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A model of a power system with load dynamics is studied by
investigating qualitative changes in its behavior as the reactive
power demand at a load bus is increased. In addition o the
saddle node bifurcation often associated with voltage collapse, the
system exhibits sub- and supercritical Hopf bifurcations, cyclic
fold bifurcation, and period doubling bifurcation. Cascades of
period doubling bifurcations terminate in chaotic invariant sets.
The presence of these new bifurcations motivates a reexamination
of the saddle-node bifurcation as the boundary of the feasible set
of power injections. .

I. INTRODUCTION

Our objective is to study bifurcations in the behavior
of a power system as a system parameter (e.g., load) is
quasistatically varied. By definition, bifurcations occur at
those parameter values where there is a change in the
system’s qualitative properties. Power systems are operated
at a stable operating point and, under normal conditions, the
operating point varies smoothly with changes in the system

. parameter, so the variation can be tracked by local, linear
analysis. However, the linear analysis breaks down when
bifurcations occur, and one must resort to more global,
nonlinear analysis. Bifurcations also profoundly affect sys-
tem behavior even under normal conditions, because they

constrain the region of attraction of a stable operating -

point. Thus bifurcations influence both the range of stable
operating points as well as the transient stability properties
of those operating points. This is what makes the study of
bifurcations useful from an engineering viewpoint.

We study static bifurcations, dynamic bifurcations and,
especially, chaos' in power systems. A static bifurcation
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IChaos is a concept describing bounded, unstable behavior. More
detailed definitions follow in Section IIL

implies a change in the number of equilibria. A dynamic
bifurcation can be a Hopf, cyclic fold, or period doubling
bifurcation. A Hopf bifurcation causes the emergence or
disappearance of a periodic solution from an equilibrium
point [25]. A cyclic fold bifurcation occurs when a stable
limit cycle and an unstable limit cycle collide and disappear.
A period doubling bifurcation refers to the emergence of a
periodic orbit near another periodic orbit. Static and Hopf
bifurcations are local phenomena. Chaos emerges from a
global bifurcation. This means there is a qualitative change
in system trajectories not restricted to a small neighborhood
of an equilibrium point.

The classical (swing equation) model of a power system
exhibits both local and global bifurcations. Static bifurca-
tions are always present because the power flow equations
have multiple solutions. In power systems where voltages
are determined by reactive power flows, these bifurcations
can shrink the region of stability. An electrical subsystem,
such as the exciter, can interact with machine dynamics
to produce oscillations via a subcritical Hopf bifurcation.
This, too, shrinks the region of stability. As will be seen,
the occurrence of chaos can similarly affect the behavior
around an operating point. _

The paper is organized as follows. In Section II, we
review bifurcations that are relevant to our study. In Section
II1, we discuss chaos and related complicated dynamic be-
havior. Where appropriate, we draw examples from power
systems. In Section IV, simulation results of a classical
power system model augmented by a dynamic load are
presented. Others have studied the same model [3], [5], [6].
The global asymptotic picture of even this simple system is
incomplete, although local bifurcations near an equilibrium
or a periodic orbits are well understood. Some concluding
remarks are collected in Section V.

The classical models with positive damping and loss-
less transmission lines have relatively simple behavior.

‘Because they possess energy functions that can also serve as
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Lyapunov functions, they have no limit cycles.” Trajectories
either converge to equilibrium points or are unbounded. The
existence of unbounded trajectories depends on whether
machine angles are measured [0, 27) or (—o0,+00). The
same conclusion may be drawn for more general struc-
ture preserving systems (with damping), because they too
possess energy functions. General algorithms for the con-
struction of these functions are available in [19], [21], and
[31]. For the classical and structure preserving models,
saddle-node bifurcation (SNB)? is the only possible local
bifurcation. Analytical characterizations of the exact bound-
ary of the stability region of a stable equilibrium point are
available in [12], [35]. For some systems, this boundary
has a “tangled” shape [15]. Details on how this affects the
construction of Lyapunov functions are given in [33].

Global bifurcations can be direct consequences of local
bifurcations. Unstable limit cycles contribute to this tran-
sition by forming homoclinic orbits with other limit sets.
A list of such transitions is given below. More detailed
definitions can be found in Sections II and III.

1) Cyclic Fold Bifurcation: This is an important bifur-
cation for the power system example considered in
Section IV. An unstable limit cycle and a stable
limit cycle are created. The shrinkage of the stability
domain of the stable operating point commences
with the appearance of a pair of unstable-stable limit
cycles.

2) Period Doubling: The study in [4] for a pair of
generators connected to a lossy line shows that in the
case of a supercritical Hopf bifurcation, the stability
of the periodic orbit is short-lived. When the stability
of the periodic orbit is lost, another periodic orbit
of twice its period becomes stable. If this pattern
continues, it is known as period doubling.

3) Homoclinic Chaos: In the classical power system
model with no damping, it is possible to obtain
complicated trajectories provided that the machine
angles are measured in [0,27). Suppose a saddle
connection* in the machine dynamics of a single
swing equation in [0,27) x R is perturbed by a
periodic solution from another part of the power
system. Suppose the periodic forcing perturbation
term breaks up the saddle connection so as to produce
a homoclinic tangle.’ This global bifurcation results
in chaos.

As mentioned, certain types of bifurcations cannot occur
in the classical models. There is a question about validation
of models which do exhibit those behaviors. In the last
instance, validation should be based on observed data. How-
ever, observed data are collected over a finite time interval,
whereas phenomena like chaos characterize behaviors over

2If the machine angles are measured in [0, 27), there may be limit.

cycles.

3SNB occurs when a stable-unstable pair of equilibrium points collide
and disappear.

*A saddle connection occurs when trajectories connect pairs of saddle
equilibrium points.

