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k
 and LM741 for the operational amplifier with dc bias of�15 V.
The upper trace shows the input triangular waveform with a frequency
of 500 mHz. The bottom trace shows the rectangular waveform at the
output of the operational amplifier. Thus, a good differentiation action
is obtained by using the proposed circuit. It was not necessary to add a
resistor between the negative input terminal of the isolation operational
amplifier and ground since a dc input to a differentiator produces a zero
output voltage.

D. Comparison Among the Theoretical, Simulation, and Experimental
Results

The simulation and experimental results verify the predicted fre-
quency ranges of (7) for the integrator and (14) for the differentiator.
Note also that the clean waveforms of Figs. 10 and 11 indicate high
signal to noise ratios for both circuits.

It should be pointed out that the case of infinitek, with the feedback
resistorkr removed, produced good experimental and simulation re-
sults which were omitted for brevity.

VI. CONCLUSION

An active-network synthesis of inverse system design is presented.
The synthesis is general and can be applied with different impedances.
Its application to invert a passive differentiator resulted in a versatile
low-frequency differential integrator. Its application to invert a passive
RC integrator yielded a versatile low-frequency differential differen-
tiator. Each employs a single time constant, has a resistive input, and
a reasonably highQ value. Simulation and experimental results verify
the theoretical expectations. The active-network synthesis can be ap-
plied to obtain other varied realizations. The differential integrators and
differentiators could easily be modified to obtain inverting and non-
inverting integrators and differentiators by simply grounding one of
the two inputs in each of the differential configurations. Additionally,
the limited bandwidths of the circuits mitigates the contribution of the
noise and yield output waveforms with large signal to noise ratios.
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Robust Stabilization of Singular-Impulsive-Delayed
Systems With Nonlinear Perturbations

Zhi-Hong Guan, C. W. Chan, Andrew Y. T. Leung, and Guanrong Chen

Abstract—Many dynamic systems in physics, chemistry, biology, engi-
neering, and information science have impulsive dynamical behaviors due
to abrupt jumps at certain instants during the dynamical process, and these
complex dynamic behaviors can be modeled by singular impulsive differen-
tial systems. This paper formulates and studies a model for singular impul-
sive delayed systems with uncertainty from nonlinear perturbations. Sev-
eral fundamental issues such as global exponential robust stabilization of
such systems are established. A simple approach to the design of a robust
impulsive controller is then presented. A numerical example is given for
illustration of the theoretical results. Meanwhile, some new results and re-
fined properties associated with the -matrices and time-delay dynamic
systems are derived and discussed.

Index Terms—Impulsive systems, nonlinear perturbation, robust stabi-
lization, singular systems, time-delay, uncertainty.

I. INTRODUCTION

In recent years, considerable efforts have been devoted to the
analysis and synthesis of singular systems (known also as descriptor
systems, semistate systems, differential algebraic systems, generalized
state-space systems, etc.). These systems arise naturally in various
fields including electrical networks [25], robotics [22], [23], social,
biological, and multisector economic systems [21], [29], dynamics of
thermal nuclear reactors [26], automatic control systems [27], among
many others such as singular perturbation systems. Progress in the
investigation of singular systems can be found in books [1], [4], [6],
[8] and survey papers [5], [15], [16].

Although most singular systems are analyzed either in the contin-
uous- or discrete-time setting, many singular systems exhibit both
continuous-time and discrete-time behaviors. Examples include many
evolutionary processes, especially those in biological systems such as
biological neural networks and bursting rhythm models in pathology.
Other examples exist in optimal control of economic systems,
frequency-modulated signal processing systems, and some flying
object motions. These systems are characterized by abrupt changes
in the states at certain instants [3], [9], [10], [11], [14]. This type of
impulsive phenomena can also be found in the fields of information
science, electronics, automatic control systems, computer networks,
artificial intelligence, robotics, and telecommunications [10]. Many
sudden and sharp changes occur instantaneously in singular systems,
in the form of impulses which cannot be well described by a pure
continuous-time or discrete-time model. For instance, if the initial
conditions is inconsistent, then a singular system will have a finite
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instantaneous jump at the initial time [20]. For singular systems with
time delays, infinite impulses as well as finite jumps can occur in the
solutions of the systems [6], [17]. Therefore, it is very important, and
indeed necessary, to study singular impulsive systems, perhaps also
with time delays.

On top of the singular, impulsive, and time-delayed features of such
dynamic systems, there might also be uncertainties such as perturba-
tions, usually arising from modeling errors, data-measurement errors,
changes in environmental conditions, and component variations, etc.
These altogether lead the system to an unexpectedly complicated sit-
uation, thereby leading to very complex dynamical behaviors. In the
design of a controller for such a complex system, it is important to en-
sure that the system be stable with respect to these uncertainties. Robust
stabilization is a concept addressing this issue of stability for uncertain
systems. In particular, robust stabilization for a singular and delayed
system has recently attracted increasing interest (see, e.g., [7], [18],
[6], [17], [28] and the references therein). These existing studies, how-
ever, are not for impulsive type of control systems.

Given the above background, this paper attempts to study the ro-
bust stabilization problem for a complex dynamic system of the sin-
gular, impulsive, and time-delayed type with uncertainties from non-
linear perturbations. This work is based on our previous investigations
on singular and impulsive systems [11], [19]. Basically, in this paper,
we first introduce a model for singular impulsive delayed system with
nonlinear perturbations, and then study its exponential robust stabiliza-
tion problem.

