<table>
<thead>
<tr>
<th>Title</th>
<th>Numerical radius perserving operators on B(H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Chan, JT</td>
</tr>
<tr>
<td>Citation</td>
<td>American Mathematical Society Proceedings, 1995, v. 123 n. 5, p. 1437-1439</td>
</tr>
<tr>
<td>Issued Date</td>
<td>1995</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/44910</td>
</tr>
<tr>
<td>Rights</td>
<td>First published in American Mathematical Society Proceedings, 1995, v. 123 n. 5, p. 1437-1439, published by the American Mathematical Society.; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
NUMERICAL RADIUS PERSERVING OPERATORS ON $B(H)$

JOR-TING CHAN

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. Let H be a Hilbert space over \mathbb{C} and let $B(H)$ denote the vector space of all bounded linear operators on H. We prove that a linear isomorphism $T : B(H) \rightarrow B(H)$ is numerical radius-preserving if and only if it is a multiply of a C^*-isomorphism by a scalar of modulus one.

1. INTRODUCTION

Let H be a Hilbert space over \mathbb{C} and let $B(H)$ denote the vector space of all bounded linear operators on H. For every A in $B(H)$, the numerical range and the numerical radius of T are defined respectively by

$$W(A) = \{(Ax, x) : x \in H, \|x\| = 1\},$$
$$w(A) = \sup \{|\lambda| : \lambda \in W(A)\}.$$

It is well known that $w(\cdot)$ is a norm on $B(H)$ and that this norm is equivalent to the usual operator norm. (See [4, p. 117].) A classical theorem of Kadison [4, Theorem 7] asserts that every linear isomorphism on $B(H)$ which is isometric with respect to the operator norm is a C^*-isomorphism followed by left multiplication by a fixed unitary operator. A C^*-isomorphism is a linear isomorphism of $B(H)$ such that $T(A^*) = T(A)^*$ for all A in $B(H)$ and $T(A^n) = T(A)^n$ for all selfadjoint A in $B(H)$ and all natural number n. A description of C^*-isomorphisms on $B(H)$ can be obtained. First of all we have from [6, Corollary 11] that a C^*-isomorphism on $B(H)$ is either a *-isomorphism or a *-anti-isomorphism. Suppose that T is an algebra isomorphism on $B(H)$. Then by [3, Theorem 2], there is an invertible operator V on H such that $T(A) = VAV^{-1}$ for all A in $B(H)$. If we also assume that $T(A^*) = T(A)^*$ for all A in $B(H)$, then $VA^*V^{-1} = (V^{-1})^*A^*V*$ and hence $(V^*V)A^* = A^*(V^*V)$ for all A in $B(H)$. It follows that V^*V is a scalar multiple of the identity operator I. Say $V^*V = kI$. As V^*V is always a positive operator and k cannot be zero, $k > 0$. Let $U = \frac{1}{\sqrt{k}}V$. Then U is unitary and $T(A) = UAU^*$ for all A in $B(H)$. For a *-anti-isomorphism T, it can be shown (e.g., see [5, Remark 2]) that there is a unitary operator U in $B(H)$ such that $T(A) = UA^*U^*$ for all A in $B(H)$, where A^t denotes the transpose.
of A relative to a fixed orthonormal basis of H. Clearly operators of these two types are C^*-isomorphisms.

Let us turn to numerical range and numerical radius. Pellegrini [9, Theorem 3.1] proved that an operator T on $B(H)$ is a C^*-isomorphism exactly when T preserves the "numerical range" of each element in $B(H)$. It should be noted that Pellegrini obtained his result in a general Banach algebra, and his definition of numerical range is different from ours. In fact, for each A in $B(H)$, the "numerical range" of A defined by Pellegrini reduces to the closure of $W(A)$. When the underlying space H is finite-dimensional, $W(A)$ is compact and hence the two sets are identical. Despite the discrepancy we still have that T is a C^*-isomorphism if and only if $W(T(A)) = W(A)$ for every A in $B(H)$.

For simplicity we shall call an operator T with the latter property numerical range-preserving. Likewise we say that T is numerical radius-preserving if $w(T(A)) = w(A)$ for all A in $B(H)$.

In the finite-dimensional situation, the above result was extended by Li. In [1, Theorem 1] he proved that T is numerical radius-preserving if and only if T is a scalar multiple of a C^*-isomorphism by a complex number of modulus one. It is immediate that if T is numerical range-preserving, then T is numerical radius-preserving and hence the scalar in question is one. In this note we prove that the conclusion of Li remains valid without the dimension constraint.

2. Results

In what follows T denotes a linear isomorphism on $B(H)$ which is numerical radius-preserving on $B(H)$. We shall prove that T maps the identity mapping I to a scalar multiple of I. The scalar is necessarily of modulus one. Multiplying by the complex conjugate of the scalar, we get a numerical radius-preserving operator T_1 with an additional property that $T_1(I) = I$. The result is concluded by showing that T_1 is a C^*-isomorphism.

We begin with a lemma which describes scalar multiples of I in terms of numerical radius. Let $\Lambda = \{ \lambda \in \mathbb{C} : |\lambda| = 1 \}$.

Lemma 1. An operator $A \in B(H)$ is a scalar multiple of I if and only if for every $B \in B(H)$, there is a $\lambda \in \Lambda$ such that $w(A + \lambda B) = w(A) + w(B)$.

