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This paper studies many fundamental aspects of a newly proposed multi-class traffic flow
model. For the first time it presents a complete discussion on the hyperbolicity of the system;
and based upon this, the admissible waves of the Riemann problem are deeply investigated.
Many important conclusions are made in discussions, and the related physical meanings are
interpreted. For the confirmation of main conclusions, numerical examples are given at the
end.

1 Introduction

In dealing with hyperbolic conservation laws, the Lighthill-Whitham [11] and Richards
[14] (LWR) traffic flow model has played an important role for better understanding of
linear and nonlinear waves. This model reads:

pt + (pre(p))x =0, (1.1)

where p denotes the density, and the velocity is determined by the state equation v = v,.(p),
with v,(p) < 0. To interpret shock and rarefaction waves, model (1.1) was intensively
studied in Whitham’s [18] masterpiece. Actually, by the transformation ¢ = ¢’(p), where
q(p) = pve(p) is strictly concave, (1.1) becomes the following Burgers equation:

o+ <;c2> =0. (1.2)

It is well known that (1.2) is most critical for the study of hyperbolic differential equations,
and we note that (1.1) and (1.2) are equivalent also in the distribution sense for linear
function v,(p).

Based on (1.2), or more likely on (1.1) in the physical sense, extensions could be made
for the study of many properties of hyperbolic PDEs, which in return serve for application
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purpose [22, 23, 24]. To learn about more complicated kinematic waves, one may consider
a continuum flow with heterogeneous (m) media, in which the fields of the velocity
v; of the ith class is a function of all density {p;}L,, governed by the state equation
v; = vi(p1,...,pm). Thus, by the mass conservation for each class, a multi-population
system can be written as

(pi)e + (pivi)s =0, i=1,....m. (1.3)

In general, (1.3) might model some flow phenomena [1, 2, 4, 19] at least at the level of
an analogue. However, the proof or disproof of its being hyperbolic would be difficult for
m > 2, and more would be the study of its wave propagation properties. This is because
the eigen-polynomial might be implicit, and more likely would be the eigenvalues. For
example, in Wong & Wong [19] and Benzoni-Gavage & Colombo [2], the state equation
is set to be

vi =vilp), vi(p) <0, i=1,...m, (1.4)

where p is the total density, i.e. p = 2", p;. Furthermore, in some problems the ‘fluid’ is
considered compressible so that the total density is no greater than some p,,,,. That is,
the solution vector is bounded in D = R™, where the corresponding open domain is given
by

D= {ulp;>0,i=1,...,m; 2" 1 pi < Pax}- (1.5)

In addition, all velocities of (1.4) are bounded such that
vi(0) = bi, vi(pmax) =0, Vi (1.6)

We note that system (1.3) and (1.4) is precisely an extension of scalar hyperbolic
conservation equation (1.1), such that they are identical for m = 1, p; = p, and v; = v,.
For this reason and mostly for theoretical curiosity, the present paper firstly provides
a detailed discussion on the hyperbolicity of this system. In Zhang et al. [21], the
hyperbolicity remains unknown and has been taken as a conjecture. In Benzoni-Gavage &
Colombo [2], this was shown by means of a symmetriser for the special case that v; = v;(p)
are linear functions, but the approach cannot be applied to the general case. Based on a
thorough study of the hyperbolicity for the general case, we derive a clear mathematical
structure of the system.

The discussion of the present paper is organized as follows. In § 2, a concise mathematical
expression of the eigen-polynomial is derived. By the intermediate value theorem and
mathematical induction, m properly bounded real eigenvalues are implicitly ensured,
and thus the system is hyperbolic (§2.1, Theorem 2.1). Further, classification of being
hyperbolic is made over the entire solution domain D; accordingly, the eigenvectors are
solved, depending on the corresponding eigenvalues (§2.1, Lemma 2.1, Theorems 2.2
and 2.3). It is concluded that the system is strongly hyperbolic wherever the solution
involves intersections by two or more velocity curves, and that the system is non-strictly
hyperbolic somewhere at a boundary p; = 0 (V i). Meanwhile, the system is strictly
hyperbolic in other solution regions in general. The characteristic fields are defined in
§2.2. Their continuity is guaranteed in the whole solution domain D (Theorem 2.4),



Multi-population partial differential equations 173

whereas a multiple eigenvalue is not differentiable in some (m — 1) or (m — 2) dimensional
subsets in which the hyperbolicity of the system also degenerates.

In §3, the k-shock and k-rarefaction waves of the Riemann problem are thoroughly
investigated. These waves are ecither ‘compressive’ or ‘expansive’ (Theorem 3.1 in §3.1,
and Theorem 3.3 in §3.2), subject to the velocity fields. However, it is indicated that
the compressive shock and expansive rarefaction should be regular. That is, all densities
increase after passing through the k-shock, whereas they decrease after entering the
k-rarefaction fan. Note here that the first (k — 1) classes travel slower than the k-wave,
but the last (m — k + 1) flows are faster. The above descriptions are guaranteed for
certain types of velocity fields (Theorem 3.2 in §3.1, and Theorem 3.4 in §3.2). In §3.3,
we indicate that a contact merely arises from an eigenvalue that is identical to the
velocities of at least two flows. For such a contact, all necessary Riemann invariants are
obtained.

In §4, the fifth-order accurate WENO scheme is introduced for numerical approxima-
tions, based on Lax-Friedrichs flux-spitting (§4.1). All numerical examples are designed to
examine the main conclusions in § 3, namely to observe all waves of the Riemann problem
(§4.2).

The final results are summarized in § 5.

2 Hyperbolicity and characteristic fields

We rewrite the system (1.3) and (1.4) in the following conservation form:
u; + f(u)y =0, (2.1)

where the solution vector u = (p1,...,pm)", the flux f(u) = (p1v1(p), ..., pmm(p))T. The
Jacobian of f(u) is written as

v+ gl T 1 1
&) vy+c - ) &)
fu= , ¢ =pwl(p) <O.
Cm—1 Cm—1 U=l F Cm—1 Cm—1
Cm Cm e Cm Um + Cmy

Here, we note that ¢; = 0 if and only if p; = 0. To concisely express the eigenpolynomial
P, (1) = det(f, — AI), namely the determinant

cp+uv— 4 C1 C1 Cq

(&) o+ —I4 - () C)
(2.2)

Cm—1 Cm—1 T Cp—1 T Up—1 — A Cm—1

Cm Cm e Cm Cm + U — A
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We proceed as follows. First, let (v; — 4) be taken out as a factor from the i-th row,
i=1,...,m, so that (2.2) has the form

1+ K; K, s K, K,
m K, 1+K, --- K, K, .
H(Ul_;) |, K= G (2.3)
i=1 K, K, R K1 K, v
K, K, s K, 1+ K,

Then let the first (m—1) rows be added to the last row, hence, all its elements are identical.
We then have

Pu(2) = [ i = DQm(2),  Qm(2) =1+ > Ki(d). (24)
i=1 i=1
Note that only row transformations are involved in the above arguments.