The paper is organized as follows. In Section II, the singular im-
pulsive delayed system is described and modeled, and in Section III,
some preliminary results are derived and discussed. The main result
of global exponential robust-stabilization criteria for the established
model is given in Section IV, where a systematic design procedure for
obtaining a robust impulsive controller is presented. For illustration, a
numerical example is described in Section V. Finally, some conclusions
are drawn in Section VI.

II. PROBLEM FORMULATION

Let R+ = [0; +1), J = [t0; +1), (t0 � 0) andRn denote the
n-dimensional Euclidean space. The norm ofz is kzk := n

i=1 jzij
andjzj := (jz1j; . . . ; jznj)

T , wherez = (z1; . . . ; zn)
T 2 Rn. Sim-

ilarly, for A = (aij)n�n 2 Rn�n

kAk = max
j

n

i=1

jaij j jAj = (jaij j)n�n

�min(A) =�
1=2
min(A

T
A)

�(A) = max
j

ajj +

n

i=1; i 6=j

jaij j

where�(A) and�min(A) are the matrix measure and the minimum
eigenvalue ofA, respectively. We use the notationA(aij) � B(bij)
and (z1; . . . ; zn)

T � (y1; . . . ; yn)
T to mean thataij � bij and

zi � yi for all i; j = 1; . . . ; n, respectively. The identity matrix of
ordern is denoted asIn, or simplyI , if no confusion arises.

Consider the following nonlinear uncertain time-delay impulsive and
singular dynamic system:

Dx1 = [A1x1(t) +B1x1(t� � )]Dv1 + C1u1

+f1(t; x(t); x(t� � ))Dw1

0 = [A2x2(t) +B2x2(t� � )]Dv2 + C2u2

+f2(t; x(t); x(t� � ))Dw2

(2.1)

with the initial conditions

xi(t) = �i(t); t0 � � � t � t0 i = 1; 2 (2.2)

where
xi 2 Rn ; x = (x1; x2)

T state vector withn1 + n2 = n;
ui 2 Rm , u = (u1; u2)

T control vector withm1+m2 = m;
Ai, Bi, andCi known real constant matrices of ap-

propriate dimensions;
fi(t; x(t); x(t � � )) nonlinear uncertain vertor function

with fi(t; 0; 0) � 0 for all t 2 J ;
� > 0 is a constant.

Here,Dxi, Dvi andDwi denote the distributional derivatives of the
functionsxi 2 Rn , vi, andwi, respectively.vi; wi: R+ ! R are
functions of bounded variation and right-continuous on every compact
subinterval ofJ . This implies thatDvi andDwi can be identified
with the Lebesgue–Stieltjes measure, which have the effect of suddenly
changing the state of the system at the points of discontinuity ofvi and
ui. Moreover,�i: [t0 � �; t0] ! Rn are functions of bounded vari-
ation and right-continuous. Finally, the initial condition is denoted by
the vector�(t) = (�1(t); �2(t))

T .
In general, a function of bounded variation and right-continuous con-

sists of two parts: one is an absolutely continuous function and the
other is a singular function. When discontinuous points of the func-
tion are isolated and at most countable, the singular part has the form
1

k=1 akHk(t). Without loss of generality, we therefore assume that

vi(t) = t+

1

k=1

�ikHk(t)

wi(t) = t+

1

k=1

�ikHk(t); i = 1; 2 (2.3)

where�ik and�ik are constants, with discontinuity points

t1 < t2 < � � � < tk < � � � ; lim
k!1

tk =1

wheret1 > t0, andHk(t) are the Heaviside functions defined by

Hk(t) =
0; t < tk

1; t � tk.

It is easy to see that

Dvi =1 +

1

k=1

�ik�(t� tk)

Dwi =1 +

1

k=1

�ik�(t� tk)

where�(t) is the Dirac impulse function.
Provided that all the states are available, the robust-state feedback

controllerui(t) are given by

ui(t) = Kixi(t)Dvi (2.4)

whereKi is a constant matrix (called thegain matrixhereafter) of ap-
propriate dimension. Obviously,ui(t) is an impulsive controller.
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Substituting (2.4) into (2.1) yields a nonlinear uncertain closed-loop
time-delay singular and impulsive dynamical systems, in the form of

Dx1 = A1x1(t) +B1x1(t� � ) Dv1

+f1(t; x(t); x(t� � ))Dw1

0 = A2x2(t) +B2x2(t� � ) Dv2

+f2(t; x(t); x(t� � ))Dw2

(2.5)

where

A1 = A1 + C1K1 A2 = A2 + C2K2: (2.6)

Now, the problem is to find some conditions for robust controlui(t),
given by (2.4), such that the overall nonlinear uncertain time-delay sin-
gular impulsive system (2.5) is asymptotically stable in the presence of
nonlinear uncertainties.

III. T IME-DELAY AND IMPULSIVE SYSTEMS

In this section, some necessary concepts and refined properties asso-
ciated with time-delay systems and impulsive systems are derived and
discussed.

