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A previous theoretical study �L. Huang, J. Acoust. Soc. Am. 119, 2628–2638 �2006�� shows that, in
a duct, a simply supported plate covering a side-branch rigid cavity can function effectively as a
wave reflector over a broad range of low to medium frequencies. In this study, analytical
formulation is extended to the boundary condition of clamped plate, which is easier to implement
in practice. The theoretical model is tested experimentally using balsawood, which has a very high
stiffness to mass ratio. The spectral peaks and shapes of the measured TL are in agreement with
those calculated theoretically, attempts are also made to account for the considerable sound
absorption in the rig. Further numerical studies based on the validated model show that, for a
uniform plate, the optimal stopband is narrower and the lower band limit is worse than that of the
simply supported configuration. However, a wave reflector using nonuniform, clamped plates with
thinner ends out-performs the simply supported configuration in every aspect. Analyses show that
the improvement is attributed to the increased acoustic radiation efficiency over the bulk length of
the nonuniform plate, which behaves more like a rigid plate. © 2007 Acoustical Society of
America. �DOI: 10.1121/1.2427126�

PACS number�s�: 43.50.Gf, 43.20.Tb, 43.20.Ks �KA� Pages: 949–960
I. INTRODUCTION

Low frequency duct noise is difficult to deal with by
traditional methods such as porous duct lining and expansion
chamber. Lining a duct with porous sound absorbing material
is a very mature and reliable technique that can tackle the
medium to high frequency noise easily �Mechel and Vér,
1992; Ingard, 1994�. However, it does not work well for very
low frequencies. An expansion-chamber-type muffler may be
used to reflect the low frequency noise, but such a device is
usually bulky and passbands exist. Aiming for a broadband
passive noise control device that works effectively in the
low-to-medium frequency range, Huang �2002� introduced
the concept of a drumlike silencer. It consists of an expan-
sion chamber with two side-branch cavities covered by light
membranes under a fairly high tension. The predicted noise
reduction performance has been verified without flow �Choy
and Huang, 2002� and with flow �Choy and Huang, 2005�. In
addition to the broad bandwidth in the low frequency region,
such a device has two other merits. First, it is fiber-free,
hence more environmentally friendly than the porous duct
lining. Second, because the membranes are flush-mounted
with the duct and there is no sudden change of duct area, the
flow can pass the silencer smoothly without causing any ex-
tra noticeable pressure loss.

In a recent study, Huang �2006� replaced the membranes
used in the drumlike silencer described above by a simply
supported plate �simply supported plate silencer, hereinafter�.
Theoretical study has shown that the proposed plate silencer
can achieve a much wider logarithmic bandwidth than the
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drumlike silencer of the same cavity geometry due to the
changed intermodal acoustic interference between the odd
and even in vacuo vibration modes. Besides, the plate si-
lencer carries other advantages over the drumlike silencer. As
discussed in the study of Choy and Huang �2002�, the opti-
mal tension plays an important role in achieving the desired
performance. However, it is not an easy job to tune or to
maintain the tension at the optimal value in practice, and the
tension may vary due to membrane relaxation or the change
of ambient temperature. The plate uses its natural bending
moment as the sole structural restoring force. Thus, both the
installation and the maintenance of the plate silencer are sim-
plified.

The use of a plate or the tensioned membrane in noise
abatement may not be new, but its use as a side-branch wave
reflector is. For example, panel absorbers were used in
broadcasting studios and other architectural practices
�Brown, 1964; Ford and McCormick, 1969; Sakagami et al.,
1996; Horoshenkov and Sakagami, 2001�; membrane ab-
sorbers were also used as a splitter silencer in the form of
arrays of Helmholtz resonators �Frommhold et al., 1994�.
However, in all these applications, the panel, or membrane,
is a component of resonator, which works for a narrow fre-
quency band, and the structural mass is a means to achieving
a low resonance frequency. For the plate silencer, the most
desirable properties of the plate are the high stiffness and low
density, which contrast with the characteristics of the exist-
ing use of plate in noise control.

In this study, the leading and trailing edges of the plate
are clamped instead of simply supported, which leads to a
fixed-end plate silencer, or clamped plate silencer. The mo-
tivation for this change is given as follows. The simply sup-
ported ends described in Huang �2006� can be easily mod-
eled in theoretical study and a model with such boundary

conditions can be conveniently analyzed as well. However, it
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is usually difficult to implement such a boundary condition
in an acoustic system, especially in a system like the plate
silencer discussed here. One reason is that the elements in
the acoustic system are usually so light in mass that the
methods to implement the simply supported ends in a real
device often result in effective clamped ends. Hence, it rep-
resents a step forward to replace the ideal simply supported
boundary conditions by a more practical one. During the
course of this study, it is found that when the bending stiff-
ness and mass distribution of the clamped plate are constant
along the length of the plate �a uniform plate, hereinafter�,
the stopband of the plate silencer turns out to be narrower
than that of a simply supported one. One qualitative expla-
nation is that the clamped-clamped boundary condition re-
duces the effective radiation length of the plate when it vi-
brates in response to the incident sound. To release the
additional restrictions caused by the clamped ends, it is pro-
posed to use a plate with variable bending stiffness and mass
distribution along the length of the plate, namely, a nonuni-
form plate. The problem of sound scattering of similar struc-
tures has been studied before. For example, Fernyhough and
Evans �1996� compared a step approximation to an exact
solution of acoustic scattering in an acoustic waveguide with
nonuniform wall impedance; Grant and Lawrie �2000� stud-
ied the acoustic scattering by a duct in which the bending
stiffness varies smoothly with distance along the plate.
Huang �2001� also presented a two-dimensional theoretical
analysis of a membrane of varying compliance in the passive
control of duct noise. As far as the current study is con-
cerned, the employment of the nonuniform plate is mainly
motivated by reducing the restrictions due to the clamped
ends and thus increasing the radiation length of the plate.
Hence, a nonuniform plate with two softer ends is preferred.