3 A homoclinic tangle is defined in Section IIL.

arbitrarily long time intervals. Thus the occurrence of
these behaviors must be inferred indirectly. Often they are
manifested as experimental or numerical anomalies. For
example, some bifurcations can produce numerically and
experimentally unobservable quantities such as unstable
limit cycles and fractals like the Cantor set.’ Even if one
were to accept these models as valid, it is usuvally not
possible to prove the occurrence of chaos, and one has
to resort as we do to interpretations of simulation results
that lend support to the claim of occurrence of chaos. Thus
much theoretical and experimental work remains to be done
before one can accept that certain complicated behaviors are
characteristic of power systems.

II. REVIEW OF BIFURCATION TERMINOLOGY

The mathematical literature on bifurcation theory is im-
mensely rich and diverse. A large number of definitions and
concepts have been developed to deal with the qualitative
behavior of the orbit structure of parametrized families of
autonomous dynamical systems. Static bifurcations were
first related to voltage collapse in [23] and nonlinear
oscillations in power systems were identified with Hopf
bifurcations in [1], [4], and [27]. A companion paper in this
volume also analyzes local bifurcations. An EPRI report
provides a review of the literature [32]. In this section, we
present the basic definitions of cyclic fold, period doubling
and the formation of invariant tori. These phenomena can be
viewed as local bifurcations on a suitably chosen Poincaré
section. :

A. Cyclic Fold, Period Doubling, and Invariant Tori

A cyclic fold bifurcation occurs when a stable limit
cycle collides with an unstable one, and both disappear as
the system parameter is further varied. A period doubling
bifurcation refers to the emergence of a stable periodic
orbit 'y near another periodic orbit I';, where the period
of I'y is approximately twice of that of I';. The orbit I';
is stable before the bifurcation, but loses its stability after
the bifurcation. The bifurcation of a periodic orbit for a
differential equation can be studied as a local bifurcations
of a fixed point’ of the Poincaré map P. We first review
the idea of a Poincaré map for a periodic orbit.

Consider a differential equation & = f(z), z € R™.
Denote its solution starting at z by ¢.(z) = ¢(¢,z). The
map ¢ : (t,z) — ¢(t,z) is called the flow of the vector
field f(z). Let T be a periodic orbit of period T' of the
flow ¢. We first take a local cross section S C R"™, of
dimensional n — 1, such that 1) the flow ¢ is everywhere
transverse® to S, and 2) S intersects I' at a unique point

SA fractal is a set with a fractional dimension. The dimension of a set
is defined to be D if the following covering of the set is implemented.
Suppose one were to cover the set with hypercubes of side €. Then,
N(e), the minimum number of such hypercubes needed, would scale as
N(e) ~ €D when € — 0. For a line segment D is 1, for a plane D is
2. For a Cantor set D is an irrational number between 1 and 2.

7A point zg is a fixed point of a map & — f(z) if f(zo) = zo.
8This means the inner product < f(x),n(z) ># 0 for all z € 5,
where n(z) is the normal to S at .
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p. Let Y C S be a neighborhood of p. For g € U the first
return or Poincaré map P : U — S is defined by

P(q) := ¢r(9)(0) = 8(7(2), @)

where 7(g) is the time it takes for the orbit based at ¢ to first
return to S. Thus 7(p) =T and 7(q) — T as ¢ — p. Also
p is a fixed point of P. In local coordinates, P is a map
fromU C R~ o R"~L, so D'P(p) has n—1 eigenvalues,
called the Floguet multipliers (or characteristic multipliers)
associated with the periodic orbit I'.

Theorem 2.1: The periodic orbit I is orbitally asymptot-
ically stable if all the Floquet multipliers have magnitude
less than one. Moreover, p is a stable fixed point for the
Poincaré map if I is stable. O

Consider a one-parameter family of differential equa-
tions & = f(z,u). Suppose it has a periodic orbit for
a parameter value p. Denote the Floquet multipliers by
A1(p), - =, An—1 (). If the periodic solution is stable, then
by Theorem 2.1 A1(p), -+, An—1(p) are all inside the unit
circle. The multipliers are functions of the parameter pu.
As p is varied, some of them may cross the unit circle at
a critical value po. A multiplier crossing the unit circle is
called a critical multiplier. Several types of bifurcation may
occur depending on how a multiplier or a pair of complex
conjugate multipliers crosses the unit circle. There are three
typically possible cases:

1) Only one multiplier crosses the unit circle along the
positive real axis with A;(uo) = 1 for some 1.

2) Only one multiplier crosses the unit circle along the
negative real axis with A;(p0) = —1 for some 1.

3) Only one pair of complex conjugate multipli-
ers crosses the unit circle with |A;(uo)| = 1,
Im(X;(p0)) > 0, and = 1 Ai(ko)| # 0 for some 4.

If p e I', T a periodic OI‘blt for a parameter y, we say that
p is a hyperbolic fixed point for the (appropriate) Poincaré
map P, if none of the multipliers A1(p),- - -, An—1(p) lies
on the unit circle. All the above three cases refer to a
loss of orbital stability when g approaches po from the
appropriate side (Conversely, the system gains stability if
critical multipliers enter the unit circle). Thus there is a
bifurcation at uo. Exactly like in the case for differential
equations, the lack of hyperbolicity causes bifurcations for
a mapping. Without loss of generality, we assume A;(uo)
is the critical multiplier in both case 1 and case 2, and
A(mo) = Xo(uo) is the conjugate pair of multipliers in
case 3. Proofs of the following resuits may be found in [8]
and  [34].

Case 1: [Cyclic fold] A1(uo) = 1 A fixed point for P,
is a point on a periodic orbit that solves the equation

Pul9) —q=0, g€ Sy

Suppose pg is a fixed point for P,,. Since A1(po) = 1,
DyP,, (po)—1I is not invertible, where I is the (n—1)X (n—
1) identity matrix. So we cannot apply the implicit function
theorem to get a smooth fixed point solution p() with pg =
p(po). Indeed the fixed point solution undergoes a saddle-
node bifurcation at po. This corresponds to a coalescence
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of two hyperbolic fixed points, one stable and the other
unstable, as p approaches . The stable (respectively,
unstable) fixed point lies on a stable (respectively, unstable)
periodic orbit. Hence a cyclic fold bifurcation of periodic
orbits corresponds to a (local) saddle-node-bifurcation. of
the fixed point solution for-the Poincaré map.

