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This paper studies many fundamental aspects of a newly proposed multi-class traffic flow

model. For the first time it presents a complete discussion on the hyperbolicity of the system;

and based upon this, the admissible waves of the Riemann problem are deeply investigated.

Many important conclusions are made in discussions, and the related physical meanings are

interpreted. For the confirmation of main conclusions, numerical examples are given at the

end.

1 Introduction

In dealing with hyperbolic conservation laws, the Lighthill-Whitham [11] and Richards

[14] (LWR) traffic flow model has played an important role for better understanding of

linear and nonlinear waves. This model reads:

ρt + (ρve(ρ))x = 0, (1.1)

where ρ denotes the density, and the velocity is determined by the state equation v = ve(ρ),

with v′
e(ρ) < 0. To interpret shock and rarefaction waves, model (1.1) was intensively

studied in Whitham’s [18] masterpiece. Actually, by the transformation c = q′(ρ), where

q(ρ) = ρve(ρ) is strictly concave, (1.1) becomes the following Burgers equation:

ct +

(
1

2
c2

)
x

= 0. (1.2)

It is well known that (1.2) is most critical for the study of hyperbolic differential equations,

and we note that (1.1) and (1.2) are equivalent also in the distribution sense for linear

function ve(ρ).

Based on (1.2), or more likely on (1.1) in the physical sense, extensions could be made

for the study of many properties of hyperbolic PDEs, which in return serve for application
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purpose [22, 23, 24]. To learn about more complicated kinematic waves, one may consider

a continuum flow with heterogeneous (m) media, in which the fields of the velocity

vi of the ith class is a function of all density {ρj}mj=1, governed by the state equation

vi = vi(ρ1, . . . , ρm). Thus, by the mass conservation for each class, a multi-population

system can be written as

(ρi)t + (ρivi)x = 0, i = 1, . . . , m. (1.3)

In general, (1.3) might model some flow phenomena [1, 2, 4, 19] at least at the level of

an analogue. However, the proof or disproof of its being hyperbolic would be difficult for

m > 2, and more would be the study of its wave propagation properties. This is because

the eigen-polynomial might be implicit, and more likely would be the eigenvalues. For

example, in Wong & Wong [19] and Benzoni-Gavage & Colombo [2], the state equation

is set to be

vi = vi(ρ), v′
i(ρ) < 0, i = 1, . . . , m, (1.4)

where ρ is the total density, i.e. ρ = Σm
i=1ρi. Furthermore, in some problems the ‘fluid’ is

considered compressible so that the total density is no greater than some ρmax. That is,

the solution vector is bounded in D̄ ⊂ Rm, where the corresponding open domain is given

by

D = {u|ρi > 0, i = 1, . . . , m;Σm
i=1ρi < ρmax}. (1.5)

In addition, all velocities of (1.4) are bounded such that

vi(0) = bi, vi(ρmax) = 0, ∀ i. (1.6)

We note that system (1.3) and (1.4) is precisely an extension of scalar hyperbolic

conservation equation (1.1), such that they are identical for m = 1, ρ1 ≡ ρ, and v1 ≡ ve.

For this reason and mostly for theoretical curiosity, the present paper firstly provides

a detailed discussion on the hyperbolicity of this system. In Zhang et al. [21], the

hyperbolicity remains unknown and has been taken as a conjecture. In Benzoni-Gavage &

Colombo [2], this was shown by means of a symmetriser for the special case that vi = vi(ρ)

are linear functions, but the approach cannot be applied to the general case. Based on a

thorough study of the hyperbolicity for the general case, we derive a clear mathematical

structure of the system.

The discussion of the present paper is organized as follows. In § 2, a concise mathematical

expression of the eigen-polynomial is derived. By the intermediate value theorem and

mathematical induction, m properly bounded real eigenvalues are implicitly ensured,

and thus the system is hyperbolic (§ 2.1, Theorem 2.1). Further, classification of being

hyperbolic is made over the entire solution domain D̄; accordingly, the eigenvectors are

solved, depending on the corresponding eigenvalues (§ 2.1, Lemma 2.1, Theorems 2.2

and 2.3). It is concluded that the system is strongly hyperbolic wherever the solution

involves intersections by two or more velocity curves, and that the system is non-strictly

hyperbolic somewhere at a boundary ρi = 0 (∀ i). Meanwhile, the system is strictly

hyperbolic in other solution regions in general. The characteristic fields are defined in

§ 2.2. Their continuity is guaranteed in the whole solution domain D̄ (Theorem 2.4),
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whereas a multiple eigenvalue is not differentiable in some (m− 1) or (m− 2) dimensional

subsets in which the hyperbolicity of the system also degenerates.

In § 3, the k-shock and k-rarefaction waves of the Riemann problem are thoroughly

investigated. These waves are either ‘compressive’ or ‘expansive’ (Theorem 3.1 in § 3.1,

and Theorem 3.3 in § 3.2), subject to the velocity fields. However, it is indicated that

the compressive shock and expansive rarefaction should be regular. That is, all densities

increase after passing through the k-shock, whereas they decrease after entering the

k-rarefaction fan. Note here that the first (k − 1) classes travel slower than the k-wave,

but the last (m − k + 1) flows are faster. The above descriptions are guaranteed for

certain types of velocity fields (Theorem 3.2 in § 3.1, and Theorem 3.4 in § 3.2). In § 3.3,

we indicate that a contact merely arises from an eigenvalue that is identical to the

velocities of at least two flows. For such a contact, all necessary Riemann invariants are

obtained.

In § 4, the fifth-order accurate WENO scheme is introduced for numerical approxima-

tions, based on Lax-Friedrichs flux-spitting (§ 4.1). All numerical examples are designed to

examine the main conclusions in § 3, namely to observe all waves of the Riemann problem

(§ 4.2).