2.1 Hyperbolicities of the model equation

From (2.4), the hyperbolicities of system (2.1) are clearly discussed below.

Theorem 2.1 The Jacobian f, has m bounded real eigenvalues for u € D; thus system (2.1)
is hyperbolic on D.

Proof Given u € D, we first deal with one special case in which no two v; are equal and
no p; is zero. For this case we assume that

v <y << Uy < Uy, pi >0, Vi (2.5)

We can verify that, by (2.4)—(2.5),

sgn(Py(v;)) = (1), i=1,...,m; sgn <Pm (1)1 + Zci>> =1. (2.6)

By the intermediate value theorem, (2.6) implies that the polynomial P,,(1) has m distinct
eigenvalues {/;}", bounded such that

m
01+Zci</11<v1<22<v2---<v,»,1</1i<vi<--'<v,,,,1<)Lm<vm. 2.7)
i=1

We then apply mathematical induction to other cases in which at least two v;’s are
equal or at least one p; (or ¢;) is zero. The conclusion is obvious for m = 1. Assuming
that this is true for all [, where 1 < < m, we prove it is also true for [ = m.

Obviously, by (2.4) this case is equivalent to having an eigenvalue 4 = v;. We can always
arrange the sequence of {v;}", to reset A = v, = = v, (0 < k < m). Here, v, is not
equal to any other v;, and {v;}"; do not necessarily follow the sequence of (2.5). For the
case we rewrite (2.4) to be

Po(2) = (om — 2 Bui(2), (2.8)
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where
m—k m—k

Poi(2) =[] @i = D0ui(D),  Qui() =1+ K,
i=1 i=1
and

~ m
> . > Cm—k ~
K,':Ki, forlgm—k—l, Km—kzmin Cn—k = § Ci<0
Um—k — 4 i=m—k

For k > 1, we claim that all roots of P,(4) are real, simply by applying either (2.7) or
the assumption for [ on the polynomial P,_¢(1) of (2.8). For k = 0, that . = v,, is an
eigenvalue is equivalent to having ¢, = 0. This means that

Pm(;b) = (Um - ;L)mel(i):
and we have the same conclusion. O

The above arguments lead to the following conclusion.

Corollary 1 For u € D, some v; € {v;}", is an eigenvalue of f,, if and only if p; = 0, or
31+j, st. vy =vj

Corollary 2 For u € D, P,(%) has a multiple root A only if 1 € {v;}™,.

Further identification of system (2.1) must involve multiple eigenvalues, which could be
some A = v,. With reference to (2.8), we start with the following lemma.

Lemma 1 For u € D, suppose that A = v,, is a real root of P,,()) satisfying v = -+ = vy
(0 < k <m), and vy, is not equal to any other v;. We have

(1) if Cy_r <O, then the multiplicity of Aisk (k>=1);

(ii) if Cmk =0 and Qm_i(vm) £ 0, then the multiplicity of /. is (k + 1) (k

>0); and
(iii) if Gpr = 0 and Qp_k(vy) = 0, then the multiplicity of 7 is (k +2) (k > 0).
Proof Because P,,_k(vy) = ¢nx + 0, (2.8) implies conclusion (i). For &,_; = 0, we rewrite
(2.8) to be

m—k—1 m—k—1
Pm(/l) = (Um - /l)k-H H - ;h ( + Z Kz) Um - ;“) +1Pm k— 1())
i=1

We reach conclusion (ii) as Qn—_x(vy) % 0 implies Pp_i—i(vy) = 0, and Py_j_1(vy) < o0.
Finally, we reach conclusion (iii) as Qy_(v,) = O implies Pp,_i_i(v,) = 0, and A = v,, is
just a single root of P,,_x_1(4) by Corollary 2.2. O

With reference to Lemma 2.1 and by the theorem below, we investigate whether
the multiplicity of each eigenvalue 4 = v; coincides with the maximum number of its
linearly independent eigenvectors. A positive answer ensures a complete set of linearly
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independent eigenvectors of f,, thus system (2.1) is at least strongly hyperbolic; otherwise
it is non-strictly hyperbolic.

Theorem 2.2 For u € D, the Jacobian f, has a complete set of linearly independent ei-
genvectors and thus system (2.1) is at least strongly hyperbolic if and only if Q,,(v;) * O,
i=1,...,m. Here Q,(A) is defined in (2.4).

Proof For any v, 0,(v;) = 0 implies that v; is an eigenvalue. Therefore, we only need to
prove that the multiplicity of an eigenvalue A = v; coincides with the maximum number
of its linearly independent eigenvectors if and only if 0,(v;) + 0. Here, we again set j = m
and follow Lemma 2.1. Hence, there are three cases for consideration.

Also note that Q,,(4) = Q,_x(4) by (2.4) and (2.8), and that we can track back to (2.2)
(but not (2.3)) to continue row transformations on the corresponding matrix f, — Al. The
common step for these transformations is to divide the first (m — k — 1) rows of (2.2),
respectively by (v; — 4),..., (Um—k—1 — 4), to have

1+K - K K K,
K, e T+ Ky R K
fu— 2l ~ k—1 + k—1 k—1 k—1 (2.9)
Cm—k T Cm—k T Cm—k Cm—k
Cm T Cm T Cm Cm

For case (i) of Lemma 2.1, we sum up the last k rows of (2.9) to its (m — k)th row, and

m—i

all elements in the row become Zi:lk ¢j = Cu— * 0. The further transformations follow
so that we have

1 0 0 0 0
fu—=M~|0 - 0 1 -+ 1 1

By this, we have rank(f, — Al) = m —k, and k linearly independent eigenvectors,
pml = (0, : ’,0,_1, 1307. : .ao)Ta"'apmk = (O’ : .70>_170705. ) 1)T> (210)
where the —1 is in the (m — k)-th position.

For case (ii) of Lemma 2.1, ¢,y = 0 implies ¢; =0, i = m —k,...,m. We sum up all of
the first (m — k — 2) rows to the (m — k — 1)th row, thus the first (m — k — 1) elements in
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the row become Q,,(v,,) * 0. Then, similar row transformations give

1 0 K1 Kl
N 0 1 KVm—k—l Km—k—l
u I~ 5
fum? 0 0 0 0
0O 0 O 0 0

where K; = Ki(Uy)/Om(vp), i = 1,---,m —k — 1. Accordingly, rank(f, — 1) = m —k — 1,
and we have k + 1 linearly independent eigenvectors,

me = (_Kla o 9_Km—k—13 1907 e aO)Ta' ey
pmkﬂ = (_Kla e 7_Km—k—1>0705 T I)T (211)

In the above two cases, Q,,(v,;,) = oo (F 0) and the multiplicity of eigenvalue /4 = vy,
is truly equal to the number of the solved linearly independent eigenvectors. Therefore,
we only need to verify that the two numbers are not equal for case (iii) of Lemma 2.1.
We sum up the last (m — k — 2) rows of (2.9) to its (m — k — 1)-th row, which yields, by
Qm(Um) =0,

