(e) = max{pii(a) + pra(a), p2i(a) + paa(a)} <1, (4.30)

o), anda; = 20. Then

25 = —p(Ar) — a1 > || Bi]| exp(ray) = 7.39.
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Step 2) Seleck> = (_,, .°).Then
—46 0

0 —47)‘

ZQ = Ay + 2 Ko = < (_53

From (4.4), we have

Lemma A2:Let A(¢)
trix-valued function, with nonpositive off-diagonal elements in
€),e > 0.1f A0) = (ai;(0))nxn is anM-matrix, then there
exists a constant, 0 < 1 < e, such thatd(¢) is anM -matrix-valued
function on the interval—n, 7).

Proof: SinceA(0) = (ai;(0))n x» is@anM-matrix, from Lemma
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(ai;(£))nxn be a continuous ma-

227, k=2n-1 . T n
Omin(A2) =46 >0 6, = bos ko neN. Al, there exists a vectar = (&1, ..., 2»)" > 0,z € R", such that
2.58, =2n > aij(0)z; >0,i=1,..., n.
=1 J ot g 5 '
Step 3) Select a constant,= 10,0 < o < a1, and calculate I;et fil®) = Yy ai(Qw;, i = 1,....n. Then f;(0) =
2 -1 aij(0)a; > 0. Clearly, fi(¢) is a continuous function on
- Po) = L=pul(a) —piaa) \ < 0.86 —().14) (—¢. ), and there exists a constant,€ (0, ¢), such that
—por(@) 1 —paa(a) —-0.09 0.85 ) n _
o _ B £ =3 aij(©z; >0, EE€(=mn)i=1 ... n
which is anM —matrix. Then||(I — P(«))™ || = 1.39. =
Step 4) Computenax{e‘”, (B + 7e“7)} < max{l, (0.38 + Lets = min,{;}. Then
039} <1:=c.
Step 5) Calculate constant M = , .
(&) = ;i (E)x; > 0, -7, 1), 0 ,
(Vi /m)(L+ (1B [le*™ fa)) (T = Pla) ™[] = 0.86. £:(©) g J©m; >0, EE(=n.m). 0<y<e
Thus, for anys > 0
r =1, ...,
In(cM) . Tt
- ° : implying that - is an M -matrix-valued function on the interva
5 < [ hat A(¢ M lued f h [
Step 6) Based on the above results, the corresponding controfigf- 7)- This completes the proof. U
ui(t) is obtained as Lemma A3: Fozf avector |nequalltyLT;p <0, w_hergA = (ai,;)nx_n,
b=(b1, ..., bn)" , &= (21,..., xn)" € R",if AisanM-matrix,
—46 -2 < AT
w () = < 6 ) () Doy thenz < A~'b. _ _
0 -43 Proof: It is readily seen from Lemma A1 that is nonsingular

—45

uz(t) = <__415 0 ) x2(t)Dus

which exponentially stabilizes the given nonlinearly per-

turbed, time-delayed, singular, and impulsive system. o

VI. CONCLUSIONS [2]
In this paper, we have formulated and studied the stabilization
problem for a general singular-impulsive delayed system with non-[3]
linear perturbations. Such a complex system cannot be handled by
traditional techniques that can only deal with pure continuous-time or[4]
discrete-time models, perhaps with either time delays or uncertainties:
Some specific properties prescribing this hybrid model have been
analyzed. Global exponential robust stabilization of the system]5]

equilibrium via stabilizing controller design has been investigated. A
systematic procedure for designing the robust impulsive controller had®!
been suggested, along with an explicit example for illustration. 7

Future research along the same line will be devoted to possible
engineering applications of the proposed model and its stabilization
methodology.

[9]
APPENDIX [10]
Some basic properties associated with tfiematrix are given here  [17]
for the reader’s convenience. A matrixsatisfying any one of the six
conditions listed in Lemma Al below is called af-matrix.
Lemma Al [2]: Let A be areal square matrix with nonpositive off- [12]
diagonal elements. Then the following six conditions are equivalent.
1) The principal minors oft are all positive.
2) The leading principal minors of are all positive. (3]
3) There is a vector (or y) whose elements are all positive such [14]
that the elements ol (or A”y) are all positive.
4) Ais nonsingular and the elements4f ! are all nonnegative. [15]
5) The real parts of the eigenvaluesfare all positive.
6) Thereisadiagonal matri® = diag(dy, ..., d.),withd; > 0, [16]
such thatD A + AT D is a positive definite matrix. [17]

In what follows, we will give some results concernifdj-matrices.

and elements ofA~! are nonnegative. Thus, the vector inequality
Az < bimplies thatz < A~'b. This completes the proof.