In what follows, Sec. II outlines the analytical formula-
tion for the clamped plate silencer with both uniform and
nonuniform plate. The transmission loss �TL� of the clamped
plate silencer with uniform plate is first examined and opti-
mized in Sec. III. It shows that the performance of such a
plate silencer is a little better than that of the drumlike si-
lencer of the same geometry but not as good as that of the
simply supported plate silencer. Then the optimization of the
nonuniform plate is conducted and the results show that,
with a proper distribution of bending stiffness along the
plate, the clamped nonuniform plate performs better than the
simply supported plate. In Sec. IV, the basic theoretical
model for the clamped plate silencer is validated experimen-
tally.

II. ANALYTICAL FORMULATION

A. The theoretical model

Figure 1 shows the two-dimensional configuration of a
side-branch plate silencer. It has a two dimensional duct of
height h*, with two plates �beams� flush-mounted on the
wall. The asterisks denote dimensional variables while the
corresponding dimensionless ones are introduced shortly
without asterisks. The leading and trailing edges of the two
plates are clamped to the rigid duct at the two edges of

* *
�x � =L /2, respectively, and are backed by a rigid-walled

950 J. Acoust. Soc. Am., Vol. 121, No. 2, February 2007
cavity of depth hc
*. The two lateral edges of the plates are set

free and the three-dimensional plate is reduced to a two-
dimensional beam. A plane incident wave comes from the
left-hand side of the duct with a unit amplitude

pi
* = exp �i��*t* − k0

*x*�� �1�

and it causes the plate to vibrate with a transverse displace-
ment of complex amplitude �*�x� and velocity V*�x� with the
same time dependence, exp �i�*t*�, which is henceforth
omitted. The vibration radiates sound and imposes a ra-
diation pressure on the plate surface. The problems of
acoustics and plate vibration are fully coupled.

Before quantifying the plate dynamics, all variables are
nondimensionalized as follows by three basic quantities, air
density �0

*, duct height h*, and speed of sound in free space
c0

*:

x =
x*

h* , y =
y*

h* , t =
c0

*t*

h* , L =
L*

h* , � =
�*

h* ,

f =
h*f*

c0
* , � = k0 = 2�f ,

�2�

p =
p*

�0
*�c0

*�2 , m =
m*

�0
*h* , T =

T*

�0
*�c0

*h*�2 ,

B =
B*

�0
*�c0

*�2�h*�3 .

Here, m is the plate-to-air mass ratio, B is the bending stiff-
ness of the plate, which may vary with x, and T is the tension
of membrane. According to the above normalization scheme,
the dimensionless first cut-on frequency of the rigid-walled
duct is f =0.5. Other variables will be explained when they
are used.

Assume that the bending stiffness B and mass ratio m
are functions of the coordinate along the plate, that is, x. The
dynamics of the lower plate vibration is governed by

�2

�x2�B�x�
�2�

�x2 � + m�x�
�2�

�t2 + �pi + �p� = 0, �3�

where pi is the dimensionless incident wave and �p= p+

− p− is the fluid loading acting on the upper �+� and lower
�−� sides of the plate induced by the plate vibration itself.

FIG. 1. Theoretical model of sound wave reflection by two cavity-backed
plates forming part of the otherwise rigid duct walls.
When a uniform plate is used, bending stiffness B and mass
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ratio m are then constant along the plate, and Eq. �3� is
simplified as

B
�4�

�x4 + m
�2�

�t2 + �pi + �p� = 0. �4�

Note that the effect of damping is excluded in the theoretical
studies since sound reflection is dominant in the plate si-
lencer. The effect of damping that necessarily exists in ex-
periment is modeled and discussed in Sec. IV.

B. Modal dynamics of the sound-plate interaction

For harmonic vibration, the plate normal vibration ve-
locity is V=�� /�t= i��. Equation �3� then becomes

1

i�
� �2

�x2�B�x�
�2V

�x2 �	 + m�x�i� · V + �pi + �p� = 0. �5�

The vibration mode shapes of a uniform clamped beam are
available in textbooks such as �Inman, 2001� and, by intro-
ducing local variable � below, it is rewritten as

� j��� = A1,je
�j� + A2,je

−�j� + A3,j sin �� j��

+ A4,j cos �� j��, � = �x/L + 1/2� , �6�

where

A1,j = 1
2 �1 − 	 j�, A2,j = 1

2 �1 + 	 j�, A3,j = 	 j, A4,j = − 1,

�7�

	 j =
cosh �� j� − cos �� j�
sinh �� j� − sin �� j�

, tan �� j� + tanh �� j� = 0.

The coupled dynamics Eq. �5� can be solved via the standard
Galerkin procedure, in which V is expanded as a series of
in vacuo modes � j��� of the clamped-clamped uniform plate
with modal amplitudes Vj:

V = 

j=1




Vj� j��� . �8�

Equation �5� is then transformed as



l=1




VlLjl + �
0

1

�pi + �p�� j��� d� = 0, �9�

where the dynamic matrix Ljl is given by

Ljl = �
0

1 � 1

i�

1

L4 �B����l
�4���� + 2B�1�����l

�3����

+ B�2�����l
�2����� + i�m����l���
� j���d� . �10�

When a uniform plate is used, the dynamic matrix �Ljl� re-
duces to a diagonal matrix with element

Ljj = mi� +
B

i�
� j�

L
�4

. �11�

In order to solve Eq. �9�, the fluid loading �pi+�p� has to be
related to the modal vibration velocity amplitude Vj. In other
words, a modal impedance Zjl must be found, Zjl being de-

fined as
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Zjl = �
0

1

�l����pj�x� d� , �12�

where �pj�x� is the fluid loading caused by the jth modal
vibration of unit amplitude. A detailed method of solution to
determine the modal impedance of the drumlike silencer was
given in Huang �2002�. The same procedure is followed
here. Issues unique to the current model are �1� the mode
sin �j��� is replaced by � j��� defined in Eqs. �6� and �2�
the fluid loading inside the cavity is found by the cavity
modes to simplify the formulation. As said before, pi is
the incident wave, and the fluid loading induced by the
plate vibration, �p, may be divided into two parts:

�p = p+rad − pcav, �13�

where p+rad is the radiation sound pressure in the main duct
and pcav is the pressure inside the cavity acting on the
lower plate surface. The formulation for p+rad is well
known �Doak, 1973�, and is rewritten in 2D dimensionless
form

p+rad�x,y� =
L

2 

n=0




cn�n�y��
0

1

�n�y��V�x��

��H�x − x��e−ikn�x−x�� + H�x� − x�e+ikn�x−x��� d��,

�14�

where H is the Heaviside function, cn, kn, and �n are, respec-
tively, the modal phase speed, the modal wave number, and
the modal velocity potential:

cn =
i

��n�/��2 − 1
, kn =

�

cn
, �n�y� = �2 − 
0n cos �n�y�;

�15�

and 
0n is the Kronecker delta. Hence, suppose the radiation
pressure caused by the jth modal vibration of unit amplitude
� j is p+rad,j. Then the modal impedance contributed by the
radiation pressure in the main duct is defined as follows,

Z+jl = �
0

1

�l���p+rad,j�x,0� d�

=
L

2 

n=0




cn�2 − 
0n�

p=1

4



q=1

4

Ap,lAq,jIp,q, �16�

where Aq,j and Ap,l are the coefficients defined in Eq. �7� and
I1,1–I4,4 are given in the Appendix .

The acoustic pressure inside a lightly damped cavity can
be expressed in terms of “rigid wall” modes of the cavity
�Kuttruff, 2000�. For the two-dimensional configuration con-
sidered here, the normalized pressure inside the cavity pcav

can be written as

pcav�x,y� = 

m,n

− i��m,n�x,y�
Lhc��m,n

2 − k2 + 2i�m,n�m,nk�

��
0

1

V�x�,0��m,n�x�,0� d��, �17�
where V�x� ,0� is the normal velocity over the flexible panel,
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�m,n is the damping ratio of the �m ,n�th acoustic mode
�m,n�x ,y�, L is the length of the cavity, hc is the height of the
cavity, and �m,n is the corresponding acoustic wave number
of the �m ,n�th acoustic mode �m,n�x ,y�, with �m,n�x ,y� and
�m,n given as

�m,n�x,y� = ��2 − 
0m��2 − 
0n� cos �m�x

L
� cos �n�y

hc
� ,

�18�

�m,n
2 = �m�

L
�2

+ �n�

hc
�2

. �19�

Therefore, the cavity pressure caused by the jth modal vibra-
tion of unit amplitude, pcav,j�x ,y�, can be found and the cav-
ity modal impedance becomes

Zcav,jl = − �
0

1

�l���pcav,j�x,0� d�

= 

m=0






n=0



ik�2 − 
0m��2 − 
0n�

hc��m,n
2 − k2 + 2i�m,n�m,nk�

��

p=1

4

Ap,jIcj,p

q=1

4

Aq,lIcl,q� , �20�

where Icj,p�Icj,1–Icj,4� and Icl,q�Icl,1–Icl,4� are given in the Ap-
pendix .

With the modal impedances due to p+rad and pcav found,
the dynamics Eq. �5� becomes a set of linear equations for
the modal vibration amplitude, Vj,

�Ljl + Z+jl − Zcav,jl��Vj� = − �Ij� , �21�

where �Vj�, �Ij� are column vectors, and the modal coeffi-
cient of the incident wave, Ij, is defined as

Ij = �
0

1

pi� j��� d� . �22�

Equation �21� can be solved via the inversion of matrix. In
the actual calculation, modal truncation is necessary. The
plate modes are truncated to 25. For instance, the subscripts
of j and l in Eqs. �12�, �16�, and �20� range from 1 to 25, and
the final impedance matrix �Zjl� is then of the size 25�25.
For the duct acoustic mode �n in Eq. �14� and the cavity
acoustic mode �m,n in Eq. �17�, m and n are from 0 to 50.
Numerical results show that the number of modes is nor-
mally enough as further increase in the number does not
make significant difference for the purpose of this study.

The total sound pressure transmitted to the downstream
is found by adding the incident wave, pi, to the far-field
radiation wave, p+rad, which can be found from Eq. �14� by
taking only the plane wave mode n=0 for x�L /2,

pt = p+rad�n=0,x→+
 + pi. �23�
Similarly, the reflected wave is
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pr =
p+rad�n=0,x→−


eik0x , �24�

and the TL and the sound energy reflection coefficient � are

TL = 20 log10
�pi�
�pt�

, �25�

and

� =
�pr

2�
�pi

2�
, �26�

respectively.

III. SILENCER PERFORMANCE AND ITS
OPTIMIZATION

The main objective of this study is to develop a broad-
band wave reflector, which works preferably in the low fre-
quency range. Thus, the performance of the plate silencer
can be characterized by the widest stopband that can be
achieved. Following the previous study �Huang, 2002�, the
stopband here is defined as the frequency range, f � �f1 , f2�,
in which the TL is above a criterion value, TLcr, over the
whole frequency band. As recommended in Huang �2004�,
the criterion value may be chosen as the peak TL for an
expansion chamber whose cavity volume is three times the
actual cavity volume in the silencer. For a silencer with two
cavities of depth h and length L=5h, the value can be calcu-
lated and rounded up to 10 dB. For the purpose of compari-
son with previous studies, the same configuration of cavity is
adopted in the current study, and TLcr=10 dB is chosen as
the threshold level.

A. Uniform clamped plates

The performance of a side-branch plate silencer using
uniform clamped plates is investigated. The default cavity
shape is chosen as L=5 and hc=1. For a given structure-to-
air mass ratio, m, the performance of the silencer is opti-
mized by searching for the optimal bending stiffness Bopt so
that the bandwidth is maximum by varying other parameters
such as the bending stiffness and, for the nonuniform plate
described below, the thickness distribution. Since special em-
phasis is put on the low frequency noise, the cost function
for the optimization is set as the ratio of the band limits,
f2 / f1, namely, the logarithmic bandwidth, instead of f2− f1.
Results of the performance optimization are shown in Fig. 2.