1+K; - K, K, Ki - K
Ky - 1+ Kno2 Kpko Kpio - Kuko
fu—il~| o - 0 0 1 -1 | e
0 0 0 0 0

As Q,,(v,) = 0 also implies that at least one element of the set {Kl-}lm;lk_l 1S not zero, we
assume that K,,_,_; + 0 as well. We then sum up the first (m — k — 3) rows of (2.12) to
its (m — k — 2)th row, thus the first (m — k — 2) elements in the row become —K,, ;1. Let
the row be divided by —K,,,__1, then the further transformations give

1 0 o 0 0

: ; 0

o --- 1 On—k—2 0 0
fu—i~|0 -0 0 1 1],

o - 0 0 0 0

0 0 0 0 0
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where o; = K; /K, _—1, i =1,---,m—k —2. It is easy to see that rank(f, —v,) =m—k—1,
and we can only solve for at most k + 1 linearly independent eigenvectors, i.e.,

pl‘m = (07...50307_15 17”.90)Ta--->pmk = (O,"',O,O,—I,O,"',I)T,

and
pmk+1 = (Kla e 9Km—k—2aKm—k—1a05 03 e ’O)T' (213)
In this case the multiplicity of A = v, is (k 4+ 2). This completes the proof. O

Finally, some sufficient conditions for system (2.1) to be strictly hyperbolic can be
derived directly from the above. In a stronger sense, (2.5) guarantees m distinct eigenvalues
for u € D, and the corresponding eigenvectors can be solved similarly. This is concluded
by the following theorem.

Theorem 2.3 Suppose that the inequalities of (2.5) hold for all u € D. Then, system (2.1) is
strictly hyperbolic in D with m distinct eigenvalues, being in the sequence of inequality (2.7).
Moreover, the m linearly independent eigenvectors are

pilZ) = (Ki(Za), -, Kn(2))', i=1,...,m, (2.14)

where K;(4;) is given by (2.3).

2.2 General descriptions on characteristic fields

Based on the previous discussion, we define the characteristic fields of system (2.1), on
which some heuristic comments and conclusions are also presented. Primarily, we define
the velocity fields 5 = {Bi(p)}, as follows.

Given u and denote by sy = {vi(p)}/L;, then (i) set Ti(p) = min, e, {vj(p)} and s; =
so — {Di(p)}; and (i) for i = 2,...,m, set Bi(p) = miny e {vj(p)} and s; = 5,1 — {Ti(p)}.
The definition directly gives the following lemma.

Lemma 2 The function set 3 = {B;(p)}/~, is in the sequence of inequalities:
Ti(p) < -+ < Bialp) < Tilp) < - < Buwlp), Vps (2.15)

and each function ;(p) is continuous and strictly decreasing.

The proof of the continuity of ;(p) is trivial. Take m = 3, for example, the continuity
is evident since

3
Bi(p) = min(vy,v2,03), B3(p) = max(vy, vy, v3), Balp) = Y vi — By — B,
i=1

We then define m characteristic fields simply by numbering the m eigenvalues from the
smaller to the larger for a fixed u € D, which implies that

Au) < < Aimi(u) < Aiu) <0 < Al(u). (2.16)
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FIGURE 1. Intersection by velocity curves.

By the definition, we also have
Lemma 3 The function sets {2;(u)}", and 3 = {0i(p)}I", form the following interlaced
sequence of inequalities:

J(u) <B1(p); Bimi(p) < Ailu) < Bilp), fori=2,....,m, u€D. (2.17)

Proof For a certain u, we can always arrange the sequence of {vi(p)}", such that
vi(p) = Bi(p) for all i. Thus (2.17) is implied from the proof of Theorem 2.1. O

We have several comments on the cases when equality holds in (2.15)—(2.17), which
means an eigenvalue acquired by the intersection of some curves of {v;(p)}/,, or at a
boundary p; = 0. For the former case, the intersection is denoted by p = p; in figure 1
(m = 2), where the curves 71(p) and 7(p) are respectively the lower and upper parts of
vi(p) Uva(p).

If all of these intersections are isolated, that is they are finite or infinitely denumerable,
then such a representative eigenvalue 4 = v,(p;) (see the proof of Theorem 2.1) only
involves an m— 1 dimensional subset of D, as shown by p; +p, = p; in figure 2 (m = 2). If
the intersections form a continuous section of a curve, then such A = v,,(p;) involves an m-
dimensional domain. The former case should be trivial in affecting the strict hyperbolicity
of the system in D. However, 4 = v,(p;) is not differentiable when involving such an single
intersection. This is also shown by figures 1 and 2, where #;(p) and 7;(p) are generally
not smooth at pr, so 412(u) must not be differentiable in p; + p» = p;. For the latter
case, the eigenvalue 1 = v,,(p) is differentiable in the involved open domain, where the
hyperbolicity is essentially different. See the further discussion in §3.3.

For the case at a boundary p; = 0, the eigenvalue that arises is not differentiable on
some subset that is just (m — 2) dimensional. It is in this subset where Q,,(v;) = 0 and thus
system (2.1) is non-strictly hyperbolic (Theorem 2.2). This argument is illustrated by the
case of m = 2 below.
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FIGURE 2. Involved (m — 1)d subset on D.

Assume that vi(p) < v2(p) (0 F Pmax), it is easily shown that

1 =051 +¢1 42+ — V(U1 + 01 — 2 — @) —derea),

Ja =0.5(v1 +¢1 + v+ 2+ V(U1 + ¢ — 02— 2)? —dejea).

At the boundary p; = 0 (also ¢; = 0),
_Julp), ifvi<vate, o L
A(u) = {Uz t e otherwise, ) =vi +v2+c2— 4. (2.18)

Clearly, 41(u) and A(u) are not partially differentiable at (0, p;) that is intersected by
v; = vy + ¢, shown in figure 2. At this same point, we have 4;(u) = 4,(u) = v1(p), and the
corresponding eigen-matrix reads

T <v1+cl—/1 p1+ ¢ ) _ (0 0>
fu—A = = .
pr+c vt —4 ¢ 0
For ¢, # 0, no two linearly independent eigenvectors exist, and (2.1) is thus non-strictly
hyperbolic.

In addition, for p; = 0, whether v; = 4; or v; = 4, depends on data u at the boundary
pi = 0. Again, this is easily shown by (2.18). In general, we remark that it is just in the
critical subset {u | vi(p) = Ai(u) = Li—1(p)} where A;(u) is not differentiable and where
system (2.1) is non-strictly hyperbolic.

