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AN EXTREMAL PROPERTY OF FEKETE POLYNOMIALS
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(Communicated by Dennis A. Hejhal)

Abstract. The Fekete polynomials are defined as

Fq(z) :=

q−1∑
k=1

(
k

q

)
zk

where
(
·
q

)
is the Legendre symbol. These polynomials arise in a number of

contexts in analysis and number theory. For example, after cyclic permutation
they provide sequences with smallest known L4 norm out of the polynomials
with ±1 coefficients.

The main purpose of this paper is to prove the following extremal property
that characterizes the Fekete polynomials by their size at roots of unity.

Theorem 0.1. Let f(x) = a1x + a2x2 + · · · + aN−1x
N−1 with odd N and

an = ±1. If

max{|f(ωk)| : 0 ≤ k ≤ N − 1} =
√
N,

then N must be an odd prime and f(x) is ±Fq(x). Here ω := e
2πi
N .

This result also gives a partial answer to a problem of Harvey Cohn on
character sums.

1. Introduction

As in the abstract the Fekete polynomials are defined as

Fq(z) :=
q−1∑
k=1

(
k

q

)
zk

where
(
·
q

)
is the Legendre symbol. In [4] we gave explicit formulas for the L4 norm

(or equivalently for the merit factors) of various sequences of polynomials related
to the Fekete polynomials. For example for q an odd prime,

‖Fq‖44 :=
5q2

3
− 3q +

4
3
− 12(h(−q))2
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where h(−q) is the class number of Q(
√−q). A similar explicit formula is given for

an example of Turyn’s that is constructed by cyclically permuting the first quarter
of the coefficients of Fq . This is the sequence of polynomials with ±1 coefficients
that has the smallest known asymptotic L4 norm on the unit disc (see [4] where
this old problem is discussed further). Explicitly,

Rq(z) :=
q−1∑
k=0

(
k + [q/4]

q

)
zk

where [·] denotes the nearest integer, satisfies

‖Rq‖44 =
7q2

6
− q − 1

6
− γq

where

γq :=


h(−q)(h(−q)− 4) if q ≡ 1, 5 (mod 8),
12(h(−q))2 if q ≡ 3 (mod 8),
0 if q ≡ 7 (mod 8).

The point of this note is to explore the sense in which the Fekete polynomials are
extremal in the supremum norm on the disc. Because of Gauss’ lemma, we have
for 0 ≤ k ≤ q − 1

Fq(e
2πik
q ) =


√
q
(
k
q

)
if q ≡ 1 (mod 4),

i
√
q
(
k
q

)
if q ≡ 3 (mod 4),

and we see that Fq is of constant modulus on the qth roots of unity. The point of
this note is to prove that Fq is also uniquely of smallest possible supremum norm
at these points. Precisely

Theorem 1.1. Let f(x) = a1x+a2x
2 + · · ·+aN−1x

N−1 with odd N and an = ±1.
Then we have

N−1∑
k=0

|f(ωk)|4 ≥ N2(N − 1)(1.1)

and

max{|f(ωk)| : 0 ≤ k ≤ N − 1} ≥
√
N.(1.2)

Inequalities (1.1) and (1.2) are optimal and equality holds in (1.2) if and only if N
is an odd prime and f(x) is ±Fq(x). Here ω := e

2πi
N .

We should remark here that Theorem 1.1 is not really restricted to polynomials
with zero constant term since multiplication by x does not change the value of
|f(ωk)|. The assumption that a0 = 0 in Theorem 1.1 just simplifies the presenta-
tion.

Despite the fact that Fekete polynomial Fq has modulus
√
q at each qth root

of unity, Montgomery ([8]) shows that the supremum norm on the whole unit disc
grows at least like

√
q log log q. This and further properties of Fekete polynomials,

including the behavior of their zeros, are discussed in [6].
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A consequence of Theorem 1.1 is the following. If f(x) is a polynomial in Theo-
rem 1.1 with a0 = 0, then from Lemma 3.1 below, the equality of (1.2) holds if and
only if

|f(ωk)|2 =

{
0 if k = 0,
N if k 6= 0,

which can also be shown (see Theorem 3 in [7]) to be equivalent to

N−1∑
n=0

anan+k =

{
N − 1 if k = 0,
−1 if k 6= 0.