Consider the following time-delay system:

x
0(t) =Ax(t) +Bx(t� � ) (3.1)

x
0(t) =Ax(t) +Bx(t� � ) + f(t): (3.2)

It is well known that the asymptotic stability of (3.1) implies that the
solution� of equation

det Q(�) = 0; Q(�) := �I �A �B exp(���) (3.3)

satisfies Re(�) < 0, and vice versa.
Definition 3.1 [24]: System (3.1) is said to bestable with decay rate

�, if the solution of (3.1) satisfies Re(�) + � < 0 for some� > 0.
Remark 3.1: There are many results associated with the estimate of

the decay rate for the time-delay system (3.1). For instance, if��(A)�
� > kBk exp(��), then system (3.1) is stable with the decay rate�

[24].
Lemma 3.1 [13]: The following time-delay matrix system

X
0(t) = AX(t) +BX(t� � ) X(t) 2 R

n�n

with initial condition

X(t) =
0; t < 0

In; t = 0

has a unique solution ont > 0 given by

X(t) =
1

2i�

c+i1

c�i1

Q
�1(s) exp(ts)ds; t > 0 (3.4)

whereQ(s) is given by (3.3),c > �, � = kAk + kBk, andX(t) is
also a matrix-valued function of bounded variation on every compact
subinterval ofJ .

In addition, for any�� > maxfRe(�)j det Q(�) = 0g, there ex-
ists a constantM = M(�) such that

kX(t)k �M exp(��t); t � 0: (3.5)

In Lemma 3.1,X(t) is called thefundamental solutionor funda-
mental solution matrixof (3.1).

Remark 3.2: Lemma 3.1 and Definition 3.1 imply that if system
(3.1) is stable with a decay rate�, then inequality (3.5) holds. For the
estimate of (3.5), we have the refined result given in Lemma 3.2 below.

Lemma 3.2: If �0 = maxfRe(s)jdet Q(s) = 0g, then for any
�� > �0, the fundamental solutionX(t) of (3.1) satisfies the in-
equality

kX(t)k �
p
n

�
exp(��t); t � 0: (3.6)

Proof: It follows from Lemma 3.1 thatX(t) has the expression
of (3.4). For simplicity, the following notation is used

(c)

:=
1

2i�

c+i1

c�i1

= lim
T!1

1

2i�

c+iT

c�iT

wherec is some sufficiently large real number. First, we want to show
that

(c)

Q
�1(s) exp(st)ds =

(��)

Q
�1(s) exp(st)ds (3.7)

wherec > ��. Consider the integration of the functionQ�1(s)est

along the boundary of the box in the complex plane, with boundary
L1M1L2M2, in the counterclockwise direction, where

L1: fc+ i�: �T � � � Tg L2: f��+ i�: �T � � � Tg
M1: f� + iT : �� � � � cg M2: f� � iT : �� � � � cg:

SinceQ�1(s) has no zeros in the box and on its boundary, it follows
thatQ�1(s)est is an analytic function in the box, leading to

L

+
M

+
L

+
M

Q
�1(s) exp(st)ds = 0:

Thus, (3.7) is verified if we can show that

M

Q
�1(s) exp(st)ds! 0

M

Q
�1(s) exp(st)ds! 0 (3.8)

asT ! 1.
For ann � n matrix P , let kPk2 := �

1=2
max(PP

T ), whereP T is
the conjugate transpose matrix ofP and�max(PP

T ) is the maximum
eigenvalue ofPP T . ThenkPk � p

nkPk2. It is now readily shown
that

kQ�1(s)k22
= max

i
�i Q

�1(s)(Q�1(s))T

=
1

mini �i Q�1(s)(Q�1(s))T
(3.9)

and

�i Q
�1(s) Q�1(s)

T

= �i (sI �A �B � e
�s� ) sI � A�Be�s�

T

� jsj2 + �min(AA
T ) + �min(BB

T )e�2�Re(s)

� 2kABT ke��Re(s) � 2jsjkAk � 2jsjkBke��Re(s):
(3.10)
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ChooseT0 such that

1 +
�2

T 2
�

2

T
1 +

�2

T 2

1=2

(kAk+ kBke�� )

+
1

T 2
[�min(AA

T )+�min(BB
T )e2���2kABT ke�� ] � 1

4

for all T � T0. If T � T0 ands 2 M1, then (3.9) and (3.10) implies
that

kQ�1(s)k22 � [(�2+T 2)+�min(AA
T )+�min(BB

T )e2��

�2kABT ke���2
p
�2+T 2(kAk+kBke��)]�1

� 4

T 2

namely,kQ�1(s)k2 � 2=T . Therefore

M

Q�1(s)est ds

� pn
M

Q�1(s)est ds
2

� pn max
T�T ; s2M

kQ�1(s)k2jestj
M

ds

� 2
p
n

T
ect(c+ �)! 0

asT ! 1. Similarly, k
M

Q�1(s)est dsk ! 0 asT ! 1. Thus,
(3.8) holds.