O

REFERENCES

J. D. Aplevich, Implicit Linear SystemsNew York: Springer-Verlag,
1991.

M. Araki, “Stability of large scale nonlinear systems—Quadratic-order
theory of composite system method usitfymatrices,”|EEE Trans.
Automat. Contr.vol. 23, pp. 129-142, Jan. 1978.

D. D. Bainov and P. S. SimeondStability Theory of Differential Equa-
tions with Impulse Effects: Theory and Application€hichester, U.K.:
Ellis Horwood, 1989.

K. E. Brenam, S. L. Campbell, and L. R. Petzohi merical Solution
of Initial Value Problems in Differential-Algebraical Equation®New
York: Elsevier, 1989.

S. L. Campbell, “Descriptor systems in the 90’s,”Rmoc. 29th Conf.
Decis. Contr. Hawaii, Dec. 1990, pp. 442-447.

——, Singular Systems of Differential Equatigri¢ew York: Pitman,
1982, vol. 1.

] J. H. Chou and W. H. Liao, “Stability robustness of continuous-time

perturbed descriptor system$ZEE Trans. Circuits Syst, vol. 46, pp.
1153-1155, Sept. 1999.

] L. Dai, Singular Control Systemslew York: Springer-Verlag, 1989.

S. G.Deoand S. G. Pandijfferential Systems Involving Impulsé&ew
York: Springer-Verlag, 1982.

A. K. Gelig and A. N. ChurilovStability and Oscillations of Nonlinear
Pulse-Modulated SystemsBoston, MA: Birkhauser, 1998.

Z. H. Guan, Y. Q. Liu, and X. C. Wen, “Decentralized stabilization of
singular and time-delay large scale control systems with impulsive solu-
tions,”|EEE Trans. Automat. Conirol. 40, pp. 1437-1441, Aug. 1995.
Z.H. Guan, Y. C. Zhou, and X. P. He, “The equivalence of exponential
stability for impulsive time-delay differential systems,” iRecent
Advances in Differential Equations, Pitman Res. Notes Math. Ser.,
386 Harlow, U.K.: Longman, 1998, pp. 47-56.

J. K. Hale and M. Verduyn Lunelntroduction to Functional Differential
Equations New York: Springer-Verlag, 1993.

V. Lakshmikantham, D. D. Bainov, and P. S. Simeontwory of Im-
pulse Differential EquationsSingapore: World Scientific , 1989.

F. Lewis, “A survey of linear singular system<Circuits Syst. Signal
Process.vol. 5, no. 1, pp. 3-36, 1986.

——, “Atutorial on the geometric analysis of linear time-invariant im-
plicit systems,”Automaticavol. 28, pp. 119-137, 1992.

Y. Li and Y. Liu, “Bifurcation on stability of singular systems with
delay,” Int. J. Syst. Scienceol. 30, no. 6, 1999.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 48, NO. 8, AUGUST 2001 1019

[18] J.L.LinandS.J. Chen, “Robustness analysis of uncertain linear singular
systems with output feedback controlEEE Trans. Automat. Conjr.
vol. 44, pp. 1924-1929, Oct. 1999.

Y. Q. Liu, Z. H. Guan, and X. C. Wen, “The application of auxiliary
simultaneous equations to problem in the stabilization of singular and
impulsive large scale system3$EEE Trans. Circuits System.\ol. 42,

pp. 46-51, Jan. 1995.

W. Q. Liu, W. Y. Yan, and K. L. Teo, “On initial instantaneous jumps of
singular systemsJEEE Trans. Automat. Control. 40, pp. 1650-1655,
Sept. 1995.