From the above, we argue that the loss of the differentiability of some A;(u) corresponds
to the transitions at which the strict hyperoblicity of system (2.1) fails. However, A;(u) is
always differentiable in an open domain in which it is never identical to any velocity,
and thus system (2.1) is strictly hyperbolic. The latter statement is obvious because such
an eigenvalue is always derived from Q,,(4) = 0. See the discussion on Theorem 2.1 and
Lemma 3.2 for this argument.
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Finally, it is our opinion that the non-strict hyperbolicity is inherent in the system. At
a whole boundary p; = 0, system (2.1) actually reduces to an (m — 1) x (m — 1) system
because its i-th equation becomes an identity. This reduction means that any discussion
must be made separately, as is done in (2.12)—(2.13). More significantly, the handling is
more complex for characteristic decomposition (if it is possible), i.e., the decomposition
can only be proceeded on the reduced system.

By the following theorem, however, all states of D can be connected continuously by the
eigenvalues, and thus by their corresponding eigenvectors. This continuity may explain the
successful numerical simulations in §4.2, even when they involve non-differential states.

Theorem 2.4 All functions of {2/(u)}", are continuous on D.

Proof We denote by A(u) = (A1(u),...,An(u)). Given u € D and the increment Au,
u+ Au € D, suppose that A(u + Au) does not converge on A(u) as Au — 0. That is,
to have Au, — 0, such that the sequence {A(u + Au,)} along with all its subsequences
does not converge on A(u). As {/i(u+ Auy,)} are all bounded (see (2.7) and (2.17)), hence
{A(u + Au,)} must have one convergent subsequence {A(u + Auy, )}, i.e.,

lim {A(u + Auy,)} = A= 0), A+ Au).
First, by (2.17), we have
A(u 4 Auy) < Di(p + Apw), Timi(p + Apn) < Ai(u + Auy ) < Ti(p + Ap,); (2.19)
then we re-denote by P, (4,u) the eigenpolynomial (2.4), which gives

Pou(2iltt + Aty ), u 4 Auy ) = 0. (2.20)

Note that /; = klim Ai(u + Auy, ), and that P, (4,u) and all functions #;(p) are continuous
—00
(Lemma 2.2). Hence, as k — oo, (2.19)—(2.20) become

J<Bi(p), Bimi(p) < 4 < Bilp); (2.21)

P,(Jiu) =0, i=1,...,m. (2.22)

Equation (2.22) indicates that all {/;}”"  are m eigenvalues that correspond to u. By
comparison between (2.21) and (2.17), we must have Z; = A(u), i = 1,...,m, namely
A = A(u). But this is a contradiction. O

We now explain the physical meanings of the characteristic fields in the motion,
assuming that (2.5), (2.7) and u € D.

First, for i < k, A; < v indicates that the k-th flow from some x = x are influenced
by {4}k, from the downstream. Meanwhile, they are influenced by {4;}",,, from the
upstream because 4; > v, for i > k4 1: see figures 3 and 4, where [, denotes the trajectory
of the k-th flow, and {4;}/", denotes the propagations of the m characteristic fields. Note
that all trajectories can be approximated as straight lines by means of local linearization.
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Ay Iy

0 X, X

FIGURE 3. I is met by k propagations ahead.

t

0 X, X

FIGURE 4. I is met by m — k propagations behind.

Next, we say that the last m — 1 characteristic fields all arise from velocity differences
among the flow media. Precisely, the k-th field (k > 2) arises from the (k — 1)th flow being
overtaken by the kth. This is true by reduction to absurdity. If there is no overtaking
between the two flows, namely we reassume vx_; = v in D, then the kth characteristic
field becomes i (1) = vi(p): see the proof of Theorem 2.1. For the case, pr_1, px and A (u)
disappear after merging the (k — 1)-th and k-th equations of (2.1), and (2.1) reduces to an
(m—1) x (m — 1) system with new variable p;_; = px_1 + pk. Also see §4.3, where the
system remains being m x m but the wave by A, = vy is explained as a contact across
which p;_; + px is a Riemann invariant.

Finally, A;(u) < vi(p) is the fundamental characteristic field. Its influence flows from
the downstream. This has nothing to do with “overtaking” because it never disappears
even when we reset all velocities to be identical and thus (2.1) reduces to the scalar case
of (1.1).

Incidentally, for p = puax, We have vi(Ppax) = ... = Vp(Pmax) =0and Ly =... =4, =0.
This means that the whole flow is stagnant. Hence, “left overtaking” is impossible. For
pi; = 0, which means the absence of the ith flow, the eigenvalue 4 = v; is a multiple root,
and its multiplicity equals the reduction in the number of equations of the system.
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3 Kinematic waves and solution properities

We are mainly concerned with a strictly hyperbolic admissible system (2.1) — a system
that consists of either nonlinear or linearly degenerate fields. This is achieved by assuming
(2.5) and (2.7) for u € D; thus the strict hyperbolicity is ensured by Theorem 2.3. Of
course, the boundary 0D is excluded from this discussion in §3.1 and 3.2. In addition, the
investigation of the strong hyperbolicity is also briefed in §3.3, where p = p.x can be
included. The related Riemann problem is given by

u, if x <0,
u(x,0) = ) (3.1)
u., 1f x > 0.

It is well known that local admissible solutions of strictly hyperbolic systems (2.1) and
(3.1) are existent, namely for sufficiently small u, — u;. That is, the initial data (3.1) break
into m simple waves in the sense of Lax, corresponding to the defined m characteristic
fields. Moreover, these waves divide the x-t upper plane into m + 1 constant regions of all
solution variables. For detailed accounts of strictly hyperbolic systems [8, 9, 10, 16, 17, 18].

Global admissible solutions of the same problem are definitely a great concern. Indeed,
for considerable functions v;(p), this existence is strongly supported by many of our
conclusions, especially by the numerical results in §4.2. However, the main difficulty for
the strict proof remains the same — all 4;(u) are implicit for m > 2.

Therefore, it is important to investigate how to connect a wave and how solution
variables change in or across the wave. These changes are regular, as is shown in the
discussion. In §3.1 and 3.2, only shocks and rarefactions are considered, because §3.3
shows that a contact is possible only by reassuming, such that some 1 = v, holds
continuously in a domain D. = D. Such a contact is also investigated.

For all of these discussions, the left and right constant states of the studied k-wave
(k =1,...,m) are represented by the superscripts “~” and “*”, respectively.