Cyclic fold bifurcation occurs for the power system
example in Section IV.

Case 2: [Period doubling] A;(uo) = —1 Suppose pg'is
a stable fixed point for P, . The implicit function theorem
gives a smooth fixed point solution y1 — p(u) through
(po, po). However, the solution branch loses' its- stability
and a stable periodic orbit consisting of two periodic points®
of period 2 is present for either . > uo or u < o
depending on whether ﬁ|/\1(uo)| > 0 or ﬁl)\l(ﬂoﬂ <
0. We say that the fixed point solution has -a pitchfork
bifurcation at p. Suppose p near ug is a parameter after
the bifurcation has occurred. Let pi(u), p2(u) be the
two period 2 periodic points for the Poincaré map P,,.
Since Ppu(p1()) = pa2(p) and Pulpa(n)) = pi(p), a
new periodic orbit of approximately twice the period of
the periodic orbit which contains p(u) is-created, and it
intersects the Poincaré section at p; (1) and po(u). Thus a
period doubling bifurcation of a periodic orbit corresponds
to a (local) pitchfork bifurcation of the fixed point solution
for the Poincaré map.

The power system model in Section IV as well as an
example involving two generators in [4] both undergo
period doubling bifurcation. :

As an example, consider the logistic map [26] defined by

Fule)=pz(l-z) , 0<z<1, 1<u<4 (1)

For 1 < p < 4, F, maps [0,1] to [0,1]. Solving the
equatlon F,(z) = z gives the fixed points.0 and z*(u) =

£=1 For z*(u) € [0,1], we need p > 1. We find also
that LFu(0) = poand L£F,(z*(p) = 2 — p. So 0 is
always unstable (since p 2 1) and z*(p) is stable only for
1 < u < 3. There is a saddle-node bifurcation at p = 1
when z = 0 and z* () -annihilate each other. At po = 3,
£ F.(z*(mo)) = —1, so z*(u) undergoes a pitchfork
(period doubling) bifurcation and becomes unstable for
© > 3. Moreover, a stable 2-cycle'” is born. The two period
2 periodic points x1, 2 satisfy the equations

Ty = Fu(21) = poi (1 — 21)
2y = Fu(w2) = pwz(l - 2)

resulting in
l+put/p?2—24—3
T2 = 2” -y 2)
: H
Since 1, x2 form a 2-cycle for the map F),; each is a fixed
point for the iterated map F.. Also the term p? — 24 — 3

9 A periodic point of period 7 for a map f is a point zo which satisfies
f™(x0) = zo, where f™ = fo---o0 f (n times). If n is a period for zg,
then kn is also a period for zq, k = 1,2, - - -. The smallest of all periods
for z¢ is called the fundamental or prime period.

18 A m-cycle for a map f is a set of m distinct points {z1, -+, Zm}
such that f(z;) = z;41, 1 <i<m —1, and f(zm ) = z1. Hence each
z; is a periodic point of period m for f.
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in (2) is negative for p < 3, which explains why period 2
fixed points do not exist for p < 3.

Case 3: [Invariant tori] |A1(mo)] = [A2{we)] = 1,
Im(A1(po)) = —Im(A2(po)) > 0 The implicit function
theorem gives a smooth curve i — p(u) through (po, fo)-
However, the fixed point solution p(y) undergoes a
bifurcation at uo with the emergence of a continuous
one-parameter family of circles C, around p(u), for
u € (uo, o + €) and small ¢ > 0. The circle C, is
invariant'! under the Poincaré map P,,, hence the forward
trajectories |, ¢4 (C,) form an invariant 2-dimensional
torus for the flow of & = f,(z). So if T is the periodic
orbit being considered before the bifurcation, then after the
bifurcation there are orbits emerging around I' which form
a thin torus. We call this a secondary Hopf bifurcation'?
for the periodic orbit I'. Similar to the Hopf bifurcation for
an equilibrium solution in the continuous case, a secondary
Hopf bifurcation is supercritical (subcritical) if the invariant
circle is attracting (repelling) under the flow ¢}, and T'
becomes unstable (stable).

Invariant tori have recently been detected for a 39-bus
power system in [11].

B. Period Doubling as a Route to Chaos

The classic example of a cascade of period doubling
bifurcations leading to chaos is the logistic map F), defined
in (1). Recall that F, has a fixed point given by z*(u) =
ﬁ‘i—l. Initially the attracting set consists of the single point
z*(u) that bifurcates into two points z12(p) at p; = 3.0,
where '

, w2 (3

14 put/u2—-2u-3
2p

T12(p) =

A simple calculation shows that £F2(zi(u)) =

L F2(x2(p)) = —1 when p = pp = 1+/6 = 3.44949 - - .
So the map Fi undergoes a period doubling bifurcation
at pg. Since both z1(u), z2(u) are fixed points for F2,
they lose their stability and bifurcate into four points
at pz. These four points are stable fixed points for .the
iterated map F,f, and thus are stable periodic points of
period 4 for F,. For example, at u = 3.5, the steady
state solution (or attracting set) alternates between the four
values of 0.82694, 0.50088, 0.87500, and 0.38282. As we
increase p further, the number of alternating steady state
values increases with 2™, the interval between successive
bifurcation values decreases, and the distance between
neighboring periodic points decreases until eventually
what looks like a chaotic attracting set appears. This is
called a period doubling cascade to chaos. The chaotic
region is interspersed with bands. In the bands only a
small number of periodic points form the attracting set. We

A set Y € X is invariant under a map f : X — X if f(y) € Y for
allyeY.

121n proving the existence of invariant circles Cy,, we need to assume
the eigenvalue A1 (po) is not a k** root of unity, k = 1,2,---, 5. That

is, ef¥A1(ro) £ 1,k =1,2,---,5. A proof of the result can be found
in [25].