Next, letT0 be as above. IfG(s) = Q�1(s)� (I=(s� �0)), then

G(s) =Q�1(s) I� Q(s)

s��0 = Q�1(s)
��0I+A+Be�s�

s��0

kG(s)k2 � 2

T 2
[j�0j+kAk2+kBk2e�� ]

for s = �� + iT; jT j � T0. Accordingly

(��)

G(s)est ds

� pn
(��)

G(s)est ds

2

� pn max
s=��+iT; jT j�T

kG(s)k2jestj
(��)

ds

�
p
n

�T
(j�0j + kAk2 + kBk2e��) exp(��t)! 0 (3.11)

asT ! 1. Furthermore

(��)

(s� �0)
�1Iest ds

� pn
(��)

(s� �0)
�1Iest ds

2

� pn max
s=��+iT; jT j�T

k(s� �0)
�1Ik2jestj

(��)

ds

�
p
n

�
exp(��t); t � 0: (3.12)

It follows from (3.4), (3.7), (3.11) and (3.12) that

kX(t)k =
(c)

Q�1(s) exp(st)ds

=
(��)

Q�1(s) exp(st)ds

�
(��)

G(s) exp(st)ds

+
(��)

(s� �0)
�1I exp(st)ds

�
p
n

�
exp(��t); t � 0:

This completes the proof.
Lemma 3.3 [12]: The general solution of (3.1) with initial condition

x(t) = �k�1(t) t 2 [tk�1 � �; tk�1] (3.13)

is given by

x(t) =X(t� tk�1)�k�1(tk�1)

+B
t

t ��

X(t�s��)�k�1(s)ds; t � tk�1

where �k�1(t) is an arbitrarily given initial function on
[tk�1 � �; tk�1] and X(t) is the fundamental solution matrix
of system (3.1).

By Lemmas 3.1 and 3.3, the following result is immediate.
Lemma 3.4: The general solution of system (3.2) with initial con-

dition (3.13) is given by

x(t) =X(t� tk�1)�k�1(tk�1)

+B
t

t ��

X(t� s� � )�k�1(s)ds

+
t

t

X(t� s)f(s)ds; t � tk�1

whereX(t) is the fundamental solution matrix of (3.1).

IV. ROBUST STABILIZATION

In this section, we discuss the robust stabilization problem of system
(2.1), or effectively, the robust-stability problem of the closed-loop
system (2.5).

Assume thattk � tk�1 � �� , � > 1

kfi(t; x(t); x(t� � ))k � ci1kx(t)k+ ci2kx(t� � )k;
i = 1; 2 (4.1)

and system

x01(t) = A1x1(t) +B1x1(t� � ) (4.2)

is stable with decay rate�1 > 0, wherecij are constants andA1; B1

are given by (2.5) and (2.6). It follows from Remark 3.2 and Lemma
3.2 that there exists a constantM0 such that

kX1(t� s)k �M0 exp[��1(t� s)]; t � s (4.3)
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whereX1(t) is the fundamental solution matrix of system (4.2) andM0

can be taken asM0 =
p
n1=�. For convenience, define the following

notation:

�k = min
1p
n
1

�min(I �A1�1k);
1p
n
2

�min(A2�2k)

� (j�1kjc11 + j�2kjc21) (4.4)

�k =
1

�k


k =
1

�k
[maxfkB1�1kk; kB2�2kkg

+ (j�1kjc12 + j�2kjc22)] (4.5)

P (�) = (pij(�))2�2 (4.6)

where�ik and�ik are defined by (2.3), and

p11(�) =
M0

�1 � �
(c11 + c12e

�� )

p12(�) = p11(�)

p21(�) =

p
n2

�min(A2)
(c21 + c22e

�� )

p22(�) =

p
n2

�min(A2)
[c21 + (c22 + kB2k)e�� ]

with M0 given by (4.3).
Theorem 4.1: For the closed-loop system (2.5), and for

k = 1; 2; . . ., assume that:

1) �min(A2) > 0, �k > 0;
2) there exists a constant� satisfying0 < � < �1 such thatI �

P (�) is anM -matrix;
3) maxfe�� ; (�k + 
ke

�� )g �Mk � c wherec is a constant,�k
and
k are given by (4.4) and (4.5).

Then,(ln(cM)=��) � � < 0 implies that (2.5) is robustly exponen-
tially stable in the large, and the solution of (2.5) has the following
estimate:

kx(t)k � k�kM exp
ln(cM)

��
�� (t�t0) ; t � t0

whereM = M0(1 + (kB1ke� �=�1))k(I � P (�))�1k, andM0 is
given by (4.3).

Proof: It follows readily from (2.3) thatv0i and w0i exist on
[tk�1; tk). Thus, fort 2 [tk�1; tk), (2.5) becomes

x01(t) = A1x1(t) +B1x1(t� � ) + f1(t; x(t); x(t� � ))

0 = A2x2(t) +B2x2(t� � ) + f2(t; x(t); x(t� � ));

t 2 [tk�1; tk): (4.7)

Let the initial condition of system (4.7) be

xi(t) = �ik�1(t) t 2 [tk�1 � �; tk�1]

and�k�1(t) = (�1k�1(t),�2k�1(t))T , where�ik�1(t) is a function
of bounded variation and right-continuous on[tk�1 � �; tk�1].

By Lemma 3.3, it follows from (4.7) with the associated initial con-
dition that fort 2 [tk�1; tk)

x1(t) =X1(t� tk�1)�1k�1(tk�1)

+B1

t

t ��

X1(t� s� � )�1k�1(s)ds

+
t

t

X1(t� s)f1(s; x(s); x(s� � ))ds

whereX1(t) is the fundamental solution matrix of (4.2), together with
(4.3) and (4.1). This leads to

kx1(t)k �M0 1+
kB1ke� �

�1
exp [��1(t�tk�1)]k�1k�1k

+
t

t

M0 exp[��1(t�s)]

� [c11(kx1(s)k+kx2(s)k)+c12(kx1(s��)k
+kx2(s��)k)]ds (4.8)

wheret 2 [tk�1; tk),�1 > 0 andcij are given by (4.1) and (4.3), and
k�ik�1k = supt ���t�t k�ik�1(t)k.