Figure 2�a� compares the overall TL of the clamped
plate silencer �solid line� with the drumlike silencer �dashed
line�. The mass ratios of the two models are both equal to 1.
For Bopt=0.0698, the lower and upper bandwidth limits of
the plate silencer are f1c=0.0445 and f2c=0.125, respec-
tively, and f2c / f1c=2.81. For the drumlike silencer with op-
timal tension Topt=0.475, the lower and upper bandwidth
limits and bandwidth are f1d=0.054, f2d=0.141, and
f2d / f1d=2.6, respectively. Clearly, with the same mass ratio
m=1, the optimal performance of the clamped plate silencer
is better than that of the drumlike silencer in terms of the

lower band limit and the achievable bandwidth. Figures
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2�b�–2�d� show the maximum bandwidth, the optimal bend-
ing stiffness, and the lower band limit as functions of m for
the clamped plate silencer. As shown in Fig. 2�b�, when the
plate mass increases, the maximum achievable bandwidth
f2 / f1 decreases gradually. When the mass ratio m reaches 3,
the maximum bandwidth is 2.1, which is still larger than one
octave. Figure 2�c� suggests that the optimal bending stiff-
ness increases with the plate mass, in much the same way as
the simply supported plate silencer �Huang, 2006�. However,
since the clamped-clamped boundary conditions at the lead-
ing and trailing edges impose additional restrictions on the
plate motion, the optimal bending stiffness required by the
clamped-clamped plate is smaller than that of the corre-
sponding simply supported plate of the same mass ratio. As
shown in Fig. 2�c�, the optimal bending stiffness for m=1 is
Bopt=0.0698. For the simply supported plate, the correspond-
ing Bopt=0.1289. When the plate mass increases, the lower
band limit f1 increases too, as shown in Fig. 2�d�. Compared
with the simply supported plate silencer, the lower band limit
f1 is a little higher when the clamped plate is adopted. This
effect is undesirable for the plate silencer designed for low-
frequency noise control. Nevertheless, the lower band limits
are still within the low frequency region. For example, when
m=3, f1=0.054. For a duct with a height of 20 cm, the di-
mensional lower band limit is f1

*=92 Hz.
Generally speaking, the performance of the clamped

plate silencer using uniform plates is good, but it is not as
attractive as that of the simply supported plate silencer. As
presented in Huang �2006�, when m=1, a simply supported
plate silencer can achieve a stopband of f2 / f1=4.25 with f1

=0.0353. For the current model the two corresponding indi-
J. Acoust. Soc. Am., Vol. 121, No. 2, February 2007
cators are 2.81 and 0.0445. The performance degradation of
the clamped plate silencer may be attributed to the clamped
conditions applied to the leading and trailing edges of the
plate. Such a boundary condition brings additional restric-
tions to portions of the plate near the ends, which in turn
prevents the plate from vibrating and radiating reflection
sound effectively. To further increase the stopband and re-
duce the lower band limit f1, the use of a nonuniform plate
with softer ends is explored. In the next subsection, the op-
timal bending stiffness distribution along the length of the
plate is investigated, and the optimal TL is analyzed and
compared with that of the simply supported plate silencer.

B. Nonuniform plate

The so-called optimization of nonuniform distribution
B�x� is realized by choosing one shape from a set of possi-
bilities that can yield the widest stopband. When construct-
ing B�x�, the following two factors are taken into consider-
ations. First, the purpose of introducing the nonuniform plate
is to release the structural restrictions near the clamped ends;
therefore, the bending stiffness near the two ends should be
smaller than that in the middle. Second, the lower vibration
modes �especially the first two� of the plate are dominant in
the reflection of sound. Based on the above two consider-
ations, it is appropriate to construct B�x� as

B�x� = B0d�x� , �27�

where B0 is a constant ratio to be determined, and d�x�is the
shape function of the bending stiffness. One such distribution
is shown in Fig. 3�a� and is described below,

FIG. 2. �Color online� Performance optimization of the
clamped plate silencer. �a� Comparison of the perfor-
mance of the plate silencer �solid curve� with drumlike
silencer �dashed curve� with the same cavity geometry
of L=5h, hc=h, and the same mass ratio of m=1. �b�
Bandwidth f2 / f1. �c� Dimensionless optimal bending
stiffness Bopt. �d� Dimensionless lower band limit f1.
d��� = �h1 +
arctan ��1�1� + arctan ��1�� − �1��
arctan ��1�1� + arctan ��1��0 − �1��

�1 − h1� , 0 � � � �0,

h2 +
arctan ��2�1 − �2�� − arctan ��2�� − �2��
arctan ��2�1 − �2�� − arctan ��2��0 − �2��

�1 − h2� , �0 � � � 1,

�28�
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where �= �x /L+1/2�, as defined in Eq. �6�. There are seven
control parameters in the above-defined function d���,
namely, �1, �2, h1, h2, �0, �1, and �2, where �1, �2 control
the slope of the resulting curve; h1, h2 control the heights of
the curve at the two ends; and �0, �1, and �2 control the
horizontal positions of the two segments. Since B�x� plays a
more important role in the dynamics of the plate than m�x�
does, the distribution of mass ratio, m�x�, is simply taken as

m�x� = m0
�3 d�x� . �29�

The cavity geometry is still assumed to be hc=1 and L=5.
The ranges of the seven controlling parameters are h1, h2

� �0.0001, 0.2�, �1, �2� �1, 1500�, �0� �0.3, 0.6�, �1

� �0.05, 0.25�, and �2� �0.75, 0.95�. During the optimiza-
tion, the seven parameters vary step by step within the
ranges given above. The TL is calculated for each given
set of parameters, and the set of parameters that results in
the widest stopband is chosen as the optimal one. The
corresponding B�x� is then the optimal distribution of the
bending stiffness. In order to facilitate the comparison of
the TL spectrum for each B�x�, the total mass along the
plate is kept as a constant during the optimization,

�
0

L

m�x� dx = m̄L , �30�

where m̄=1 is chosen in the example given. For the nonuni-
form plate, m̄ is the average mass ratio along the length of
the plate. The maximum stopband f � �0.0343,0.2062� is
found with the following parameters:

�0 = 0.35, �1 = 0.2, �2 = 0.815, �1 = 300,

�31�

FIG. 3. �Color online� Optimization of the nonuniform plate. �a� Optimal
distribution of the bending stiffness along the length of the plate. �b� TL. �c�
Bandwidth f2 / f1 with respect to the relative bending stiffness at the two thin
ends. �d� Bandwidth f2 / f1 with respect to the length of the thick part of the
plate. The cavity geometry is L=5h, hc=h; average mass ratio m̄�1.
�2 = 100, h1 = h2 = 0.01.
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The constant B0 is determined as 0.4935. The results of the
optimization are shown in Fig. 3.