It follows from Theorem 1.1 that

Corollary 1.2. If ψ : ZN −→ R is a mapping such that ψ(0) = 0, ψ(1) =
1, |ψ(a)| = 1 for all a 6= 0 in ZN , then

N−1∑
n=0

ψ(n)ψ(n+ k) = −1 for all k 6= 0

if and only if N = q and ψ is the Legendre symbol modulo q.

This corollary gives a partial answer to a problem of Harvey Cohn on charac-
ter sums. He asks (see p. 202 in [9]) whether a multiplicative character can be
characterized by a kind of “two-level autocorrelation” property, viz.

If F is a finite field, ψ : F −→ C with ψ(0) = 0, ψ(1) = 1, |ψ(a)| = 1 for all
a 6= 0 in F , and

∑
b∈F ψ(b)ψ(b + a) = −1 for all a 6= 0, does it follow that ψ

is a nontrivial multiplicative character of F?

Corollary 1.2 shows that for the case ψ : Fq −→ R, the answer to Cohn’s problem
is affirmative. The same result is also proved independently by S-L. Ma, M-K.
Siu and Z. Zheng in [7] and A. Biró in [3]. Recently, M-K. Siu and the second
author have solved Cohn’s problem and they showed in [5] that the answer to
Cohn’s problem is negative when |F | = qs > 4 and s > 1. They in fact gave
many counter-examples for non-multiplicative functions which satisfy the two-level
autocorrelation property. The idea of their proof originates from our Theorem 1.1.

2. Results

Let f(x) = a1x + a2x
2 + · · · + aN−1x

N−1 with odd N and an = ±1. Let
D∗ := {1 ≤ n ≤ N − 1 : an = 1} and D := D∗ ∪ {0}. For any 1 ≤ n ≤ N − 1, we
define bn := an+1

2 and hence

bn =

{
1 if n ∈ D∗,
0 otherwise.

(2.1)

We denote e
2πi
N by ω. Since an = ±1, we have

N−1∑
k=0

|f(ωk)|2 =
N−1∑
n,m=1

anam

N−1∑
k=0

ωk(n−m) = N(N − 1).(2.2)
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On the other hand,
N−1∑
k=0

|f(ωk)|4 =
N−1∑
k=0

|f(ωk)f(ω−k)|2

=
N−1∑
k=0

∣∣∣∣∣∣
N−1∑
l=0


N−1∑

n−m≡l (mod N)

anam

ωkl

∣∣∣∣∣∣
2

= N

N−1∑
l=0


N−1∑

n−m≡l (mod N)

anam


2

= N

(N − 1)2 +
N−1∑
l=1


N−1∑

n−m≡l (mod N)

anam


2


≥ N((N − 1)2 + (N − 1)) = N2(N − 1)(2.3)

because
N−1∑

n−m≡l (mod N)

anam ≡ N − 2 ≡ 1 (mod 2)

for 1 ≤ l ≤ N − 1. Thus we have the following lemma.

Lemma 2.1. Let f(x) = a1x+ a2x
2 + · · ·+ aN−1x

N−1 with odd N and an = ±1.
We have

N−1∑
k=0

|f(ωk)|2 = N(N − 1)

and
N−1∑
k=0

|f(ωk)|4 ≥ N2(N − 1).(2.4)

Furthermore, we have∑
0≤i<j≤N−1

(
N − |f(ωi)|2

) (
N − |f(ωj)|2

)
≤ 0.(2.5)

Proof. It remains to prove (2.5). If we let xi = N − |f(ωi)|2 for 0 ≤ i ≤ N − 1,
then (2.2) and (2.3) become

N−1∑
i=0

xi = N(2.6)

and
N−1∑
i=0

x2
i ≥ N2.(2.7)

Now taking the square of both sides in (2.6) and using (2.7), we get

N2 =
N−1∑
i=0

x2
i + 2

∑
0≤i<j≤N−1

xixj ≥ N2 + 2
∑

0≤i<j≤N−1

xixj .
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This proves (2.5). It should also be noted that from (2.3), the equality of (2.4)
holds if and only if

∑N−1
n−m≡l (mod N) anam = ±1 for 1 ≤ l ≤ N − 1.