Multiplying both sides of (4.8) byexp[�(t � tk�1)], where� is
given by assumption 2), yields

kx1(t)k exp[�(t�tk�1)]

�M0 1+
kB1ke� �

�1
k�1k�1k

+
t

t

M0 exp[�(�1��)(t�s)]

� fc11(kx1(s)k+kx2(s)k)exp[�(s�tk�1)]+c12e
��

� (kx1(s��)k+kx2(s��)k) exp[�(s���tk�1)]gds: (4.9)

Let

yi(t) = sup
t ���s�t

fkxi(s)kexp[�(s�tk�1)]g; i = 1; 2:

(4.10)
Then, it follows from (4.8)–(4.10) that

y1(t) �M0 1 +
kB1ke� �

�1
k�1k�1k

+
M0

�1 � �
[(c11 + c12e

�� )(y1(t) + y2(t))];

t 2 [tk�1; tk): (4.11)

For t 2 [tk�1; tk), the second equation of (4.7) becomes

A2x2(t) = �B2x2(t� � )� f2(t; x(t); x(t� � ))

which leads to

A2x2(t) � kB2kkx2(t��)k+ c21kx(t)k+ c22kx(t��)k:
(4.12)

Since

kA2x2(t)k � �min(A2)p
n
2

kx2(t)k

and�min(A2) > 0, we have, from (4.12), the following:

kx2(t)k �
p
n
2

�min(A2)
[kB2kkx2(t� � )k+ c21kx(t)k
+ c22kx(t� � )k]:

Moreover,

y2(t) �
p
n
2

�min(A2)
f(c21 + c22e

�� )y1(t)

+ [c21 + (c22 + kB2k)e�� ]y2(t)g
(4.13)

whereyi(t) are defined by (4.10).
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Combining (4.11) and (4.13), we obtain

y(t) �M0 1 +
kB1ke� �

�1
	k�1 + P (�)y(t);

t 2 [tk�1; tk); (4.14)

wherey(t) = (y1(t); y2(t))
T , 	k�1 = (k�1k�1k; 0)T , P (�) is

given by (4.6), andI � P (�) is anM -matrix. Thus, from Lemma A3
in the Appendix, (4.14) implies that

y(t) �M0 1 +
kB1ke� �

�1
(I � P (�))�1	k�1;

t 2 [tk�1; tk)

which reduces to

kx(t)k �Mk�k�1k exp[��(t� tk�1)]; t 2 [tk�1; tk)

(4.15)

wherex(t) = (x1(t); x2(t))
T ,M = M0(1+(kB1ke� �=�1)) k(I�

P (�))�1k.
On the other hand, system (2.5) implies that

x1(tk)� x1(tk � h)

=
t

t �h

(A1x1(s) +B1x1(s� � ))dv1(s)

+f1(s; x(s); x(s� � ))dw1(s)

and

0 =
t

t �h

(A2x2(s) +B2x2(s� � ))dv2(s)

+f2(s; x(s); x(s� � ))dw2(s)

whereh > 0 is sufficiently small, ash! 0+, which reduces to

x1(tk)� x1(t
�
k ) = A1�1kx1(tk) +B1�1kx1(tk � � )

+�1kf1(tk; x(tk); x(tk � � ))

0 = A2�2kx2(tk) +B2�2kx2(tk � � )

+�2kf2(tk; x(tk); x(tk � � ))

or

(I � A1�1k)x1(tk) = x1(t
�
k ) +B1�1kx1(tk � � )

+�1kf1(tk; x(tk); x(tk � � ))

A2�2kx2(tk) = �B2�2kx2(tk � � )

��2kf2(tk; x(tk); x(tk � � )):

(4.16)

It follows from (4.16) and (4.1) that

�min I � A1�1kp
n
1

kx1(tk)k

� kx1(t�k )k+ kB1�1kkkx1(tk � � )k
+ j�1kj(c11kx(tk)k+ c12kx(tk � � )k) (4.17)

�min A2�2kp
n
2

kx2(tk)k

� kB2�2kkkx2(tk � � )k
+ j�2kj(c21kx(tk)k+ c22kx(tk � � )k): (4.18)

Observe thatkxk = kx1k+kx2k. Therefore, (4.17) and (4.18) reduce
to

�kkx(tk)k�kx1(t�k )k+[maxfkB1�1kk; kB2�2kkg+j�1kjc12
+j�2kjc22)]kx(tk��)k

where�k is given by (4.4). Based on assumption 1), we immediately
arrive at

kx(tk)k � �kkx(t�k )k+ 
kkx(tk � � )k (4.19)

where�k and
k are defined by (4.5).
From (4.15) and (4.19), we can obtain the following results: When

k = 1, take�0(t) = �(t) = (�1(t); �2(t))
T , t 2 [t0��; t0], so that

kx(t)k � k�kM exp[��(t � t0)]; t 2 [t0; t1) (4.20)

which reduces to

kx(t�1 )k �k�kM exp[��(t1 � t0)] (4.21)

kx(t1)k ��1kx(t�1 )k+ 
1kx(t1 � � )k: (4.22)