Proof. It is clear that if A is a scalar multiple of I, then A satisfies the condition. For the converse we borrow the idea from Li and Tsing [2, p. 40]. We first show that elements in $W(A)$ are of constant modulus; it follows then from the convexity of $W(A)$ ([4, p. 113]) that the set is a singleton. Hence A is a scalar multiple of the identity I. Now assume that there is an x in H, $\|x\| = 1$, and $|\langle Ax, x \rangle| < w(A)$. Let B be the orthogonal projection onto the linear span of x. Then $w(B) = 1$. Fix any r such that $|\langle Ax, x \rangle| < r < w(A)$. We can find an $\epsilon > 0$ such that $|\langle Ay, y \rangle| < r$ whenever $\|y - x\| < \epsilon$. In fact $|\langle Ay, y \rangle| < r$ if there is a $\lambda \in \Lambda$ such that $\|y - \lambda x\| < \epsilon$. Suppose that $y \in H$, $\|y\| = 1$, and $\|y - \lambda x\| \geq \epsilon$ for every $\lambda \in \Lambda$. Then

$$e^2 \leq \langle y - \lambda x, y - \lambda x \rangle = 2 - 2\text{Re}(\langle y, \lambda x \rangle)$$

for every $\lambda \in \Lambda$.

It follows that $\langle y, x \rangle \leq 1 - \frac{1}{2}e^2$. Let $k = \min\{r + 1, w(A) + 1 - \frac{1}{2}e^2\}$. Then for every $\lambda \in \Lambda$ and $y \in H$ with $\|y\| = 1$, we have

$$\|\langle A + \lambda B \rangle y, y \| \leq |\langle Ay, y \rangle| + |\langle y, x \rangle| \leq k .$$

Hence $w(A + \lambda B) < w(A) + w(B)$. □
By the above lemma \(T(I) = \lambda I \). Clearly we have \(\lambda \in \Lambda \). Let \(T_1 = \bar{\lambda}T \). Then \(T_1(I) = I \). We need the following definitions. By a state on \(B(H) \) we mean as usual a bounded linear functional \(\rho \) on \(B(H) \) such that \(\rho(I) = \|\rho\| = 1 \). The set \(S \) of all states is called the state space of \(B(H) \). A bounded linear operator \(T : B(H) \to B(H) \) is said to be state-preserving if its adjoint \(T' \) satisfies \(T'(S) \subseteq S \). By [9, Theorem 2.3 and Theorem 3.1], \(T \) is a \(C^* \)-isomorphism if and only if it is state-preserving. Let \(x \) be a unit vector in \(H \). The linear functional \(\rho_x \) given by
\[
\rho_x(A) = \langle Ax, x \rangle \quad \text{for every} \quad A \in B(H)
\]
is a state of \(B(H) \). States of this form are called vector states.

Lemma 2. The operator \(T_1 \) is state-preserving.

Proof. Let \(w' \) denote the norm in \(B(H)' \) dual to the numerical radius. Then \(w'(\rho) \geq \|\rho\| \) for every \(\rho \) in \(B(H)' \). As \(T_1 \) is numerical radius-preserving, \(w'(T_1'(\rho)) = w'(\rho) \) for every \(\rho \) in \(B(H)' \). If \(\rho_x \) is a vector state, then \(w'(\rho_x) = 1 \) and hence \(\|T_1'(\rho_x)\| \leq w'(T_1'(\rho_x)) = 1 \). But \(T_1'(\rho_x)(I) = \rho_x(T_1(I)) = \rho_x(I) = 1 \). It follows that \(T_1'(\rho_x) \) is a state of \(B(H) \). By [4, Corollary 4.3.10] the state space is the closed convex hull of the vector states in the weak *-topology. This together with the fact that \(T_1' \) is continuous in the weak *-topology entail that \(T_1 \) is state-preserving.

By Lemma 1 and Lemma 2, we have proved

Theorem. A linear isomorphism \(T \) on \(B(H) \) is numerical radius-preserving if and only if \(T \) is a multiple of a \(C^* \)-isomorphism by a scalar of modulus one.

In [1] Li also studied a numerical radius-preserving real-linear operator on the selfadjoint elements in \(B(H) \). He proved ([1, Theorem 2]) that such an operator is the restriction of a \(C^* \)-isomorphism on \(B(H) \) multiplied by \(\pm 1 \). Let us remark that as the numerical radius and the operator norm coincide on selfadjoint operators, this result can alternatively be deduced from [7, Theorem 2].

References

Numerical Radius Perserving Operators on $\mathcal{B}(H)$
Jor-Ting Chan
Stable URL:
http://links.jstor.org/sici?sici=0002-9939%28199505%29123%3A5%3C1437%3ANRPOO%3E2.0.CO%3B2-0

This article references the following linked citations. If you are trying to access articles from an off-campus location, you may be required to first logon via your library web site to access JSTOR. Please visit your library's website or contact a librarian to learn about options for remote access to JSTOR.

References

1. Linear Operators Preserving the Numerical Radius of Matrices
Chi-Kwong Li
Stable URL:
http://links.jstor.org/sici?sici=0002-9939%28198704%2999%3A4%3C601%3ALOPNR%3E2.0.CO%3B2-P

NOTE: The reference numbering from the original has been maintained in this citation list.