Figure 3�a� gives the optimal distribution of the bending
stiffness along the length of the plate. Parameters h1 and h2

represent the relative bending stiffness at the two edges, and
both of them are equal to 0.01 in this case. As expected, the
two ends of the plate are much softer than the portion in the
middle and the additional restriction due to the clamped
boundary conditions is thus released. The length of the thick
portion in the middle can be roughly characterized as ��2

−�1�, which is 0.615 in this case. Suppose the plate material
is homogeneous. Such a distribution can be realized approxi-
mately by making the thickness of the plate into the shape of
�3 d�x�. Figure 3�b� shows the overall TL using a logarithmic
scale. The stopband begins from f1=0.0343 and ends at f2

=0.2063, the bandwidth being f2 / f1=6.02. Four peaks can
be observed in the stopband. Figure 3�c� shows the maxi-
mum bandwidth as a function of h1 and h2. Here, values of
other parameters given in Eq. �31� are used. A softer end can
help reduce the restriction due to the clamp condition. How-
ever, it does not follow that the softer the two ends are, the
better the performance is. As shown in Fig. 3�c�, when h1,
h2=0.01, the bandwidth reaches the maximum of 6.02. Fur-
ther decrease in h1 and h2 does not make any noticeable
improvement of the bandwidth. Figure 3�d� shows the band-
width f2 / f1 as a function of the length of the thick portion,
��2−�1�, while other parameters are kept as the optimal val-
ues given in Eq. �31�. As ��2−�1� decreases from the optimal
point, the performance drops and approaches the behavior of
a uniform plate.

Figure 4 compares the vibration velocity distribution
V�x� between the clamped nonuniform plate �solid lines� and
a simply supported plate �dashed lines� at f =0.037 �the first
peak� and f =0.2 �near the fourth peak�. The real parts are
shown in Figs. 4�a� and 4�b�. Since the plate vibrations are
almost in-phase over the entire length, the imaginary parts of
V�x� shown in Figs. 4�c� and 4�d� are almost zero. As ex-
pected, the clamped plate with softer ends responds in a
similar way to the simply supported plate, but the peaks and
troughs are much closer to the clamped ends. The effect of
this difference is as follows. The plate vibration is dominated
by a mode shape that is close to a dipolelike pattern of sound
radiation. Much of the sound radiated by the leading edge

FIG. 4. �Color online� Comparison of the vibration velocity distribution
V�x� between the clamped nonuniform plate �solid lines� and the simply
supported plate �dashed lines�. �a� f =0.037, real parts. �b� f =0.2, real parts.
�c� f =0.037, imaginary parts. �d� f =0.2, imaginary parts.
portion of the plate with V�x��0, cf. Fig. 4�a�, is cancelled
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by that from the trailing edge portion where V�x��0. When
f →0, this cancellation would be rather complete since the
plate length is negligible compared with the wavelength of
sound in air. The length between the peaks and troughs in
Figs. 4�a� and 4�b� thus determines the radiation efficiency of
the plate for a finite frequency. In other words, a clamped
plate with much of the length behaving like a rigid plate has
a higher capability to reflect sound, in a dipolelike mode that
is not prohibited by the cavity stiffness.

The performance of the nonuniform clamped plate si-
lencer with that of the simply supported plate is compared
and shown in Fig. 5. The cavity geometry and the mass ratio
of the two silencers are the same, namely, L=5, hc=1, and
m̄=1. The optimal bending stiffness Bopt of the simply sup-
ported plate is 0.129 �Huang, 2006�. The results for the non-
uniform plate silencer are shown in solid lines and those of
the simply supported plate silencer in dashed lines. The first
column compares the TL spectrum, odd-even modal interfer-
ence index, and reflection sound due to odd and even modes.
P1 through P4 identify the four peak positions. As shown in
Fig. 5�1a�, the performance of the clamped nonuniform plate
silencer can be even better than that of the model using sim-
ply supported uniform plates. The difference mainly comes
from the relatively high frequency region, namely, from P3
to P4. From P1 to P3, the reflection sound and odd-even
modal interference index of the two silencers are almost
identical, which results in a similar TL for the two silencers.
The second and third columns compare the modal amplitude,
�Vj�, modal reflection coefficient, �Rj�, the single mode reflec-
tion, �VjRj�, and the modal contribution, � j, of the first two
modes. Here, Rj is the complex amplitude of the reflected
sound by the induced vibration of the jth mode with unit
amplitude. To facilitate the comparison, the vibration mode
of a simply supported plate, sin �j���, is used for both si-
lencers. Hence, the expression for Rj given in Huang �2002�
still applies. The � j represents the contribution of each single
mode, denoted as Vj Rj, towards the total reflected sound pr.
When a nonuniform plate is used, the local peaks of both �1

and �2 near the first peak point P1 are pushed to lower fre-
quency, which results in a smaller lower bound f1. The high

TL between the third peak point P3 and the upper bound f2
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are mainly due to the increased �V2�, �V2R2� and �2, as shown
in Figs. 5�1c�, 5�3c�, and 5�4c�. Therefore, compared with
the uniform plate, a properly designed nonuniform plate can
greatly enhance the performance of the clamped plate si-
lencer.

IV. EXPERIMENTAL VALIDATION

The main objective of the experimental study is to vali-
date the basic theoretical model established. The TL of a
prototyped clamped plate silencer was measured and com-
pared with the theoretical prediction. In doing so, a number
of issues that might complicate the task are put aside at this
stage. One of these issues is the modeling of the dynamics of
a plate of nonuniform thickness and the actual preparation of
such thickness distribution for a thin plate. The following
experiment is therefore limited to the test of a uniform plate.
The issue of structural damping is another difficult one, but it
cannot be avoided altogether. An attempt is made to simulate
the damping effect towards the end of this section.