Table 1 First Eight Bifurcation Values for the Logistic Map F),

p1 =30 s = 3.568759- -
po = 3.449490- - - te = 3.569692- . -
p3 = 3.544090- - - pr = 3.569891- - -
pa = 3.564407- - - w7 = 3.569934- . -

will discuss how chaos disappears in Section III. Table 1
lists the first eight period doubling bifurcation values for
F,. The sequence of bifurcation values {u,} converges
geometrically to poo = 3.569945- - -.

III.  CHAOS, CRISES, AND HOMOCLINIC TANGLES

In this section we define chaos and discuss aspects of
sudden changes in chaotic attractors which occur as a
system parameter is varied. These changes are classified as
a boundary crisis or an interior crisis. In the power system
example of Section IV, we only find boundary crises. We
also discuss homoclinic tangles proposed as models for
chaos in power systems in [22] and [30]. Denote a chaotic
invariant set by A. The term chaos is associated with the
following properties.

1) Sensitivity to initial conditions: Trajectories starting at
arbitrarily close initial points will eventually diverge,
making prediction impossible.

2) Periodic orbits: A contains periodic orbits of all
periods. It also contains infinitely many nonperiodic
orbits.

3) Dense orbit: There is an orbit which is dense in A.

4) Cantor set: A is a Cantor set.

The last property also implies that A is a fractal, i.e.,
a subset of the state space of fractional dimension.!* To
better understand the dynamics after the onset of chaos,
we appeal to a result due to the Russian mathematician

- Sarkovskii. The result begins with an ordering of the natural

numbers. The Sarkovskii ordering of the natural numbers
is the following:

3pb5pTp---
24x3p2%5D>2%7>---
22 %322 45022 %70

222852220 1.

That is, first list all the odd numbers except 1, followed by
2 times the odds, 22 times the odds, 23 times the odds, etc.
This exhausts all the natural numbers with the exception of
the powers of 2 which we list last, in decreasing order.
Theorem 3.1: (Sarkovskii Theorem) Suppose f: 8 — R
is continuous and has a periodic point of prime period™* k.
If k1 in the Sarkovskii ordering, then f has a periodic
point of prime period [. O

B3See footnote one for the definition of fractional dimension.

14 A point x¢ is a periodic point of prime period k for a map f if it is
a periodic point of period k for f and k is the smallest positive integer
for which f*(zo) = zo holds.
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Returning to our logistic map example, we see that for
p1 < b < 2, there are two period 2 points z1(u), z2(w)
given by (3). So by the Sarkovskii theorem there must
be a period 1 point (or a fixed point), which we know
is *(u) = “—;1 The point 2* () is unstable! for p > py.
Sarkovskii’s theorem implies that as u is increased, the
logistic map F), must have periodic points of all periods
of the form 2™ before it can have infinitely many periodic
points with distinct periods. It also hints at the possibility
of small windows -of stable periodic behavior after the
onset of chaos. For p =~ 3.83, there is a stable 3-cycle.
So Sarkovskii’s theorem implies there are periodic points
of all periods. This suggests that after the onset of chaos
for the power system example in Section IV there exist
small windows of stable periodic orbits that are not easily
detected by numerical experiments.

The bifurcation diagram for the logistic map is inter-
spersed with bands, and in the bands only a small number
of periodic points form the attracting set. So there is a
transition from a chaotic attracting set containing infinitely
many periodic points to an attracting set with only a small
number of periodic points. The simulations in Section
IV reveal the annihilation of the chaotic attractor as the
reactive power at the load bus is increased. Next, we discuss
“crises” involving chaotic attractors. These phenomena
characterize when and how a chaotic attractor is destroyed.
To understand how the chaotic attractor vamishes, we first
consider an equivalent form of the logistic map. The logistic
map F,(z) = pz(1l — z) can be transformed to a quadratic
map G.(y) := c—y? via the coordinate change y = pz— 4

2
and the parameter change ¢ = 4- — & (or equivalently,

w=1424/ % + ¢). There are good reasons to call G.(y) the
logistic map. For example, the Henon map H(x,y) defined

e

reduces to G¢(y) when b | 0. Also, for small values of b,
the dynamics of H(x,y) becomes invariant on the manifold
{(z,y) : y = ¢ — 32}, which may explain why the shape
of the chaotic attractor of the Henon map resembles a
quadratic curve.!'® More importantly, the simple form of
G.(y) makes the computation of bifurcations and basins of
attraction of fixed points much easier.

Since 1 < u < 4 for F),, the parameter change implies
—% < ¢ £ 2 For ¢ < —% no fixed point exists
and all trajectories go to —oco. At ¢ = —% a saddle-
node bifurcation occurs. The bifurcation creates a pair of
stable and unstable fixed points. These fixed points are

Yulc) = _% .

Y
{:c—y2+b:1:} b bZG (4)

i—+ ¢ which is unstable, and ys(c) =

15The Sarkovskii theorem does not predict which periodic points are
stable.

16 e will discuss in Section IV-D that the chaotic attractor of the power
system model is “close” to the constraint manifold obtained by treating
the load variables as very fast system variables. An explanation for that
phenomenon may help us to understand why the chaotic attractor of the
Henon map is “close” to and resembles the quadratic curve.
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—1 + /% + ¢ which is stable.!” As c is increased to

0.75 (corresponding to 1 = 3.0), y,(c) undergoes a period
doubling bifurcation, followed by a cascade of. period
doubling leading to chaos. ‘