D. G. Luenberger, “Dynamic equation in descriptor fortsEE Trans.
Automat. Contr.vol. AT-22, pp. 312-321, Feb. 1977.

N. H. McClamroch, “Singular systems of differential equations as dy-
namical models for constrained robot systemsPiac. IEEE Robotics
and Automation ConfSan Francisco, CA, 1986, pp. 21-28. Fig. 1. Physical schematics of a single-electron tunneling junction.
J. K. Mills and A. A. Goldenberg, “Force and position control of manip-
ulators during constrained motion taskigEE Trans. Robot. Automat.

vol. 38, pp. 30-46, Jan. 1989.

T. Mori, N. Fukuma, and M. Kuwahara, “On an estimate of the decay
rate for stable linear delay system#jt. J. Control vol. 36, no. 1, pp.

95-97, 1982.

R. W. Newcomb, “The semi-state description of nonlinear time variable
circuits,” IEEE Trans. Circuits Systvol. CAS-28, pp. 62—71, Jan. 1981.

D. H. Owens and R. P. Jones, “Iterative solution of constrained differen-

tial algebraic systemsJht. J. Contr, vol. 27, no. 6, pp. 957-974, 1978.

G. C. Verghese, B. C. Levy, and T. Kailath, “A generalized state-space
for singular systems,1IEEE Trans. Automat. Contrvol. AT-26, pp.
811-830, Apr. 1981. )

X. Xie and Y. Liu, “Stability for composite singular systems of differen-Fig. 2.
tial equations with a delayCircuits Syst. Signal Processol. 15, no.

5, pp. 573-580, 1996.

E. C. Zeeman, “Duffing’s equation in brain modeling),” Inst. Math.

Appl, no. 2, pp. 207-214, 1976.

Rz
bl

e
%

(19]

X

’0‘0
Yo ls

b

K AT
RIRERS
odatetetetetete

K
9
hade!

X2

(20]

v,.v
TR
betated

%
*
S

[21]

[22] tunnel barrier

(23]
Vi

[24]
Vr 7

(25]

(26]

[27] Vi

[28] Linear-periodic voltage-charge relation for a SETJ.

(29] I

A Deterministic Nonlinear-Capacitor Model for Fig. 3. Current-biased SET junction.

Single-Electron Tunneling Junctions A
nn¥ corresponding to a density of odevices per ¢ and the small

capacitance implies extremely high switching speeds. This combina-
tion of density and speed make it difficult to imagine any other al-

ternative technology that could match the long-term possibilities of
single-electronics.

To explain single-electron effects, an “orthodox theory” based on a
phenomenological Hamiltonian approach with a tunneling term and the
electrostatic energy has proved successful [1].

To analyze circuits with single-electron junctions (SETJs), however,
simplified models of the junction characteristics are required. One ex-
ample is the Monte Carlo model in which classical electrons tunnel
through the junctions stochastically with a probability that is a func-
tion of the temperature and the change in electrostatic energy. In the
limiting case of zero temperature and small average current, it further
reduces to a deterministic model where electron tunneling occurs as

Single-electron tunneling junctions (SETJs) are perhaps the mcs)ggn as it decreases the overall electrostatic energy of the system.

. : . ; . ased on these considerations, a deterministic model for the junc-
compact of all electronic devices. It is theoretically possible to create o . .
. . . . . n characteristics has been proposed which avoids any unnecessary
double-junction switches or logic gates within areas smaller than 1

complexities due to the stochastic nature of quantum mechanics and
thermal fluctuation [2].

Manuscript received April 7, 2000; revised January 10, 2001. This work Inthis model, itis assumed that an electron tunnels when the junction
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Abstract—Single-electron tunneling junctions (SETJs) have intriguing
properties which make them a primary nanoelectronic device for highly
compact, fast, and low-power circuits. However, standard models for SETJs
are based on a quantum mechanical approach which is very impractical for
the analysis and design of SETJ-based circuitry, where a simple, preferably
deterministic model is a prerequisite. We verify by physics-based Monte
Carlo simulations that the tunneling junction can in fact be modeled by a
piecewise linear voltage-charge relation, which, from the circuit-theoretic
perspective, is a nonlinear capacitor.
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he behavior of the junction (shown in Fig. 1) can therefore be
modeled by a single-valued piecewise linear voltage—charge rela-
tion (Fig. 2). This model has been applied for the investigation of

Vr =
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