Whenk = 2, naturally, take�1(t) = x(t), t 2 [t1 � �; t1], so that in
view of (4.20)–(4.22)

k�1k = sup
t ���t�t

kx(t)k

� k�kM exp[��(t1 � t0)]maxfe�� ; �1 + 
1e
��g

� k�kMM1 exp[��(t1 � t0)]

whereM1 is given in assumption 3). Thus, fort 2 [t1; t2)

kx(t)k �k�1kM exp[��(t � t1)]

�k�kM2M1 exp[��(t � t0)]:

Generally, ast 2 [tk�1; tk),

kx(t)k � k�kMkM1 � � �Mk�1 exp[��(t � t0)]: (4.23)

SinceMk � c, tk � tk�1 � �� , (� > 1) andcM � 1

Mk�1M1 � � �Mk�1 � (cM)k�1

� exp
ln(cM)

��
(tk�1 � t0)

� exp
ln(cM)

��
(t� t0) (4.24)

wheret 2 [tk�1; tk). From (4.23) and (4.24), we have

kx(t)k �k�kM exp
ln(cM)

��
�� (t�t0) ; t � t0:

(4.25)

This completes the proof.
Remark 4.1: For assumption 2) in Theorem 4.1, ifI � P (0) is an

M -matrix, then by Lemma A2 in the Appendix there exists a constant
�; 0 < � < �1 such thatI � P (�) is anM -matrix.

Note that the matricesI �A1�1k andA2�2k may be invertible. To
study this case, we introduce the following notation:

~�k =1� c11k(I � A1�1k)
�1�1kk � c21k(A2�2k)

�1�2kk
~�k =

1
~�k
k(I �A1�1k)

�1k (4.26)

~
k =
1
~�k
[c12k(I � A1�1k)

�1�1kk+ c22k(A2�2k)
�1�2kk

+maxfk(I �A1�1k)
�1B1�1kk; kA�12 B2kg]

(4.27)

~P (�) = (~pij(�))2�2 (4.28)

where~p11(�) = p11(�), ~p12(�) = p12(�), given by (4.6), and

~p21(�) = kA2

�1k(c21 + c22e
�� )

~p22(�) = ~p21(�) + kA2

�1
B2ke�� :
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If A2 is invertible, then it follows from (4.7) that

kx2(t)k �kA2

�1

B2kkx2(t� � )k
+ kA2

�1k(c21kx(t)k+ c22kx(t� � )k)
which leads to

y2(t) � ~p21(�)y1(t) + ~p22(�)y2(t):

Moreover, together with (4.11), it yields

y(t) �M0 1 +
kB1ke� �

�1
	k�1 + ~P (�)y(t);

t 2 [tk�1; tk):

If the matricesI �A1�1k andA2�2k are invertible, then it follows
from (4.16) that

x1(tk) = (I � A1�1k)
�1[x1(t

�

k ) +B1�1kx1(tk � � )

+ �1kf1(tk; x(tk); x(tk � � ))]

x2(tk) =�(A2�2k)
�1[B2�2kx2(tk � � )

+ �2kf2(tk; x(tk); x(tk � � ))]:

These imply that

kx(tk)k � ~�kkx(t�k )k+ ~
kkx(tk � � )k
provided that~�k > 0. Similar to the inference of Theorem 4.1, we
obtain the following result.

Corollary 4.1: For the closed-loop system (2.5), assume that

1) ~�k > 0, I � A1�1k andA2�2k are invertible,k = 1; 2; . . .;
2) there exists a constant� satisfying0 < � < �1 such thatI �

~P (�) is anM -matrix;
3) maxfe�� ; ( ~�k + ~
ke

�� )g �Mk � c, wherec is a constant.
Then, the conclusion of Theorem 4.1 holds withM =
M0(1 + (kB1ke� �=�1))k(I � ~P (�))�1k, where ~�k, ~�k, ~
k,
and ~P (�) are given by (4.26)–(4.28).

Theorem 4.2: If assumption 2) of Theorem 4.1 is replaced by the
following condition:

2)0 there exists a constant� satisfying0 < � < �1 such that

�(�) = maxfp11(�) + p12(�); p21(�) + p22(�)g < 1 (4.29)

where pij(�) are given by (4.6), then the conclusion of
Theorem 4.1 holds withM = M0=(1 � �(�))(1 +
(kB1ke� �=�1)).

Proof: Similar to the argument used in Theorem 4.1, we obtain
the inequalities (4.11) and (4.13). If we define

y(t) = max
i
fyi(�)j� 2 [tk�1 � �; t]; i = 1; 2g

then, by assumption 2)0, (4.11) and (4.13), we have

y(t) �M0 1 +
kB1ke� �

�1
k�1k�1k+ �(�)y(t)

namely

y(t) � M0

1� �(�)
1 +

kB1ke� �

�1
k�1k�1k;

t 2 [tk�1; tk)

which reduces to (4.15) withM = [M0=(1 � �(�))](1 +
(kB1ke� �=�1)). The rest of the proof is similar to that of Theorem
4.1, therefore, details are omitted.