3.1 Shock waves

Let s (or simply s) be the speed of the k-shock that arises from 4 ; the Rankine-Hugoniot
conditions read
s Pl = pruileT) _ S piuile) = 3L pirvilpT)
pi—p; pt—p-

, Vi (3.2)

These equalities of (3.2) also imply that

Y e S e
_— V. —S:pA = —
T g i i + > + —
Pi —P; Pi =P U —S P

+ _ -
i T S=Pi

v

>0, v =vi(pt). (3.3)

For a valid shock, the Lax entropy conditions must be satisfied, i.e.,
Mg > s> 00 A > s> Gy, AT =) (3.4)

Here note that some invalid expressions in the above and in the following, namely Ay4;
for k = m, and 4;_; for k = 1. They should be removed automatically.
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Theorem 3.1 For s satisfying (3.2), 3k € {i)™,, such that v\ | < s < v;". Moreover, we must
have either

(i) p~ < p®, p;r > pf for i<k, and p; < p; fori=k; or
(i) p~ > p*, p; < pi for i<k, and p; > p fori=k.
Proof We change the third equality of (3.3) to
v, —S _
pi = —p; >0, (3.5)
v —s
then summation over i yields
m _ + m +
v —U; v. —U;
— 14+ i i - _ i i +0,
P 1( Uf_s>p, do—Leit

which is equivalent to

p*—p Z vt — i_=0'
+

It is easy to verify that the left hand side of the above would be positive or oo if s = v;
for all i. This suggests some k, such that v;” | < s < v;". Thus we have, by (3.5),

v;—r_l <s< Lki (3.6)

Suppose that p~ < p*, namely v;” > vt (Vi), then we have (i) by (3.3), (3.6), and (2.5).
Similarly, we derive (ii) if p~ > p™. Finally, p— = p™ is possible only at p = p,y, such
that s = v; = 0 for all i. O

In the proof, we see that the second inequality of (3.4) is implied in the first, provided
that the Rankine-Hugoniot conditions of (3.2) hold. Therefore, it is unnecessary in the
consideration for a valid shock.

Importantly, we show that the k-shock which is characterized by p~ < p* is truly
compressive for all flow media in the following sense. By setting the shock as stationary, a
certain flow increases in density and decreases in velocity after it passes through the shock.
Actually, for the i-th flow of i > k, vii —s >0 (see (3.6) and (2.5)), so it travels across the
k-shock from the flow direction, such that p;- < pi and v;” —s > v;" — s (Theorem 3.1.(i)).
For the ith flow of i <k — 1, we have s — viJ—r > 0. This suggests that the flow crosses the
k-shock from the inverse direction, such that p; > p: and s — v > s —v;". See figure 5
for an illustration.

In general, we argue that these compressive shocks occur frequently. This is absolutely
true for the scalar case (m = 1) with strictly concave flux f(p) = pv(p). Here, the strict
concavity f”(p) < 0 also means the genuine nonlinearity of the waves [16, 18]. For the
cases m > 1, it is difficult to define a similar ‘concavity’ of the flux, namely to define its
properties sufficient and necessary to guarantee that all shocks are compressive. However,
we can see the high frequency of these shocks in our problem, by its analogy to the
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Sk

for k;>-1: vy > v >, k-shock

. — +
for k;<:s;,>vi>v;

0 X

FIGURE 5. Changes in density and velocity of all flows across the compressive k-shock.

scalar case, especially by the numerical simulations (§4.2). In contrast, the k-shock that
is characterized by p~ > p* (Theorem 3.1(ii)) must be expansive in the same sense; it is
unlikely to occur but cannot be completely excluded.

As an important evidence of the argument, a range of velocity functions of certain
types are verified to ensure that all shocks are compressive. For this proof and more, two
Lemmas are derived from our previous discussions.

Lemma 4 For u € D, A(u) is an eigenvalue if and only if
(%, u) =0, (3.7)
where we denote by Q(4,u) = Q,,(1), which is given by (2.4).

Lemma 5 For u € D, the function G(A,u) is strictly decreasing in 1 in the m + 1 open
intervals divided by 7. # vk(p), k € {i}I",. Moreover, a certain Ax(u) that is determined by
(3.7) is differentiable in D.

Proof We rewrite

0(l,u)=1+ (3.8)
Z Ui (p) -
Recall that ¢;(u) = p;vj(p) <0, so it is 0bv1ous that
00(A,u
Qé ) Z(U_}) <0, A+ulp), k=1,...,m. (3.9)

Note that A (u) € (vk—1(p),vk(p)) in D, and it is valid to write, by (3.9),

04 __0Q /00
o0~ opi/ i (3.10)

and the differentiability of 1;(u) is ensured by the implicit function theorem. O
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We now define all velocity fields from a concave function v(p), namely we have
vi(p) = biv(p), 0 <b; <bip1, Vi; v'(p) <0, 0"(p) <O, VYp € [0, pax], (3.11)

Compared with (1.6), this definition implies that v(0) = 1 and v(pmex) = 0.

Theorem 3.2 Suppose that the velocities are given by (3.11), and the two states u~ and u*
of D satisfy (3.2). Then, u~ and u™ form a valid k-shock if and only if p~ < p™.

Proof By Theorem 3.1, there exists k € {i}"",, u,;{l <s < v,:—” (see (3.6)). We only need to
prove that p~ < p* if and only if we have the first inequality of (3.4). As mentioned, the
second inequality of (3.4) is self-evident in the proof.

Suppose that p~ < p™. By Theorem 3.1, we then have

o {<1 if i <k, (3.12)

pm > 1, ifi>k

Note that s, 47 € (vj_;,v), in which Q(4,u™) is strictly decreasing in A (Lemma 3.2).
Therefore, we prove Q(s,u™) < 0, and thus s > 4 is implied by Q(s,u™) < 0= Q(4,u")
(Lemma 3.1). For this estimation of Q(s,u™), we replace all denominators of (3.8) with
the first equality of (3.3) to have

JF —
pl pl pl — pi
su+)—1+2[ +) ] <1+Zv(p ﬁ.
Uz pl i=1 v; U
The above inequality is achieved by (3.12) because the terms in [-] are positive for i < k
and negative for i > k. The substitution of v; by (3.11) makes further estimation,
p- v'(p")

+ _
O(s,ut) < 1 —d(,ﬁ)h —1-2P <o, p<p<ph (3.13)

We can similarly prove that Q(s,u™) > 0 to have s < 4.
In a similar manner, it can be verified that all of the inequalities above will be inverse
if p~ > p*, so is the first inequality of the Lax entropy conditions (3.4). O

Note that the estimation of (3.12) can be altered to be closer, replaced by

o | <o /vt ifi <k,

Pog=riit (3.14)
pi | >vu /v, ifi =k

This is due to the last inequality of (3.3), but only for s > 0. Accordingly, (3.13) is altered

to be

—p- v v'(p™)/v(p™)

I /v
Q(s,u+)<1—v(p+)v e < 1= /o (7)

+

vt—o ot v'(p
The last inequality above is acquired by reassuming v(p) of (3.11), namely that v'(p)/v(p)
is decreasing or v” < (v')>/v. The new assumption is weaker but so will be the new
conclusion (for s > 0). This indicates that the proof of Q(s,u™) < 0 is very difficult for

<0, p-<p<ph.
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weaker settings of {v;(p)},. However, we stress that this cannot exclude the compressive
shocks that are widely observed in the numerical simulations (§4.2).