A. Experimental rig

The TL of the plate silencer was measured by the four-
microphone, two-load method similar to the one described
by Munjal and Doige �1990�, as shown in Fig. 6. The inci-
dent noise is simulated by a loudspeaker connected to the
duct through a contraction cone. The output signal from the
DA converter �NI. PCI-M10-16E-1� was passed to the loud-
speaker via a power amplifier �B&K’s LAB Gruppen 300�.
Two pairs of 1/2-in., phase-matched microphones �B&K type
4187�, labelled as M1 through M4, were used together with
conditioning amplifier �B&K Nexus 2691�. The separation
distances between the microphones and their exact locations
are indicated in Fig. 6. Signals from the four microphones
were acquired via the AD converter �NI. PCI-4452�. Both
A/D and D/A processes were controlled by an NI Labview
program and the test was run by a loop of discrete frequen-
cies from 40 to 800 Hz with an increment of 10 Hz. Two
linearly independent experiments with different downstream
loading conditions were conducted to determine the TL of

FIG. 5. �Color online� Comparison of the clamped non-
uniform plate with the simply supported uniform plate
�solid lines: nonuniform plate; dashed lines: simply
supported�. The cavity geometry is L=5h, hc=h, and
the average mass ratio m̄=1. �1a� TL. �2a� Odd-even
modal interference index. �3a� Sound reflected by the
even modes. �4a� Sound reflected by the odd modes.
The second and third columns compare the modal am-
plitude,�Vj�, the modal reflection coefficient,�Rj�, the
single mode reflection,�VjRj�, and the modal contribu-
tion � j of the two plate silencers. The four peak posi-
tions are identified in all the subfigures.
the tested silencer. In the current study, the first downstream
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boundary condition was a simple “rigid ending.” The other
one was “absorption ending,” which was implemented by
connecting the downstream end of the duct to an absorptive
chamber.

The duct wall was made of 15-mm-thick acrylic and was
considered to be acoustically rigid. The cross-section of the
duct was 100�100 mm2. The two cavities also had a cross
section of 100�100 mm2 and the length was 500 mm. With
the geometry given, the first cut-on frequency in the rigid
duct is about 1700 Hz, which is much higher than the upper
limit of the measurement frequency range. Two pieces of
balsawood plates were installed flush with the duct wall. The
plates were 517 mm long, 102 mm wide, and 2 mm thick.
The leading and trailing edges of the plates were clamped,
and the final effective length of the plates was 500 mm. The
two lateral edges of the plates were inserted into a thin gap
between the two constituent plates of the cavity walls. The
clearance between the lateral edges of the plates and the
cavity walls was less than 0.5 mm. Such a configuration was
adopted to make sure that the plates could vibrate freely and
simulate the two-dimensional behavior of a beam while the
leakage of noise from the main duct to the cavities via the
gap was minimized.

The physical and mechanical properties of balsawood
vary greatly depending on the origin and growth conditions.
According to Chart 1 given in Ashby �2005�, the density of
balsawood ranges from 100 to 220 kg/m3, and the Young’s
modulus from 2 to 5 GPa. Since the bending stiffness of the
plate is one of the most crucial design factors, a three-point
bending test was conducted to determine it experimentally.
Figure 7�a� shows the schematic of the three-point bending
test. The sample plate was of the size 90�32�2 mm3, and
the support span L was 50 mm. An axial static testing ma-
chine was used to apply the load gradually. The relationship
between the applied load and the extension at the middle
point of the plate is shown in Fig. 7�b�. The response of the
plate was rather linear as the extension increases from 0 to
1.5 mm. Hence, the measured data within this region were
used to find the Young’s modulus. For a simply supported
beam given in this test, the extension at the middle point and

the applied load should satisfy the relationship

956 J. Acoust. Soc. Am., Vol. 121, No. 2, February 2007
y =
FL3

48EI
, �32�

where y is the extension, F is the load applied, E is the
Young’s modulus, and I is the second moment of inertia.
According to Fig. 7�b�, the Young’s modulus E can be esti-
mated as 2.6 GPa. The measured density of the balsa wood
plate was 208 kg/m3. Therefore, the dimensionless bend-
ing stiffness and mass ratio of the plate in the silencer can
be calculated by the scheme described in Eq. �2�, and the
final results are B=0.0123 and m=3.4.

Before measuring the TL of the plate silencer, the TL of
the whole measurement system without the balsawood plates
was first measured. This measurement serves two purposes.
One is to calibrate the measurement system, and the other is
to check the damping level of the duct and the cavity. The TL
spectrum, the energy absorption coefficient �, and the energy
reflection coefficient � were measured and compared with
the theoretical predictions in Fig. 8. With the plate absent,
the plate silencer became a rectangular expansion chamber.
The theoretical results were obtained by assuming both the
mass ratio and bending stiffness to be zero. Figure 8�a� indi-
cates that the measured TL �the line with open circles� com-
pares with the theoretical solution well on the whole, except

FIG. 6. The four-microphone, two-
load measurement system �dimensions
in mm�.

FIG. 7. Three-point bending test of the balsawood plate. �a� Schematic of

the bending test. �b� Load versus extension at the middle point.
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that the measured TL is 0.5 dB higher than the prediction.
The discrepancy is mainly due to the energy dissipation
mechanisms, which are necessarily present in the rig but ex-
cluded in the theory. As shown in Fig. 8�b�, the overall en-
ergy absorption coefficient of the expansion chamber is
around 0.1. The possible damping mechanism includes the
cavity damping, wall vibration, etc.