In Section I we reviewed bifurcations of equilibrium
points and periodic orbits. Here we draw comparisons
between bifurcation of a fixed point and that of a chaotic
attractor. A simple definition of a crisis [17] is as follows:
A crisis is a collision between a chaotic attractor and a
coexisting unstable fixed point or periodic orbit. Much of
the classification of a crisis given below is the result
of extensive numerical experiments on the quadratic map
Ge(y) in [17]. ‘

s Boundary crisis: The sudden destruction of the chaotic

attractor and its basin of attraction.is symptomatic of
a boundary crisis. For parameter values just past the
crisis point, the attractor no longer exists. Trajecto--
ries starting in the region that was occupied by the
destroyed attractor would appear to be chaotic, in a
fashion similar to what it was before the crisis, but
only for a finite time after which the trajectory would
leave the region. One is led to speculate what happens
after the destruction of the chaotic. attractor in the
power system model to be considered in Section IV.
One possible explanation is that an unstable voltage
trajectory may “wander” in the vacancy created by the
destroyed attractor for a long time before escaping to
+co. For the quadratic map G.(y), the unstable fixed
point g, is on the boundary of the basin of attraction
when ¢ = 2. As c is increased beyond 2, the chaotic
attractor is destroyed and all trajectories diverge to
—o0. A boundary crisis occurs when the unstable limit
set, such as a saddle periodic orbit, that collides with
the chaotic attractor is on the boundary of the basin of
attraction of the attractor.

s Interior crisis: This is different from the boundary
crisis because collision -occurs within the basin of
attraction. Consider the map G.(y). ‘A bifurcation at
¢ = 1.755 leads to the birth of a stable 3-cycle and an
unstable 3-cycle. The stable 3-cycle becomes chaotic
via period doubling. Since each individual “branch”
of the 3-cycle undergoes period doubling, the chaotic
attractor lies in three pieces. At ¢ & 1.79 the unstable
3-cycle collides with the three-piece attractor. The
three chaotic bands widen to form a single band. An

_ interior crisis is signified by a discontinuous widening
of the attractor.

Fix b at 0.3 and vary c. As cis increased, period doubling

of the stable 6-cycle leads to chaos. At ¢ ~1.0807 a bound-
ary crisis and therefore a homoclinic tangency'® occurs

7They correspond to the unstable fixed point z = 0 and stable fixed
point z* (p) = f‘;—l for the map F,. :

181et p be a saddle equilibrium point (fixed point) for a differential
equation £ = f(z) (a map z — f(z)). Suppose its stable manifold
W*(p) intersects transversely with its unstable manifold W¥(p) at a
point g, i.e., the tangents to the two manifolds at ¢ span the state space.
The point g is a homoclinic point, or q is said to be homoclinic to p. The
coincidence of W% (p) and W*(p) is known as a homoclinic tangency.
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when the unstable 6-cycle on the boundary collides with the
chaotic attractor. One can verify that the unstable 6-cycle
is on the boundary by observing whether some component
of its unstable manifold converges to the attractor. Unlike
G.(y), H(z,y) is a diffeomorphism.'®

Consider a chaotic attractor which emerges as a result of
a period doubling cascade. Are period doubling cascades
prerequisites for homoclinic tangles??® From the definition
of a boundary crisis, it is clear that a homoclinic tangency is
a precursor to a boundary crisis. It seems plausible to assign
the following sequence to these global bifurcations:?!

Period doubling — Chaos — Homoclinic tangles

— Homoclinic tangency — Boundary crisis.

Suppose one has an explicit expression for a homoclinic
orbit. Then the method of Melnikov, which uses pertur-
bation analysis about the homoclinic orbit, can be used
to prove the existence of homoclinic tangles. A classical
three node power system where the mass of one generator
is considerably larger than the other generator, thereby
reducing the system to Sitnikov’s three body problem,
is analyzed in [22]. A classical power system, without
generator damping, has a Hamiltonian structure. For such
a system, it is shown in [30] that a form of chaos called
Arnold diffusion can occur. Both studies use Melnikov’s
method. It is not possible to use Melnikov’s method for the
model power system in our work, because for the example
in Section IV we do not have an explicit expression for the
homoclinic orbit.

IV. SIMULATION RESULTS FOR A POWER SYSTEM MODEL

A bifurcation analysis of a three-bus power system
model, shown in Fig. 1 and previously proposed in [14]
and [3], is presented. The bifurcation diagrams show that
the system exhibits both static and dynamic bifurcations,
and cascades of period doubling bifurcations leading to
chaos. We also study the effects of these bifurcations on
system trajectories by investigating the behavior of the
trajectories near the stable operating point for parameter
values corresponding to the various types of bifurcation.

A. System Model

The system model consists of a load bus and two gen-
erator buses, one of which is a slack bus (infinite bus).
The other generator bus has a fixed voltage magnitude and
swing equation dynamics as given below in (5) and (6).
The load is modeled as an induction motor.

19 A diffeomorphism is a differentiable map whose inverse exists and
is also differentiable. The Henon map H(z,y) is an area contracting
diffeomorphism if | b |< 1.

20 A homoclinic tangle is a set of homoclinic points.

21The order of occurrence depends on the direction in which the
parameter is varied.

impedance of

impedance of
siack bus ™~ VL generator bus
— iz i e
a. X Lg% ©=generator freq. |
Yo L85 ) Yl 8 ) 8= load angle
} V= load voltage mag. i
e [2s] O
(slack bus) enerator bus
[non-slack)

Fig. 1. A three-node power system model.

We use the parameter values in [3]. This gives rise to a
system of four differential equations of the form:

f=w (5)
W= —dpw—Vsin(d - 6) + P, (6)
Kb =K, V2~ K,V +Q.—Q (N
191(0,6,V;Q)
KKy TV = Kpy K, V2 + KoV — Qe + Q)
+ Kqu[P. — P = Kp, V] 3
= 92(07 67 V; Q)

The variables @ and w are the machine angle (in radians)
and angular velocity (in radians per second). V and ¢ are
the voltage magnitude (in pu) and angle of the load bus. The
normalized nonslack generator damping coefficient is d,,.
The terms in square brackets are the load flow equations
for a constant PQ load, where P and @) are the real and
reactive power demand at the load bus. The electrical real
power P, and reactive power (). delivered to the load are

P, = —mVsin(6) — 4V sin(6 — 6) )
Qe = +71V cos(6) + 72V cos(§ — 0) — y3V2  (10)

where ~; are products of conductances and constant volt-
ages behind reactance. The coefficients K;; are derived
from the induction motor model proposed in [14] and [3].
The constant K, is small so that the (6, V") dynamics are
faster than that of (6,w). The real and reactive powers P
and Q. demanded by the induction motor are modeled as

P. = Kpub + KpoV + Kp, TV + P (11)
Qe = Kgub + KV + K, VE+ Q. (12)

Note that (12) is the same as (7). The variable § can be
eliminated by substituting (12) into (11) to obtain (8).