3.2 Rarefaction waves

The k-rarefaction wave arises from the following inequality:
e <A (3.15)

Wave solutions are well-known for their self-similarity, say u(x,t) = u() and 6 = x/t. By
the substitution, system (2.1) becomes

(fu(u(0)) — 0D)u'(0) = 0, /'(0) = (py(0),..., plu(0)". (3.16)

In the rarefaction fan 0 € [4, 4], w/(0) = 0, so by (3.16) (0,u/(0)) is an eigen-pair. That
is, 1/(0) || pi(6), namely
SO O (0 _ PO

Ki0) K0 Kn0)  —1° W' (0) + 0, (3.17)

where p;(0) and K;(0) are given by (2.14) and (2.4), respectively. The last equality of (3.17)
is by Lemma 3.1, namely by

m

0(0.u(0) =0, or S_Ki(0) = —1, u_i(p(0)) < 0 < vi(p(0)). (3.18)
i=1

It is obvious that (3.17) and (3.18) define m + 1 nontrivial smooth curves p = p(6) and
pi = pi(0),i=1,...,m; and the k rarefaction fan including the two states must be linked
by these curves such that (3.15) holds. We describe the main features of these smooth
curves namely rarefaction curves.

For fixed k, the curves are confined to v,_1(p(0)) < 0 < vx(p(0)), which is called the
k-th solution field of (3.17)—(3.18). In figure 6, we have m solution fields such that all
curves p = p(0) of these m fields in the p-0 coordinate plane are completely separated by
m curves L;: vi(p) = 0, i = 1,...,m. In the kth (each) field, we note that v;(p(f)) — 6 or
K;(0) keep the sign unchanged for certain i. This property is stressed. Hence, we can give
the following lemma.

Lemma 6 For solutions of (3.17)—(3.18) in the k-th field, we have
vi(p(0)) < 0 or Ki(0) <O, fori<k; vi(p(0)) >0 or Ki(0) >0, fori=k. (3.19)
Combining the above lemma and (3.17), we directly have

Theorem 3.3 In the k-th field of (3.17)—(3.18), we have either

(1) p'(0) <0, pi(0) >0 for i<k, pi(0) <0 fori=k; or
(i) p'(0) > 0, then pi(0) <0 for i <k, and pi(0) > 0 for i = k.
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Vi1 (P) <8 <wi(p)

L

nP)=0 - v,(p)=0 vP)=6 " v,(p)=6 6
FIGURE 6. Division of solution fields of rarefaction curves by solving (3.17)—(3.18).

It is interesting (but not surprising) to note that Theorem 3.3 is parallel to Theorem 3.1,
as are many of the following conclusions and comments. Likewise, we say that the
k-rarefaction that is characterized by p'(0) < 0 (Theorem 3.3.(i)) is expansive in the
same sense; that is, all media accelerate and increase their densities after they enter
the rarefaction fan. Furthermore, these expansive rarefaction waves should be regular
in our problem. Compare this to the corresponding discussion for shocks. Meanwhile,
these compressive rarefactions that are characterized by p’(0) > 0 (Theorem 3.3.(ii)) are
infrequent, subject to the velocity fields.

Parallel to Theorem 3.2, we prove that the monotonicity of each k curve is certain, i.e.,
p'(0) < 0, provided that the velocity fields are given by (3.11). This is ascribed to the
following lemma.

Lemma 7 The velocities are given by (3.11). Then the solutions of (3.17)—~(3.18) in the k-th
field are monotone such that p'(0) < 0.

Proof Suppose that the conclusion is not true, then there exist 6; and 6,, 6; < 0, such
that p'(0) > 0 for 6 € [61,6,]. As limg_g,(vk(p(0)) — 62) = vk(p(02)) — 02 > 0, 6; can be
sufficiently close to 0, such that vi(p(0)) — 6, > 0, VO € [01, 0,]. Generally, for 8 € [0, 6,),
we can have,

5(p(0)) — 02 < vi(p(0) — 0 < 0, i < k; w(p(0) — 0 > vi(p(0) — 0> >0, i >k, (3.20)

By (3.17), we always have

pil0) _ —@i(p(0))" _ —(ui(p(0)) — 02)'
pi(0) ~ vi(p(0)) — 0 vi(p(0)) — 02

Note that —(vi(p(0))) = —vi(p)p'(0) > 0 in the above. By the formula (In|¢|) = ¢/,
(3.21) changes to

Vi. (3.21)

(pi(0)|vi(p(0)) — 02]) <O
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which gives

pi(02)|vi(p(62)) — 02 < pi(01)[vi(p(01)) — 02, Vi.
More conveniently, the inequality above is rewritten as

pi(02) - vi(p(01)) — 0>
pi(01)  vi(p(02)) — 0y°

The signs in |-| above are decided by (3.17)—(3.18), of which 6 is replaced by 6;. In
addition, (3.22) can be written as

pi(02) — pi(01) < vi(p(01)) — vi(p(02))
pi(01) vi(p(02)) — 0>

Furthermore we have, by Theorem 3.3 and the assumption p’(6) > 0 on [0y, 05],

p,—(92){<1, ifi <k,

Vi. (3.22)

Vi. (3.23)

p(02) > p(01), vi(p(01)) > vi(p(62)), Vi (3.24)

pi(01) | >1, ifix=k,

Based on (3.8), (3.11), (3.23) and (3.24), and also noting that v}(p(6,)) < 0, we have

_ pi(0 (92 pi(62) (pi(02) — pi(61))vi(p(62))
Q(62, u(62)) = ”Z ol ”Z p(01) ulp(0) — t(p(62))

| pi(02 — pi(01 ))U(P(Oz)):1 (p(02) — p(0)V(p(02) _ | <0
<14y 00) — ui(p(02)) 00— T o) SV

(3.25)

where p(01) < p < p(0,). However, this contradicts with the fact that Q(0,,u(6,)) = 0
from Lemma 3.1. O

By Lemma 3.4, (3.15) is equivalent to having p~ > p* (and the description by Theo-
rem 3.3(i)) for the two states at the same k curves of (3.17)—(3.18), provided that the
velocities are given by (3.11). Therefore the following theorem is self-evident.

Theorem 3.4 Suppose that the velocities are given by (3.11). Then, for two states u~ and
u™ that are in the same certain curves of (3.17)~(3.18) in the k-th field, the k-rarefaction
wave is formed if and only if p~ > pT, and is expansive as described by Theorem 3.3(i).

The conclusions by Lemma 3.4 and Theorem 3.4 are true for 0 € [/, 4] = (0,4],
provided that v”(p) < 0 of (3.11) is altered to be v < (v')?/v. Following the same steps
that prove Lemma 3.4, the conclusion is reached through the replacement of (3.24) by

pi(02) _vilp(01) ... pi(02) _ vi(p(01))

< , ifi<k, )

pi(01)  vi(p(62)) pi(01) ~ vi(p(62))

The first part of the above is implied by (3.22) (6, > 0); the second part can be similarly

obtained such that in (3.21) 0, is replaced by 0; and the inequality is inverse. Compare
this to (3.14) and the associated comments.

ifi > k.
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Finally, the discussion on shock curves is similar to that of rarefaction curves, though
for simplicity they are not mentioned in §3.1. See Smoller [16] for a detailed account of
this issue.