B. Results analysis

The TL and the corresponding energy reflection coeffi-
cient � of the tested plate silencer were first calculated using
the parameters found in the last section �B=0.0123, m=3.4�.
The predicted results are shown in Figs. 9�a� and 9�c� in
solid curves. Since the damping effect was not considered in
the theoretical model, the predicted absorption coefficient
was zero. The frequency positions of the six predicted peaks
in Fig. 9�a� are 54, 109, 224, 306, 415, and 727 Hz. Because
the bending stiffness of the plate used is much smaller than
the optimal one �see Fig. 2�c��, the TL between the first and

FIG. 8. �Color online� Comparison of the measured data �with open circles�
with theoretical solution �without open circles� for the expansion chamber.
�a� TL. �b� The absorption coefficient �. �c� The reflection coefficient �.

FIG. 9. �Color online� Comparison of experimental data �solid curves with
open circles� with theoretical solution �solid curves without open circles�.
�a� TL. �b� The absorption coefficient �. �c� The reflection coefficient �. The

dimensionless bending stiffness B=0.0123, the mass ratio m=3.4.
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second peaks is low, and the widest stopband begins from
218 Hz and ends at 318 Hz, consisting of the third and fourth
peaks, but it suffices to serve the objective of model valida-
tion. Note that the balsawood used here is relatively heavy
and soft in the whole range of balsawood available. For bet-
ter performance of the plate silencer, a lighter and stiffer
balsawood may be used.

Figure 9�a� compares the measured TL �solid curves
with open circles� with the predicted one. Evidently, the
spectral peaks and the overall spectral shapes of the mea-
sured TL match those of the theoretical results. This means
that the basic theoretical model is correct for the experimen-
tal rig. However, the predicted TL curve has sharp peaks
while that from the experiment is quite smooth. This, again,
implies significant energy dissipation mechanisms in the ex-
perimental rig, which are excluded in the theoretical model.
As shown in Fig. 9�b�, the measured absorption coefficient �
ranges from 0.15 to 0.5 in the low frequency region �say,
below 400 Hz� and from 0.3 to 0.8 in the relative high fre-
quency region �above 400 Hz�. Note that the sound absorp-
tion coefficient is only around 0.1 when the balsawood plates
are absent. It is reasonable to assume that the main energy
dissipation mechanism in the plate silencer is the structural
damping in the plate. Figure 9�c� compares the energy reflec-
tion coefficient �. Obviously, the level of the measured re-
flection coefficient is lower than prediction. One explanation
for this phenomenon is that the structural damping reduces
the vibration level of the balsawood plates, which in turn
results in a lower level of sound reflection. On the other
hand, the existence of sound absorption also lowers the
chances of the incident noise being reflected. Nevertheless,
comparison between Figs. 9�b� and 9�c� shows that the
mechanism of sound reflection still dominates over the sound
absorption in the low frequency range. To summarize, the
experimental results are in agreement with the theoretical
prediction, but the damping effect, which is excluded previ-
ously, should be considered in the theoretical model to better
represent the real physics behind the plate silencer.

The damping effect is now considered in the theoretical
model by the Rayleigh damping model, and the coupled dy-
namics Eq. �3� becomes, for harmonic vibration of time de-
pendence ei�t,

�2

�x2�B�x�
�2�

�x2 ��1 + i	s� + m�x�
�2�

�t2 �1 − i	m� + �pi + �p� = 0,

�33�

where 	s and 	m are, respectively, the stiffness and mass
damping coefficients.Two cases with different damping co-
efficients are investigated. In the first case, 	m=0.15 and
	s=0. The TL, absorption coefficient, and reflection coef-
ficient are shown in Figs. 10�1a�–10�1c�, respectively. It
can be observed that the experimental data are in good
agreement with the theoretical results when the frequency
is below 360 Hz. However, the absorption coefficient is
underestimated in high frequency. In the other case, the
damping coefficients are chosen as 	m=	s= 0.05, and the
results are shown in Figs. 10�2a�–10�2c�. With such a

combination of 	m and 	s, the measured TL, absorption

Wang et al.: Nonuniform and clamped plate silencer 957



coefficient, and reflection coefficient are all in agreement
with the theoretical results on the whole. But in the fre-
quency range of 240 to 300 Hz, the reflection coefficient
is overestimated slightly. Since low frequency noise is of
major interest in this study, the first damping model may
be more suitable for design purposes.

V. CONCLUSIONS

It is easy to realize a side-branch plate silencer with the
plate clamped at both the leading and trailing edges in prac-
tice. Theoretical study reveals that such a plate silencer can
function effectively as a low frequency wave reflector over a
broad frequency band. When uniform plates are used, a stop-
band above one octave can be achieved if the plate-to-air
mass ratio is less than 3.5. The performance of the clamped
plate silencer can be further enhanced by using plates with
softer ends. Optimization study shows that, with a proper
distribution of the bending stiffness along the plate, the wid-
est stopband of the clamped plate silencer may be up to
f2 / f1=6.0 for a mass ratio of m=1, which is even wider than
that of a simply supported plate silencer.

When excited by the incident wave, the clamped non-
uniform plate responds in a similar way to the simply sup-
ported plate, but the displacement peaks and troughs are
much closer to the clamped ends. The extended length be-
tween the peaks and troughs makes the nonuniform plate
j j l j
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more capable of reflecting sound in a dipolelike mode, which
is not prohibited by the cavity. Comparison of the modal
reflections between the clamped nonuniform plate and the
simply supported plate shows that the second in vacuo plate
mode contributes most to the expansion of the stopband of
the nonuniform plate silencer, especially in the high fre-
quency region, which, to some extent, conforms to the above
explanation.