Now inequality (1.2) is an immediate consequence of (2.5). For if |f(ωk)|2 < N ,
then the summation in (2.5) would be positive and this contradicts (2.5).

By Gauss’s lemma (see §9.10 in [1]), we have for 0 ≤ k ≤ q − 1

Fq(e
2πik
q ) =


√
q
(
k
q

)
if q ≡ 1 (mod 4),

i
√
q
(
k
q

)
if q ≡ 3 (mod 4).

(2.8)

This shows that the inequality (1.2) is actually optimal and the equality can be
attained by Fekete polynomials. We are going to prove Theorem 1.1 and this shows
that Fekete polynomials are the only polynomials attaining the equality of (1.2).

3. Proof of Theorem 1.1

Lemma 3.1. Let f(x) = a1x+ a2x
2 + · · ·+ aN−1x

N−1 with odd N and an = ±1.
If the equality of (1.2) holds, then

|f(ωk)|2 = N(3.1)

for 1 ≤ k ≤ N − 1 and f(1) = 0.

Proof. If the equality of (1.2) holds, then (N − |f(ωi)|2) ≥ 0 for all i and hence

0 ≤
∑

0≤i<j≤N−1

(N − |f(ωi)|2)(N − |f(ωj)|2).

Now from (2.5), the above double summation must be zero and hence every term
(N −|f(ωi)|2)(N −|f(ωj)|2) must also be zero for 0 ≤ i 6= j ≤ N −1 since they are
all non-negative. On the other hand, since |f(ωj)| = |f(ωN−j)|, if 1 ≤ j ≤ N − 1,
then j 6= N − j and

0 = (N − |f(ωj)|2)(N − |f(ωN−j)|2) = (N − |f(ωj)|2)2.

It follows that |f(ωj)|2 = N for all 1 ≤ j ≤ N − 1. Finally, f(1) = 0 follows from
(2.2).

Lemma 3.2. Let f(x) = a1x+ a2x
2 + · · ·+ aN−1x

N−1 with odd N and an = ±1.
If the equality of (1.2) holds, then f(x) is symmetric if N ≡ 1 (mod 4) and is
anti-symmetric if N ≡ 3 (mod 4).

Proof. Let g(x) = f(x) + 1 + x+ · · ·+ xN−1. On using (2.1)

g(x) = 1 + 2
N−1∑
n=1

bnx
n.

Also from Lemma 3.1, we have g(1) = N and |g(ωk)|2 = |f(ωk)|2 = N for 1 ≤ k ≤
N − 1. It follows that

g(x)g(x−1) ≡ N + (N − 1)
xN − 1
x− 1

(mod xN − 1)(3.2)
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by evaluating both sides at 1 and the Nth roots of unity. On the other hand,

g(x)g(x−1) ≡
(

1 + 2
N−1∑
k=1

bkx
k

)(
1 + 2

N−1∑
k=1

bkx
N−k

)

≡ 1 + 2
N−1∑
k=1

(bk + bN−k)xk + 4
N−1∑
k=0

θkx
k

≡ 2N − 1 +
N−1∑
k=1

(4θk + 2bk + 2bN−k)xk (mod xN − 1).(3.3)

Here

θk =
∑

i−j≡k (mod N)

bibj

for 0 ≤ k ≤ N−1 and we have used that |D∗| = N−1
2 because f(1) = 0. Comparing

coefficients in (3.2) and (3.3), we have

4θk + 2bk + 2bN−k = N − 1(3.4)

for 1 ≤ k ≤ N − 1. Hence 2(bk + bN−k) ≡ N − 1 (mod 4) for 1 ≤ k ≤ N − 1.
Therefore if N ≡ 1 (mod 4), we have

bk + bN−k ≡ 0 (mod 2)

and hence bk = bN−k for 1 ≤ k ≤ N − 1 because bk is either 0 or 1. So f(x) is
symmetric. Similarly, if N ≡ 3 (mod 4), we have

bk + bN−k ≡ 1 (mod 2)

and hence bk and bN−k are different for 1 ≤ k ≤ N − 1. So f(x) is anti-symmetric.
This proves Lemma 3.2.