B. Bifurcation Analysis

Three sets of bifurcation diagrams are drawn for different
values of machine damping coefficient d,,,. The parameter
varied in each diagram is @, the reactive power demand.
The bifurcation diagram that exhibits the richest qualitative
behavior, including two period-doubling routes to chaos, is
for the value d,,, = 0.05. When d,, is increased to 0.1,
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Equilibrium number 2: \
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| unstable (type-1 equilibrium point) l
(one real and positive eigenvalue)
Q=105 Q=1141136

UHB: Q = 10.94681
SHB: Q = 11.40665
SNB: Q = 11.41136

Fig. 2. Stability of equilibrium points showing local bifurcation
values.

all period-doubling bifurcations are suppressed. At d,
0.114 the only bifurcation is the saddle-node bifurcation
(SNB), defined in Section I. For d,,, = 0.05 we observe six
types of bifurcations:

1) CFB, Cyclic Fold Bifurcation: ¢ = 10.81813,

2)- PDB1, Period Doubling Bifurcation: @ = 10.87327,

3) UHB, Unstable or Subcritical Hopf Bifurcation: @ =
10.94681,

4) PDBs, Period Doubling Bifurcation: @ = 11.38779,

5) SHB, Stable or Supercritical Hopf Bifurcation: Q =
11.40665,

6) SN B, Saddle-Node Bifurcation: QQ = 11.41136.

All the simulation results are obtained using the bifurca-
tion analysis software package AUTO [9] and the nonlinear
system simulation toolkit DSTOOL [7].22

Fig. 2 shows the location of the Hopf bifurcations with
respect to the position of the eigenvalues for d,, = 0.05.
For the range of @) values considered, the system has
two equilibrium points. One of them is always unstable.
The Jacobian at this equilibrium has one real and positive
eigenvalue and three open left half plane eigenvalues, so
it is a type-1 unstable equilibrium. The other equilibrium
is ‘stable and denoted wg. At @ = 10.94681, there is a
U H B with the emergence of an unstable limit cycle around
zs for @ < Qump, hence by the exchange of stability
property given in [25], zs loses stability for Q@ > Quus.
At ) = 11.40665, there is a SH B, so zs regains stability
for Q@ > Qsgp. At Q = 11.41136, a SN B occurs and
the equilibria coalesce and become a single equilibrium
at which the Jacobian is singular and has a simple zero
eigenvalue.

22For details, email the authors at dstool-list@macomb.tn.cornell.edu.
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Fig. 3. Location of the complex eigenvalues as ¢} changes.

The Jacobian at z; has a pair of complex eigenvalues .
and two real and negative eigenvalues. Fig. 3 shows the
movement of the pair of complex eigenvalues, as @ is
increased from 10.5 to Qsnyp = 11.41136. The eigenvalues
cross the jw axis transversely at @ =Qygp so that
zs becomes unstable for Q > Qugg, and recross it at
@ = Qsmp so that z, regains stability for Q > Qsus.
At Q = Qump, the complex eigenvalues are +jwg =
+43.746. By the Hopf bifurcation theorem, the unstable
oscillations corresponding to @ values slightly less than
Quzp have periods approximately equal to 2” . We check
that for Q@ = 10.9459, a parameter value shght]y less than
Qump = 10.94681, there is an unstable per10d1c solution
oscillating at a period of 7' = 1.677 ~ o T seconds. For @
near Qsn B, the real part of the e1genva1ue is very sensitive -
to changes in Q. At @ = Qgnp, one of the two real
and negative eigenvalues crosses the jw -axis and becomes
positive. This reactive power demand corresponds to the
system steady-state operating limit, and the system has no
operating solution for Q@ > QgsnB.

C. The Effects of Damping on the
Occurrence of Bifurcations

Figs. 4-6 show bifurcation diagrams for'three values of
machine damping: d,, = 1) 0.050, 2) 0.100, or 3) 0.114:
From (5)—(8) we know that different values of d,, have
no effects on the locations of the two equilibrium points.
However, the Jacobian evaluated at the equilibrium points
will be different. In Fig. 5 there are no period doubling
bifurcations. Also implied is the absence of chaos, since
the route to chaos (for the system being considered here) is
followed via a sequence of period doubling bifurcations as
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Fig. 4. Bifurcation values for V, damping = 0.05.

will be seen later. It may be possible as in [4] to calculate
the value of d,,, at which no period doubling bifurcation can
occur. Fig. 5 also shows that a UHB occurs at Q = 11.3365
and a SHB occurs at Q = 11.3975. The unstable and
stable limit cycles emerging from these two bifurcations
collide at a CFB at @ = 11.3295. Also, the distance
between the two values Qugp and Qsgp for d,, = 0.1
is smaller than that for d,, = 0.05. In Fig. 6, all the
dynamic bifurcations CF'B, UHB and SHB disappear.
There is only a static bifurcation SNB at Q = 11.41136.
In fact, as d,, is increased, UHB and SHB will come
closer until they coincide with each other and disappear at
some value Q = Qgpg. This corresponds to a degenerate
Hopf bifurcation [10] and an eigenvalue plot similar to
that in Fig. 3 will show a nontransversality in the pair of
eigenvalues crossing the jw axis.