Corollary 4.2: If assumption 2)0 of Corollary 4.1 is replaced by the
following condition:

2)00 there exists a constant� satisfying0 < � < �1 such that

~�(�) = maxf~p11(�) + ~p12(�); ~p21(�) + ~p22(�)g < 1; (4.30)

where ~pij(�) are given by (4.28), then the conclusion of
Corollary 4.1 holds withM = [M0=(1 � ~�(�))](1 +
(kB1ke� �=�1)).

V. CONTROLLER DESIGN WITH AN EXAMPLE

In this section, we describe a systematic-design procedure for the ro-
bust impulsive control law developed above, for the singular impulsive
delayed system (2.1). The procedure is established on the basis of the
analysis given in Section IV above. An example is given to illustrate
this design procedure, which also serves for interpretation of the theo-
retical results obtained in the paper.

The suggested design procedure is based on Theorems 4.1 and 4.2,
and is summarized as follows.

Step 1) For the system (2.1), select the gain matrixK1 such that
the system (4.2) is stable with decay rate�1 > 0. For
convenience, one may pick a constant�1 > 0 such that
��(A1) � �1 > kB1k exp(��1).

Step 2) Select the gain matrixK2 and compute�min(A2) and�k,
which are defined by (4.4). If�min(A2) > 0 and�k > 0,
then go to Step 3; otherwise, go back to Step 1.

Step 3) Pick a constant�, 0 < � < �1, and then calculateP (�)
or �(�), which are given by (4.6) and (4.29), respectively.
If I�P (�) is anM -matrix or if �(�) < 1, then go to Step
4; otherwise, go back to Step 2.

Step 4) Computemaxfe�� ; (�k + 
ke
�� )g �Mk , where�k and


k are given by (4.5). IfMk � c, then go to Step 5; other-
wise, go back to Step 3.

Step 5) Calculate the constantM with the expressions
M = (

p
n
1
=�)(1 + (kB1ke� �=�1))k(I � P (�))�1k

or M = (
p
n
1
=(1 � �(�))�)(1 + (kB1ke� �=�1)). If

(ln(cM)=�� ) � � < 0, then go to Step 6; otherwise, go
back to Step 1.

Step 6) Substitute the decentralized gain matricesK1 andK2, de-
termined in Step 2, into (2.4) to obtain the controllerui(t)
for the system (2.1).

Remark 5.1: From Corollaries 4.1 and 4.2, we can derive a similar
control design procedure for system (2.1); the details are omitted for
brevity.

Example: Consider the uncertain, delayed, singular and impulsive
system (2.1) and (2.2) with nonlinear perturbations, wheren1 = 2,
n2 = 2 andn = 4

A1 =
1 2

0 �3 B1 =
0 1

1 0
C1 =

1 0

0 1

A2 =
�1 0

1 2
B2 =

1 0

1 1
C2 =

0 1

1 0

and with nonlinear perturbationfi(t; x(t); x(t� � )) satisfying (4.1),
with c11 = 2, c12 = 1, c21 = 1, c22 = 2, vi(t), andwi(t) given by
(2.3), wheretk � tk�1 � ��; � = 1=10, and

�1k =
1

9
�2k =

(�1)k�1

10
�1k =

(�1)k
4

�2k = 1

12
[(�1)k � 1]:

Now, one can easily design a robust impulsive controller by fol-
lowing the above procedure, such that system (2.1) specified above is
exponentially stable:

Step 1) SelectK1 = (�46

0

�2

�43
), and�1 = 20. Then

A1 =A1 + C1K1 =
�45 0

0 �46
25 =��(A1)� �1 > kB1k exp(��1) = 7:39:



1018 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 48, NO. 8, AUGUST 2001

Step 2) SelectK2 = ( �1
�45

�45

0
). Then

A2 = A2 + C2K2 =
�46 0

0 �47
:

From (4.4), we have

�min(A2) = 46 > 0 �k =
2:27; k = 2n�1

2:58; k = 2n
n2N:

Step 3) Select a constant,� = 10, 0 < � < �1, and calculate

I � P (�) =
1� p11(�) �p12(�)
�p21(�) 1� p22(�)

=
0:86 �0:14

�0:09 0:85

which is anM�matrix. Thenk(I � P (�))�1k = 1:39.
Step 4) Computemaxfe�� ; (�k + 
ke

�� )g � maxf1; (0:38 +
0:39)g � 1 := c.

Step 5) Calculate constant M =
(
p
n
1
=�)(1+ (kB1ke� �=�1))k(I � P (�))�1k = 0:86.

Thus, for any� > 0

ln(cM)

��
� � < 0:

Step 6) Based on the above results, the corresponding controller
ui(t) is obtained as

u1(t) =
�46 �2

0 �43 x1(t)Dv1

u2(t) =
�1 �45
�45 0

x2(t)Dv2

which exponentially stabilizes the given nonlinearly per-
turbed, time-delayed, singular, and impulsive system.

VI. CONCLUSIONS

In this paper, we have formulated and studied the stabilization
problem for a general singular-impulsive delayed system with non-
linear perturbations. Such a complex system cannot be handled by
traditional techniques that can only deal with pure continuous-time or
discrete-time models, perhaps with either time delays or uncertainties.
Some specific properties prescribing this hybrid model have been
analyzed. Global exponential robust stabilization of the system
equilibrium via stabilizing controller design has been investigated. A
systematic procedure for designing the robust impulsive controller has
been suggested, along with an explicit example for illustration.