Let Φl(x) be the lth cyclotomic polynomial.

Lemma 3.3. Let G(x) be a polynomial of degree N − 1 with integer coefficients
and for any divisor d of N , let

Gd(x) ≡ G(x) (mod Φd(x)).

Then

G(x) ≡ 1
N

∑
d|N

Gd(x)Bd(x) (mod xN − 1)

where

Bd(x) :=
∑
r|d

µ(d/r)r
xN − 1
xr − 1

and µ(r) is a Möbius function.

Proof. By the Chinese Remainder Theorem, we only need to verify that

1
N

∑
d|N

Gd(x)Bd(x) ≡ Gr(x) (mod Φr(x))
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for all divisors r of N . Clearly, if r and s are divisors of N , then

xN − 1
xs − 1

≡
{
N
s (mod Φr(x)) if r divides s,
0 (mod Φr(x)) otherwise.

Thus when d divides N , we have

Bd(x) ≡
∑
r|s,s|d

µ

(
d

s

)
s
N

s
≡ N

∑
r|s,s|d

µ

(
d

s

)
(mod Φr(x)).

It follows that Bd(x) ≡ N (mod Φd(x)) and Bd(x) ≡ 0 (mod Φr(x)) if r 6= d. This
proves our lemma.

We now come to the proof of Theorem 1.1. If N ≡ 3 (mod 4), then since f(x)
is anti-symmetric, f(ωk) is purely imaginary for 1 ≤ k ≤ N − 1. Hence if we let
F (x) = 1 + f(x), then

|F (ωk)|2 = |1 + f(ωk)|2 = 1 + |f(ωk)|2 = N + 1

for 1 ≤ k ≤ N − 1 and F (1) = 1. Recall that D∗ = {1 ≤ n ≤ N − 1 : an = 1} and
D = D∗ ∪ {0} where f(x) =

∑N−1
n=1 anx

n. It turns out that D is a cyclic difference
set. A subset E = {d1, d2, · · · , dk} of ZN is a (cyclic) (N, k, λ)-difference set (see
[2]) if for any α 6≡ 0 (mod N) the congruence equation di − dj ≡ α (mod N) has
exactly λ solution pairs (di, dj) in E × E. If we let

en =

{
1 if n ∈ E,
−1 if n 6∈ E,

it is known (see §1.D in [2]) that E is a (N, k, λ)-difference set if and only if

N−1∑
n−m≡k (mod N)

enem =

{
N if k ≡ 0 (mod N),
N − 4(k − λ) otherwise.

(3.5)

Johnsen proved (see Theorem 4.15 of [2]) that the only cyclic difference sets with
parameters N = 4t − 1, k = 2t − 1 and λ = t − 1 for some positive integer t and
en = −eN−n for 1 ≤ n ≤ N − 1 are given by the quadratic residues of a prime ≡ 3
(mod 4); more precisely, N must be an odd prime ≡ 3 (mod 4) and en = e0

(
n
N

)
for 1 ≤ n ≤ N − 1. Using similar calculation as in the proof of (2.3), one can
show that if |F (ωk)|2 = N + 1 for all 1 ≤ k ≤ N − 1, then condition (3.5) is
satisfied with k = N−1

2 and λ = N+1
4 . Thus D is a cyclic (N, N−1

2 , N−3
4 )-difference

set. For N ≡ 3 (mod 4), D satisfies the conditions in Johnsen’s theorem since
f(x) is anti-symmetric. Hence N = q and f(x) = ±Fq(x) by Johnsen’s theorem.
For the case N ≡ 1 (mod 4), D is no longer a cyclic difference set. However,
using similar methods to the proof of Johnsen’s Theorem, we can still conclude
that f(x) = ±Fq(x). Since f(x) is symmetric in this case, f(ωk) is real and hence
f(ωk) = ±