D. Period Doubling Routes to Chaos

For d,, = 0.05, numerical results show that there is cas-
cade of period doubling bifurcations starting at QppB, =
10.87327. Similar to that for the logistic map discussed
in Section II, this sequence of bifurcation values con-
verges quickly to a value around 10.89. Fig. 7 shows
the bifurcation into doubly periodic oscillations in state
space and Fig. 8 shows voltage magnitude versus time of
the period doubled bifurcation. A periodic double-loop is
clearly observed in Fig. 7. Fig. 8 is the corresponding plot
of V versus time and shows that the “lower envelope”
exhibits modulation between the two values 0.83 and 0.855.
The period of this periodic double-loop is 3.31 s, roughly

CFB

stable stationary branch

SHB

load voltage magnitude V (in p.u.)

055t stable stationary
2 branch
e
CFB
SNB
09r
unstable stationary branch
[).85 1 1 I
115 113 113 114 1145
teactive power demand Q
S: stabie periodic branch
U: unstable periodic branch
Fig. 5. Bifurcation values for V, damping = 0.1
12 T 1
Lif
3
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>
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:
§, 09
£
[
¢
’§ 08
3
8
o unstable stationary branch
‘!}.6 L L 1 i 1 L
102 104 106 108 1l 2 04 18
reactive power demand Q
Fig. 6. Bifurcation values for V, damping = 0.114.
twice the “fundamental period” i—’g, where wy = 3.78

is the imaginary part of the pair of complex eigenvalues
at @ = 10.87857. Further period doubling bifurcations
occur as @ is increased. These period doublings accumulate
in a dense fashion on the attractor shown in Fig. 9 for
Q@ = 10.894. The chaotic motion has a crude orbit structure,
and its “fundamental period” is approximately 1.67 s. As
implied by the Silnikov theorem [18], this period is roughly
Z—’l', where wy = 3.771 is the imaginary part of the complex
eigenvalues at Q = 10.894. Therefore the approximate
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Fig. 8. Voltage versus time of a periodic solution (solid) and its
doubly periodic oscillation after a PDB (dashed), @ = 10.87857.
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Fig. 9. Chaotic dynamics due to successive PDB’s, @ = 10.894.

frequency of the chaotic oscillation is between 1 and 2 Hz.
The chaotic structure is first observe at about @ = 10.89,
but disappears in a boundary crisis when the reactive power
demand is increased to ) = 10.894.

When () is decreased beyond PDBs, there is a similar
cascade of period doubling bifurcations. Similar to the other
chaotic attractor that exists for 10.89 < @ < 10.894, this
attractor exists for @ in the range [11.377, 11.38]. We
observed that the strange attractor at ¢ = 10.894 is larger

1492 )

Two chaotic attractors: (1) Q = 10.894, (2) Q= 11.377
T T T
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& &
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075 0 o1 02 03 04 05 06 07

Generator angle (in rad.) ’

Fig. 10. The two chaotic attractors: (1) Q@ = 10.894, and (2)
Q = 11.377.

other PDBs other PDBs
DB
PDB, UHB PDB; SHB
chaos chaos SNB
CFB
l l L
Q=105 Q=1141136

CFB: Q=10.81813, PDB;: Q=10.87327 , UHB: Q= 10.94681

chaos: 10.89 < Q < 10.894

SNB: Q=11.41136, SHB: Q= 1140665, PBD,: Q=11.38779.
chaos: 11.377 < Q< 11.38

Fig. 11. Partition of the parameter space with respect to bifurca-
tion values. .

in size than the one obtained for @ = 11.377. Fig. 10
shows a comparison of the two attractors in the (6,V)
space. Finally, Fig. 11 shows the partition of the parameter
space, 10.5 < Q < 11.41136 = Q¢np, with respect to the
various bifurcation values considered in this section.

E. Chaotic Dynamics and the Constraint Manifold

Suppose we set K, = 0 in (7) and (8) so that the load
variables (6, V) are infinitely fast. Then the system equa-
tions will consist of two differential equations -constrained
by two algebraic equations:

f=w ‘ (13)
w= —dpw— Vsin(f - §) + P, 14)
0=g1(6,6,V;Q) (15)
0=92(0,6,V;Q), : (16)

where ¢1(6,6,V;Q) and g2(0,6,V; Q) are the right-hand
sides of (7) and (8), respectively. The dynamics of (13)—(16)
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Fig. 13. Stable double-loop limit cycle and constraint manifold,
Q = 10.87858.

are confined to lie on the two-dimensional constraint man-
ifold

M :={(0,w,6,V):91(6,6,V;Q) = g2(6,6,V;Q) = 0}.

a7
A companion paper in this session discusses systems with
constraints. The model given by (5)—(8), however, admits a
realistic, small positive parameter K,,. For nonzero K.,
it is plausible that singular perturbation results in [13] and
[29] can be modified to show that trajectories of (5)—(8)
are close to the stable component? (denoted M,) of M.
We postulate that trajectories going through period doubling
bifurcations will lie close to the stable component of M,
and will be repelled from the unstable component (denoted
M,).

When Q = 10.85582, a value smaller than Qppp,,
Fig. 12 shows M and the stable limit cycle I'; and it can
be seen that I', lies close to M. As @ is increased beyond
QPpB,, Fig. 13 shows that a stable double-loop limit cycle

ZThe stable (unstable) component of A is the set of
points (8,w,8,V) € M where all (some) eigenvalues of

[Ds,v)91(6,6,V;Q) | Dsvy92(8,6,V;Q)] are in the open
left-half (right-half) complex plane.
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Fig. 14, Chaotic trajectory and constraint manifold, @ = 10.894.

voltage

magnitude }
(in p.u.)
1157
V componerit
of stable
equilibrium
(1.0897 p.u,)
0907 |
direction of
voltage collapse
V component of
type-1 equilibrium
07071 (0.7812 p.u.)
n I L L I
-
100 200 300 400 500 time
{in seconds)

Fig. 15. Voltage collapse: divergence of the unstable manifold of
the type-1 equilibrium, @ = 10.945.

is born. The two loops “collapse” into a single loop at
points near M,. The same is true as Q is further increased.
Fig. 14 shows that period doubling bifurcations result in a
“thickening” of the trajectory at points close to M,,. The
orbits appear to collapse into one loop near M,. These
observations are yet to be mathematicized.