Experimental study demonstrated that the basic model of
the clamped plate silencer is correct. The spectral peaks and
the shapes of the measured TL are in agreement with those
calculated theoretically. In the low frequency range, say, be-
low 400 Hz, the sound reflection still dominates over the
sound energy dissipation. Significant sound absorption exists
in the plate silencer, especially at high frequencies. A Ray-
leigh damping model is adopted to represent the plate damp-
ing in the testing rig. Results show that with a proper com-
bination of mass and stiffness damping coefficients, the
simulated damping effect is in close agreement with the ex-
perimental data.
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FIG. 10. �Color online� Modeling of plate damping
mechanisms with two set of damping factors. �1a� and
�1b�, and �1c� show the results with 	m=0.15, 	s=0.
�2a�, �2b�, and �2c� are the results with 	m=0.05, 	s

=0.05.
APPENDIX: RESULTS OF Ip,q, Icj,p, AND Icl,q

When j� l, 9 out of the 16 components of Ip,q�I1,1� I4,4� are given below:

I1,1 =
2iknL�1 − e�j+�l�

�� j
2 + �knL�2��� j + �l�

−
e�l−iknL − 1

�� j + iknL���l − iknL�
+

e�j+�l − e�j−iknL

�� j − iknL���l + iknL�
, �A1�

I1,3 =
� j�e�l−iknL − 1�

��l − iknL���2 − �knL�2�
+

2iknL���l sin � j − � j cos � j�e�l + � j�
��2 + �2���2 − �knL�2�

−
�e�l − e−iknL��iknL sin � j + � j cos � j�

��l + iknL���2 − �knL�2�
, �A2�
j
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I1,4 =
2iknL

� j
2 − �knL�2� �� j sin � j + �l cos � j�e�l − �l

� j
2 + �l

2 −
e�l−iknL − 1

2��l − iknL�	 +
�e�l − e−iknL��� j sin � j − iknL cos � j�

��l + iknL��� j
2 − �knL�2�

, �A3�

I3,1 =
2iknL���l cos �l − � j sin �l�e�j − �l�

�� j
2 + �l

2��� j
2 + �knL�2�

+
�iknL sin �l − �l cos �l�e�j + �le

�j−iknL

�� j − iknL���l
2 − �knL�2�

−
�l − �iknL sin �l + �l cos �l�e−iknL

�� j + iknL���l
2 − �knL�2�

,

�A4�

I3,3 =
� j��l − �iknL sin �l + �l cos �l�e−iknL�

�� j
2 − �knL�2���l

2 − �knL�2�
+

iknL

� j
2 − �knL�2� sin �� j − �l�

� j − �l
−

sin �� j + �l�
� j + �l

	
−

�iknL sin � j + � jcos � j���iknL sin �l − �l cos �l� + �le
−iknL�

�� j
2 − �knL�2���l

2 − �knL�2�
, �A5�

I3,4 =
iknL��iknL sin �l + �l cos �l�e−iknL − �l�

�� j
2 − �knL�2���l

2 − �knL�2�
+

iknL

� j
2 − �knL�2�1 − cos �� j + �l�

� j + �l
−

1 − cos �� j − �l�
� j − �l

	
+

�� j sin � j − iknL cos � j���iknL sin �l − �l cos �l� + �le
−iknL�

�� j
2 − �knL�2���l

2 − �knL�2�
, �A6�

I4,1 =
��l sin �l + iknL cos �l�e�j − iknLe�j−iknL

�� j − iknL���l
2 − �knL�2�

−
��l sin �l − iknL cos �l�e−iknL + iknL

�� j + iknL���l
2 − �knL�2�

−
2iknL

� j
2 + �knL�2

�� ��l sin �l + � j cos �l�e�j − � j

� j
2 + �l

2 	 , �A7�

I4,3 =
� j���l sin �l − iknL cos �l�e−iknL + iknL�

�� j
2 − �knL�2���l

2 − �knL�2�
+

iknL

� j
2 − �knL�2�1 − cos �� j + �l�

� j + �l
+

1 − cos �� j − �l�
� j − �l

	
−

�iknL sin � j + � j cos � j����l sin �l + iknL cos �l� − iknLe−iknL�
�� j

2 − �knL�2���l
2 − �knL�2�

, �A8�

I4,4 =
�� j sin � j − iknL cos � j����l sin �l + iknL cos �l� − iknLe−iknL�

�� j
2 − �knL�2���l

2 − �knL�2�
+

iknL

� j
2 − �knL�2� sin �� j + �l�

� j + �l
+

sin �� j − �l�
� j − �l

	
−

iknL���l sin �l − iknL cos �l�e−iknL + iknL�
�� j

2 − �knL�2���l
2 − �knL�2�

. �A9�
The remaining seven components are determined based on
the above results. I1,2 is obtained by replacing � j with
�−� j� in Eq. �A1�; I2,1 is obtained by replacing �l with
�−�l� in Eq. �A1�; I2,2 is obtained by replacing � j and �l with
�−� j� and �−�l�, respectively, in Eq. �A1�; I2,3 is obtained by
replacing �l with �−�l� in Eq. �A2�; I2,4 is obtained by re-
placing �l with �−�l� in Eq. �A3�; I3,2 is obtained by replac-
ing � j with �−� j� in Eq. �A4�; and I4,2 is obtained by replac-
ing � j with �−� j� in Eq. �A7�.When j= l, four items in Eqs.
�A1�–�A9� become 0/0 type and should be replaced by the
finite values given below:

1 − e�l−�j

� j − �l
= 1,

e�j−�l − 1

� j − �l
= 1,

�A10�
sin �� j − �l� = 1,

1 − cos �� j − �l� = 0.

� j − �l � j − �l
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Note that for frequency below the first cut-on of the duct,
only the plane wave mode, n�0, has real wave number k0,
and there are chances that k0L→� j and/or �l. In such case,
some items in Eqs. �A1�–�A9� will also become 0/0 type.
This problem can be avoided numerically easily, hence, it is
not addressed here.

The Icj,p, and Icl,q �p,q from 1 to 4� are given below:

Icj,1 =
� j�cos �m��e�j − 1�

� j
2 + �m��2 , Icj,2 =

� j�1 − cos �m��e−�j�
� j

2 + �m��2 ,

Icj,3 =
� j�1 − cos �� j + m���

� j
2 − �m��2 , Icj,4 =

� j sin �� j + m��
� j

2 − �m��2 ,

Icl,1 =
�l�cos �m��e�l − 1�

�2 + �m��2 , Icl,2 =
�l�1 − cos �m��e−�l�

�2 + �m��2 ,

l l
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Icl,3 =
�l�1 − cos ��l + m���

�l
2 − �m��2 , Icl,4 =

�l sin ��l + m��
�l

2 − �m��2 .

�A11�
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