√
N for 1 ≤ k ≤ N − 1. For any divisor d > 1 of N , we let

f(e
2πi
d ) = εd

√
N(3.6)

where εd = ±1. We first claim that N can’t be a perfect square. Suppose not; then√
N is an integer. So from (3.6)

f(x) ≡ εd
√
N (mod Φd(x))
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for any divisor d > 1 of N and f(x) ≡ 0 (mod Φ1(x)) because f(1) = 0. By Lemma
3.3, we have

f(x) ≡ 1
N

∑
d|N,d>1

εd
√
NBd(x)

≡ 1√
N

∑
d|N,d>1

εd
∑
r|d

µ

(
d

r

)
r
xN − 1
xr − 1

(mod xN − 1).

Considering the absolute value of the coefficient of the term x at both sides which
only comes from the term when r = 1 on the right hand side, we have

1 =

∣∣∣∣∣∣ 1√
N

∑
d|N,d>1

εdµ(d)

∣∣∣∣∣∣ ≤ d(N)− 1√
N

where d(N) is the number of divisors of N . However, d(N) ≤
√
N when N is odd.

This is a contradiction. Thus N can’t be a perfect square and hence
√
N 6∈ Q.

Next we suppose p and q are two distinct primes dividing N ; then f(e
2πi
p ) = εp

√
N

belongs to Q(e
2πi
p ) and f(e

2πi
q ) = εq

√
N belongs to Q(e

2πi
q ). So

√
N belongs to

Q(e
2πi
p ) ∩Q(e

2πi
q ) = Q. This contradicts that

√
N 6∈ Q and therefore N must be a

prime power. Now let N = qs with odd s. Without loss of generality, we assume
that εq = 1. If s = 1, then from (2.8) we have

f(ω) = Fq(ω)

and hence f(ωk) = Fq(ωk) for 0 ≤ k ≤ q− 1 by considering their images under the
automorphisms of Q(ω) which map ω to ωk for 1 ≤ k ≤ q− 1. Since they have the
same degree less than q, f(x) must be Fq(x). It remains to show that s can’t be
greater than 1. From (2.8), we have

f(e
2πi
qj ) = εqjq

s−1
2 Fq(e

2πi
q )

for j = 1, 2, · · · , s. Hence

f(x) ≡ εqj q
s−1

2 Fq(xq
j−1

) (mod Φqj (x))

for j = 1, 2, · · · , s and f(x) ≡ 0 (mod Φ1(x)). By Lemma 3.3, we have

f(x) ≡ 1
N

s∑
j=1

εqj q
s−1

2 Fq(xq
j−1

)Bqj (x) (mod xN − 1).(3.7)

Since µ(1) = 1, µ(q) = −1 and µ(qj) = 0 if j ≥ 2, (3.7) becomes

(3.8) f(x) ≡ εqsq
s−1

2 Fq(xq
s−1

)− 1
N
εqq

s−1
2 Fq(x)

xN − 1
x− 1

+
1
N

s−1∑
j=1

q
2j+s−1

2

(
xN − 1
xqj − 1

){
εqjFq(xq

j−1
)− εqj+1Fq(xq

j

)
}

(mod xN − 1).

Since Fq(1) = 0,

Fq(xq
j

)
xN − 1
xqj − 1

≡ 0 (mod xN − 1),
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for j = 0, 1, · · · , s. Thus, (3.8) becomes

f(x) ≡ εqsq
s−1

2 Fq(xq
s−1

) +
1
N

s−1∑
j=1

εqj q
2j+s−1

2 Fq(xq
j−1

)
xN − 1
xqj − 1

(mod xN − 1).

(3.9)

Note that the degree of the polynomials Fq(xq
j−1

) x
N−1

xqj−1
is less than N . So the

polynomial in the right hand side of (3.9) must have integer coefficients. However,
if s ≥ 3, the coefficient of the term x, which only comes from the term j = 1, is
equal to 1

N εqq
s+1

2 = q
−s+1

2 6∈ Z. Therefore s must be one and this completes the
proof of Theorem 1.1
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