3.3 Heuristic comments on nonlinearity and linearly degeneration

A linearly degenerate field of the eigen-pair (4, p) corresponds to
vu)“ : p = 09 vu = (ama Y am )7 (326)

from which a contact discontinuity arises. If V,A - p = 0, then the characteristic field is
genuinely nonlinear [16]. By (3.10), we proceed with the following:

00 , 6/% B L pu!
<a/1k)w" _<a)k>z Z o= Z(u—;k)z L — Iy

(3.27)

Above, by Lemma 3.2 note that —0Q /04, > 0.
Several comments are necessary on the nonlinearity of the characteristic fields. We first
have two conclusions as follows:

(1) If all vi(p) are linear functions such that v/(p) = 0, then V,4; - px > 0, and thus all
fields A are nonlinear globally in D.

(2) If v/(p) < 0, which includes those given by (3.11), then V,4; - p; > 0, and thus 4,
field is nonlinear globally in D.

Secondly, whether V4 - pr > 0 in D and for all k is generally unclear, subject to the
velocity fields. This investigation is also difficult mainly due to the implicit A (u). By (3.27),
however, it seems that V,/; - px < 0 is unlikely in D for most cases. Even that is true, the
set {u | Vi - pr = 0} is only m — 1 dimensional, and not so “large” in D. In this sense,
we can say that all fields 4, are essentially nonlinear.

Finally, for the above two statements, A; generates the main wave to connect the two
initial states u; and u, given by (3.1). As observed in numerical simulations, this means that
1-wave is always sharp for large u, — u;, whereas other waves are very thin in connecting,
so that V, A - pr = 0 (k = 2) might be avoided in the k-wave. Also see §4.2, where these
‘standard’ compressive shock and expansive rarefaction waves are always observed.

These comments are merely heuristic and might be conducive to future studies.

However, a contact discontinuity is possible if the assumptions are released such that
some A = v,(p) is an eigenvalue in some sub-domain say D, € D U {u | X", p; = Pax}-
This is to recall the discussions in §2 (Lemma 2.1, Theorem 2.3 and their proofs). We
assume that

Um(p) = Um—l(p) == Um—k(p)a pE [pe» pmax]a (328)
where v,,(p) is not necessarily the largest velocity and not identical to any other velocity
in the same interval. This corresponds to the k multiple eigenvalue,

I == Am—k-‘rl =Up, UED.
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The k linearly independent eigenvectors that are given by (2.10) are redenoted as
Py = (0,---,0,—1,1,0,---,0)",..., pp, = (0,---,0,—1,0,0,--, ).
For u € D, (3.26) is obviously satisfied by all eigen-pairs (4, pm,), i-€.,
Vidm pm; =0, ueD., j=1,. k

We show that the wave arising from /,, is actually a contact discontinuity.

Note that system (2.1) is strongly hyperbolic on D.: namely, m linearly independent
eigenvectors are guaranteed. Hence, by generalization, m — k Riemann invariants of the
wave (casually named the my-wave here) are defined such that

Here [; are left eigenvectors of 4;; and by scaling {/;}!", are bi-orthonormal to the set of
right eigenvectors {p;},, which implies that

i-pm; =0, i=1,m—k, j=1,... k.
Therefore, we have
li-(du—puw)=0, i=1--m—k, j=1,..k (3.29)

Clearly, (3.29) suggests that du || S, where S = {oa1pm, +** + 0P, | You, i =1,...,k}, and
alpnu + e + O‘kpmk = (05 T ’09 _Z;c:]aja al: T, O(k). That iS)

@ ... d,om—k—l _ de—k _ dpm—k+l e d’l
0 0 —Z};locj o1 oy
by which these m — k Riemann invariants of the my-wave are clearly py, ..., pm_k—1

and 27L, ,pj. As a result, p = 271 p; is also a Riemann invariant, as are all v;(p) and
Am(t) = vi(p). This clearly indicates that the my-wave is a contact discontinity. Across the
wave we have

- — .t - _ +
s Pm—k—1 = Pm—k—1> Z}?l:m*kpj - Z;?;’"*kpj ’

- + __+ . A__’\+
p-=p", v; =v", Vi, A, =/,

pr =P

The Rankine-Hugoniot conditions of (3.2) can be casily verified.

The interpretation of such a contact is similar to what is discussed at the end of §2.2.
Let k = m — 1, for example, then (3.28) means that all flow media are the same in their
velocity as the total density is larger than some critical value p.. Moreover, it is easy to
see that the contact is formed if and only if, initially, w, = u= € D, or u, = u™ € D,.
Suppose that u, = ut € D, for example, the contact is needed to separate the original
state u, = u™ from the state u~ formed behind, such that generally p;” % p; but p~ = pT.
Note that we only have two waves by the assumption. Also compare this argument with
figures 17 and 18 in §4.2.
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4 Numerical approximations

To confirm the conclusions that are clear (or unclear) in the previous discussions, numerical
implementation is made. High resolution schemes are adopted. However, here the main
difficulty is the characteristic decomposition [5, 13]. Analytically it is impossible for m > 2
because in this case all A;(u) are implicit. Though it could be made for m = 2, the
discussion must be separated at each boundary p; = 0; thus the handing will be very
complex. See the comments in §2.2 and around Theorem 2.4.

Due to this difficulty, Lax-Friedrichs flux-splitting is applied as an alternative. Because
this compromise involves considerable numerical viscosity, the fifth order accurate WENO
(Weighted Essentially Non-Oscillatory) reconstruction is used, coupled with the third order
accurate TVD Runge-Kutta time discretization. The scheme is only briefly described. For
a detailed account of the ENO and WENO methods [6, 12, 15].

4.1 Flux-splitting WENO schemes

The solution procedure consists of three major blocks: the flux-splitting, the WENO
reconstruction, and the TVD Runge-Kutta time discretization. For the first step, the flux
vector f(u) of (2.1) is split into two parts as follows:

1 1
f) ="+, ffu= S +au),  f7w) = S(f(u) — om).
In the above, the constant « is given by

oo = max max |4;(u)l,
u  1<j<m
or greater, where the first maximum is taken over all u involved. In each of our examples,
o is well evaluated by (2.8), such that o — o is small enough. By such o, f™(u) and f~(u)
are guaranteed to be non-negative and non-positive, respectively, i.e.,

fu @)= fuw) +al 20, f;(u)=fu(u)—ol <O.

For the discretization of (2.1), (f"(u))x and (f~(u)). are approximated by numerical fluxes
separately, such that

du; 1 4 N 1 4 A
E—Frx( i++1/2_ ;11/2) +?x(fi+1/2_fi—1/2) =0. (4.1)

These fluxes f ;—;1 Jp are acquired by the WENO reconstruction below.