Future research along the same line will be devoted to possible
engineering applications of the proposed model and its stabilization
methodology.

APPENDIX

Some basic properties associated with theM -matrix are given here
for the reader’s convenience. A matrixA satisfying any one of the six
conditions listed in Lemma A1 below is called anM -matrix.

Lemma A1 [2]: LetA be a real square matrix with nonpositive off-
diagonal elements. Then the following six conditions are equivalent.

1) The principal minors ofA are all positive.
2) The leading principal minors ofA are all positive.
3) There is a vectorx (or y) whose elements are all positive such

that the elements ofAx (orAT y) are all positive.
4) A is nonsingular and the elements ofA�1 are all nonnegative.
5) The real parts of the eigenvalues ofA are all positive.
6) There is a diagonal matrixD = diag(d1; . . . ; dn), withdi > 0,

such thatDA + ATD is a positive definite matrix.
In what follows, we will give some results concerningM -matrices.

Lemma A2: Let A(�) = (aij(�))n�n be a continuous ma-
trix-valued function, with nonpositive off-diagonal elements in
(��; �), � > 0. If A(0) = (aij(0))n�n is anM -matrix, then there
exists a constant�, 0 < � < �, such thatA(�) is anM -matrix-valued
function on the interval(��; �).

Proof: SinceA(0) = (aij(0))n�n is anM -matrix, from Lemma
A1, there exists a vectorx = (x1; . . . ; xn)

T > 0, x 2 Rn, such that
n

j=1
aij(0)xj > 0, i = 1; . . . ; n.

Let fi(�) = n

j=1
aij(�)xj , i = 1; . . . ; n. Then fi(0) =

n

j=1
aij(0)xj > 0. Clearly, fi(�) is a continuous function on

(��; �), and there exists a constant,�i 2 (0; �), such that

fi(�) =

n

j=1

aij(�)xj > 0; � 2 (��i; �i); i = 1; . . . ; n:

Let � = minif�ig. Then

fi(�) =

n

j=1

aij(�)xj > 0; � 2 (��; �); 0 < � < �;

i = 1; . . . ; n

implying thatA(�) is anM -matrix-valued function on the interval
(��; �). This completes the proof.

Lemma A3: For a vector inequalityAx � b, whereA = (aij)n�n,
b = (b1; . . . ; bn)

T , x = (x1; . . . ; xn)
T 2 Rn, if A is anM -matrix,

thenx � A�1b.
Proof: It is readily seen from Lemma A1 thatA is nonsingular

and elements ofA�1 are nonnegative. Thus, the vector inequality
Ax � b implies thatx � A�1b. This completes the proof.
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A Deterministic Nonlinear-Capacitor Model for
Single-Electron Tunneling Junctions

Martin Hänggi and Leon O. Chua

Abstract—Single-electron tunneling junctions (SETJs) have intriguing
properties which make them a primary nanoelectronic device for highly
compact, fast, and low-power circuits. However, standard models for SETJs
are based on a quantum mechanical approach which is very impractical for
the analysis and design of SETJ-based circuitry, where a simple, preferably
deterministic model is a prerequisite. We verify by physics-based Monte
Carlo simulations that the tunneling junction can in fact be modeled by a
piecewise linear voltage-charge relation, which, from the circuit-theoretic
perspective, is a nonlinear capacitor.

Index Terms—Nonlinear capacitor, single-electron tunneling junction.

I. SINGLE-ELECTRON TUNNELING JUNCTIONS

Single-electron tunneling junctions (SETJs) are perhaps the most
compact of all electronic devices. It is theoretically possible to create
double-junction switches or logic gates within areas smaller than 100
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Fig. 1. Physical schematics of a single-electron tunneling junction.

Fig. 2. Linear-periodic voltage-charge relation for a SETJ.

Fig. 3. Current-biased SET junction.

nm2 corresponding to a density of 1012 devices per cm2, and the small
capacitance implies extremely high switching speeds. This combina-
tion of density and speed make it difficult to imagine any other al-
ternative technology that could match the long-term possibilities of
single-electronics.

To explain single-electron effects, an “orthodox theory” based on a
phenomenological Hamiltonian approach with a tunneling term and the
electrostatic energy has proved successful [1].

To analyze circuits with single-electron junctions (SETJs), however,
simplified models of the junction characteristics are required. One ex-
ample is the Monte Carlo model in which classical electrons tunnel
through the junctions stochastically with a probability that is a func-
tion of the temperature and the change in electrostatic energy. In the
limiting case of zero temperature and small average current, it further
reduces to a deterministic model where electron tunneling occurs as
soon as it decreases the overall electrostatic energy of the system.

Based on these considerations, a deterministic model for the junc-
tion characteristics has been proposed which avoids any unnecessary
complexities due to the stochastic nature of quantum mechanics and
thermal fluctuation [2].

In this model, it is assumed that an electron tunnels when the junction
voltagevj reaches the tunneling voltage

VT =
e

2Cj

: (1)

The behavior of the junction (shown in Fig. 1) can therefore be
modeled by a single-valued piecewise linear voltage–charge rela-
tion (Fig. 2). This model has been applied for the investigation of
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