F. Voltage Collapse

For some values of () smaller than Quyp = 10.94681
but larger than ) = 10.894 at which chaos gets annihilated,
the unstable manifold of the type-1 equilibrium does not
converge to z,. Fig. 15 shows that for @ = 10.945,
the voltage component of the unstable manifold oscillates
around and away from the stable equilibrium z,, and
later experiences a sudden sharp drop—a voltage collapse.
Fig. 16, for Q@ = 11.378, shows that the voltage compo-
nent of the unstable manifold of the type-1 equilibrium
converges to the chaotic attractor. The presence of this
stable structure (the chaotic attractor) appears to “stabilize”
the system, preventing voltage collapse. Increasing (Q after
encountering the second chaotic attractor, we observe in-
verse period doubling at @ = 11.38779. This culminates
in a supercritical Hopf bifurcation at () = 11.40665. The
saddle-node bifurcation occurs at Q = 11.41136.
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V. CONCLUDING REMARKS

Bifurcations occur at parameter values where there is a
qualitative change in system behavior. For the three-bus
model studied in Section IV, this change can characterized
in terms of attractors.

1) There are at most three attractors for any value of
Q € [10.5,Qsnp = 11.41136], denoted R;, R2 and
R3. We consider infinity (£oc0) to be an attractor.
Label oo as Ry.

2) The attractor labeled Ry is the one of most engi-
neering interest. For ) < Quggr and Q@ > Qswya,
Ry is zs, the stable operating point. For values of
@ between Quyp and Qsgp, R disappears since
T becomes unstable and the Jacobian has a pair of
complex open right half plane eigenvalues.

3) Rj3 makes its appearance at ) = Qcpp as a stable
limit cycle. Rs undergoes several dynamic bifur-
cations after Jppp,. The period doubling cascade
transforms Rg into a chaotic atfractor; a possible
global bifurcation eliminates R3 at a ¢ value near
10.894. Rj3 reappears just before Q) ppp, as another
chaotic attractor. Between Q) ppp, and Qsmp, Ra is
a stable limit cycle.

4) For values of Q between 10.894 (which corresponds
to the disappearance of the first chaotic attractor) and
11.377 (which corresponds to the appearance of the
second chaotic attractor), numerical results show that
R is the only attractor. These parameter values imply
transient instability. Also voltage collapse can take
place.

5) There must exist at least one unstable limit set on
the boundary of each of the attractors R;, 1 <1¢ < 3.
Denote the boundary of R; by 9(R;). We can test this
by checking whether some component of the unstable
manifold of the unstable limit set converges to R;.
We restrict ourselves to “some component” because
‘an unstable limit set could be on a boundary 9(R;)
which is “shared” by more than one attractor.

6) . For the example considered in Section IV, the follow-
ing unstable limits sets, denoted U;, can be identified.
U is a type-1 unstable equilibrium point that persists

1494

until Qsnyp. Between Qopp and Qu g p, the unsta-
ble limit cycle emerging from the subcritical Hopf
bifurcation at Qugp is labeled as Us,. Since the
two chaotic attractors are formed as a result of two
cascades of periodic doubling bifurcations, there is
probably a countable but infinite number of unstable
limit cycles for () values belonging to two narrow
nonintersecting intervals which lie in between the
values Qppp, and Qppp,. Between Qump and
Qsups Ts turns into a type-2 unstable equilibrium
point, which we label as Us. After Qsyp only U
remains.

7) A component of the unstable manifold of U; con-
verges to Ry for ¢ < 10.894. The load demand
@ = 10.894 is where the chaotic attractor that occurs
after PD B vanishes. At ('= 11.37, another chaotic
attractor makes its appearance. For 10.894 < @ <
11.37, the same component of the unstable manifold
of U; converges to R; (infinity). For 11.37 < @ <
11.38, this component converges to Rs, which is-
now a chaotic attractor. It is clear that for parameter
intervals between these “switchings” of convergence
to various F;, there must exist scenarios that violate
transversality. Examples of nontransversal scenarios
are trajectories connecting pairs of unstable limit sets.,

In seeking explanations other than the saddle-node bifur-
cation to voltage collapse, we have presented a numerical
example in Section IV where voltage collapse occurred
because the chaotic attractor is destroyed in a boundary
crisis. Prior to voltage collapse, we have identified, using
the results of Silnikov in [18], that the approximate fre-
quency of chaos is related to the imaginary part of the
complex eigenvalues of the Jacobian linearized about the
operating point. This approximate frequency is between
1 and 2 Hz. Whether or not such an oscillation is ac-
ceptable to the power system depends on the mechanical
frequency of generators connected to the network. Electrical
subsynchronous resonances**have been known to damage
the mechanical shaft of generators. Although the example
presented in Section IV is small, the same conclusions seem
to hold for a 39-bus power system [11]. This confirms
that Hopf bifurcations and chaos do occur in large scale
electric networks operating under stressed conditions. Our
simulation results show that the second chaotic attractor
serves to “stabilize” the system after voltage collapse. This
can be viewed as an advantage of chaos. The. deleterious
effects of chaos are that the magnitude of the chaotic oscil-
lation may be unacceptable for thermal overload reasons or
that its harmonic content could damage generators or othér
components connected to the network.

Since the period-doubling route to chaos is the outcome
of a cascade of bifurcations commencing with the Hopf
bifurcation, the prevention of chaos is directly connected to
the prevention of the Hopf bifurcation. The Hopf bifurca-
tion was shown to exist because of voltage exciter systems

24 A subsynchronous resonance signifies an electrical oscillation below
the line frequency of 60 Hz. B
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in [27]. As shown in Figs. 4-6, the Hopf bifurcation can
be prevented by an increase in machine damping. This may
also be achieved either by power system stabilizers or by
the use of high power solid state switches as described in
[20].
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