Given all of the discrete values v; of a function v(x) in I;, we denote by v;1/, the
approximate boundary values of v(x) on a fixed cell I;. Then, v;1/, are obtained by
applying v; and its neighboring r + s point values. Here, r is the number of the cells
in the left side of I;, and k = r + s+ 1 cells are thus involved. Moreover, we have k
approximations of v(x;+;/,), denoted by

l+1/2 Zc?‘jvt r+j> Ui 1/2 § erUI r4js r=0,...,m—1. 4.2)
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In (4.2), ¢ = c,—1; and for k = 3, ¢,; are given by

c_10=11/6, c_11 =—7/6, c_1p=1/3; coo=1/3, cor =5/6, coo =—1/6;
cio=—1/6, c;1=5/6, cio=1/3; c=1/3, ¢y =-7/6, ¢ =11/6.

For certainty, v;;1,, are made to be the following weighted averages of (4.2):

k—1 k—1
— _ (r) + _ ~ (1)
Viv10 = Z Orif1 Vi = Z WOl 12> (4.3)
r=0 r=0

with all weights given by

oty d, - oy N d, ~
Wy = s O = ; w = , O = dr == dk—l—r-

Yoo s (e+ ) Yo 8 (e + B

In the above, ¢ = 107!2; and for our application of k = 3, these constants are dy = 0.3,
dy = 0.6, d, = 0.1, and

13 1
ﬁo = E(Uj;z — 21,7/;1 + 1.71‘)2 + Z(Uj;z — 41)];1 + 3Uj)2;

13 1
br= 151 —2v;+ vj41)’ + 71— v;)%;

13

ﬁ2=ﬁ

1
(vj — 20541 + vj2)* + 1(301‘ — 4vj1 +0j42)%

Now, the f iifH P that are applied in scheme (4.1) are determined by the following procedure:

(1) let v; = f;* and compute v, , by (4.3), then set f;l/z =15 and

(2) let v; = f; and compute 0;1/2 by (4.3), then set 1, , = U;:_]/z.

The reconstruction guarantees the (2k — 1)-th order accuracy.
Finally, for the TVD-Runge-Kutta time discretization, scheme (4.1) can be rewritten as
the following ODEs:

u; = L(u).
Given the initial values u(x,0) = ug(x) and the division {#"}Y_ in time direction, then for
n=0,...,N, we follow the steps below:
(1) Set u® =u".

(2) For j=1,...,K, compute the values of intermediate functions as

j—1

ut) = Z (oju + AtByL(u)).
1=0

(3) Set um! = 4K,
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FIGURE 7. Changes in all densities at t = 1.2, with u; = (0.2,0.1,0.1), and u, = (0.25,0.25,0.3).

This approximation achieves the K-th order accuracy in time direction. For our applic-
ation of K = 3, the coefficients are

a0 =1, apo = 3/4, apy = 1/4, a30 = 1/3, 031 =0, a3 = 2/3;
Bro=1, f2o=0, By =1/4, B30 =0, f31 =0, p3 =2/3.

4.2 Resolution of waves in the Riemann problem

To compare with the analytical results, numerical examples are given by the Riemann
problem (3.1), with the change of the interface from x = 0 to some x = x¢. To capture
these compressive shocks and expansive rarefactions, moreover, the velocity fields of (3.11)
are applied with p,,.. = 1, m = 3, (b1, b2, b3) = (0.6,0.8, 1), and

v(p) =1—p", (4.4)

except that v”(p) > 0 for u < 1. The computational range is (0,1), with division Ax =
1/800; the temporal increment At = 0.6Ax/a. In all examples, the types of all m waves
are also identified in comparison with analytical results in § 3.

In figures 7-16 the density of all different classes are shown on the left side; whereas
the total density is shown on the right side. All waves follow the descriptions given by
Theorem 3.2.(i) or Theorem 3.4.(i), i.e., all shocks are compressive and all rarefactions are
expansive. Note that these are also true even with u < 1 of (4.4) (figures 13-16), which
means the convexity v/ (p) > 0, Vi.

To simulate a contact, (4.4) is altered to be

v(p), if > pe,
vip) = ) PoPe o103 (4.5)
bi+ p(1 —b; —p.)/pe, otherwise,

see the discussion in §3.3. The numerical result is shown in figures 17 and 18. Note that
the initial state u, = (0.25,0.25,0.3) is in the region of D.. On the left side, the number
of the waves reduces to two, because 1, = A3 for u € D.. On the right side, the second
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FIGURE 8. Changes in all densities at t = 1.2, with u; = (0.2,0.1,0.1), and u, = (0.25,0.25,0.3).
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FIGURE 9. Changes in all densities at t = 1.2, with u; = (0.1,0.08,0.12), and u, = (0.2,0.25,0.3).
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FIGURE 12. Changes in all densities at t = 1.2, with u; = (0.05,0.1,0.15), u, = (0.3,0.2,0.25).
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FiGure 13. Changes in all densities at t = 1.2, with u; = (0.05,0.09, 0.06), and u, = (0.3,0.2,0.25).
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FIGURE 15. Changes in all densities at ¢t = 0.6, with u; = (0.4,0.25,0.35), and u, = (0.05,0.08,0.12).
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FIGURE 16. Changes in all densities at t = 0.6, with u; = (0.4,0.25,0.35), and u, = (0.05,0.08,0.12).
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FiGure 18. Changes in all densities at t = 1.2, with p. = 0.5, u; = (0.2,0.1,0.1), u, = (0.25,0.25,0.3).

wave disappears because the total density is a Riemann invariant for this contact. See our
comments in the end of §3.3.

5 Conclusions

We have proven that system (2.1) is hyperbolic, because it has m real eigenvalues. More
precisely, it is non-strictly hyperbolic somewhere at a boundary p; = 0, and it is only
(m — 2) dimensional. Moreover, it is strongly hyperbolic at the intersections by at least
two velocity curves, and it is just m — 1 dimensional. The system is strictly hyperbolic in
other solution regions at large.

Some important properties of the characteristic fields are also discussed. In particular,
it is confirmed that the last (m — 1) fields are due to overtaking. Precisely, the k-field is
due to the (k — 1)-th flow being overtaken by the k-th, provided that p; 0, Vi.

All waves are investigated. In general, a characteristic field is essentially genuinely
nonlinear, and the involved wave is characterized by the so called compressive shock or
expansive rarefaction. That is, the density of each class increases after it passes through
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a shock but decreases after entering a rarefaction fan. A contact is formed such that the
propagation of a certain family of characteristics coincides with at least two flows. For
this case all Riemann invariants of the wave are easily acquired and the meanings in the
motion are clearly understood.

All of the main results are verified numerically. All of the examples adopt the Lax-
Friedrichs flux-splitting WENO scheme. Their declared compressive shocks and expansive
rarefactions are always observed, along with the described contact.

In summary, this paper presents a comprehensive study and provides many important
results for the discussed system. These are of much significance for studies of hyperbolic
equations, and probably also for applications.

What is left unclear is the existence of global solution of the Riemann problem. A
strict proof for this will be more challenging, based on the conclusions in this paper, and
subject to assumptions on the velocity fields. Besides, system 2.1 can be further extended
say through combination with those factors considered by several authors [22, 23, 24], so
that more interesting and complicated waves could be presented.
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