The final results are summarized in § 5.

2 Hyperbolicity and characteristic fields

We rewrite the system (1.3) and (1.4) in the following conservation form:

ut + f(u)x = 0, (2.1)

where the solution vector u = (ρ1, . . . , ρm)T , the flux f(u) = (ρ1v1(ρ), . . . , ρmvm(ρ))T . The

Jacobian of f(u) is written as

fu =



v1 + c1 c1 · · · c1 c1

c2 v2 + c2 · · · c2 c2

· · · · · · · · · · · · · · ·
cm−1 cm−1 · · · vm−1 + cm−1 cm−1

cm cm · · · cm vm + cm


 , ci = ρiv

′
i(ρ) � 0.

Here, we note that ci = 0 if and only if ρi = 0. To concisely express the eigenpolynomial

Pm(λ) ≡ det(fu − λI), namely the determinant

∣∣∣∣∣∣∣∣∣∣

c1 + v1 − λ c1 · · · c1 c1

c2 c2 + v2 − λ · · · c2 c2

· · · · · · · · · · · · · · ·
cm−1 cm−1 · · · cm−1 + vm−1 − λ cm−1

cm cm · · · cm cm + vm − λ

∣∣∣∣∣∣∣∣∣∣
. (2.2)
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We proceed as follows. First, let (vi − λ) be taken out as a factor from the i-th row,

i = 1, . . . , m, so that (2.2) has the form

m∏
i=1

(v1 − λ)

∣∣∣∣∣∣∣∣∣∣

1 + K1 K1 · · · K1 K1

K2 1 + K2 · · · K2 K2

· · · · · · · · · · · · · · ·
Km−1 Km−1 · · · 1 + Km−1 Km−1

Km Km · · · Km 1 + Km

∣∣∣∣∣∣∣∣∣∣
, Ki =

ci

vi − λ
. (2.3)

Then let the first (m−1) rows be added to the last row, hence, all its elements are identical.

We then have

Pm(λ) =

m∏
i=1

(vi − λ)Qm(λ), Qm(λ) = 1 +

m∑
i=1

Ki(λ). (2.4)

Note that only row transformations are involved in the above arguments.

2.1 Hyperbolicities of the model equation

From (2.4), the hyperbolicities of system (2.1) are clearly discussed below.

Theorem 2.1 The Jacobian fu has m bounded real eigenvalues for u ∈ D̄; thus system (2.1)

is hyperbolic on D̄.

Proof Given u ∈ D̄, we first deal with one special case in which no two vi are equal and

no ρi is zero. For this case we assume that

v1 < v2 < · · · < vm−1 < vm, ρi > 0, ∀i. (2.5)

We can verify that, by (2.4)–(2.5),

sgn(Pm(vi)) = (−1)i, i = 1, . . . , m; sgn

(
Pm

(
v1 +

m∑
i=1

ci

))
= 1. (2.6)

By the intermediate value theorem, (2.6) implies that the polynomial Pm(λ) has m distinct

eigenvalues {λi}mi=1 bounded such that

v1 +

m∑
i=1

ci < λ1 < v1 < λ2 < v2 · · · < vi−1 < λi < vi < · · · < vm−1 < λm < vm. (2.7)

We then apply mathematical induction to other cases in which at least two vi’s are

equal or at least one ρi (or ci) is zero. The conclusion is obvious for m = 1. Assuming

that this is true for all l, where 1 � l < m, we prove it is also true for l = m.

Obviously, by (2.4) this case is equivalent to having an eigenvalue λ = vi. We can always

arrange the sequence of {vi}mi=1 to reset λ = vm−k = · · · = vm (0 � k < m). Here, vm is not

equal to any other vi, and {vi}mi=1 do not necessarily follow the sequence of (2.5). For the

case we rewrite (2.4) to be

Pm(λ) = (vm − λ)kP̃m−k(λ), (2.8)
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where

P̃m−k(λ) =

m−k∏
i=1

(vi − λ)Q̃m−k(λ), Q̃m−k(λ) = 1 +

m−k∑
i=1

K̃i,

and

K̃i = Ki, for i � m − k − 1, K̃m−k =
c̃m−k

vm−k − λ
, c̃m−k =

m∑
i=m−k

ci � 0.

For k � 1, we claim that all roots of Pm(λ) are real, simply by applying either (2.7) or

the assumption for l on the polynomial P̃m−k(λ) of (2.8). For k = 0, that λ = vm is an

eigenvalue is equivalent to having cm = 0. This means that

Pm(λ) = (vm − λ)Pm−1(λ),

and we have the same conclusion. �

The above arguments lead to the following conclusion.

Corollary 1 For u ∈ D̄, some vj ∈ {vi}mi=1 is an eigenvalue of fu, if and only if ρj = 0, or

∃ l� j, s.t. vl = vj .

Corollary 2 For u ∈ D̄, Pm(λ) has a multiple root λ only if λ ∈ {vi}mi=1.

Further identification of system (2.1) must involve multiple eigenvalues, which could be

some λ = vm. With reference to (2.8), we start with the following lemma.

Lemma 1 For u ∈ D̄, suppose that λ = vm is a real root of Pm(λ) satisfying vm−k = · · · = vm
(0 � k < m), and vm is not equal to any other vi. We have

(i) if c̃m−k < 0, then the multiplicity of λ is k (k � 1);

(ii) if c̃m−k = 0 and Q̃m−k(vm)� 0, then the multiplicity of λ is (k + 1) (k � 0); and

(iii) if c̃m−k = 0 and Q̃m−k(vm) = 0, then the multiplicity of λ is (k + 2) (k � 0).

Proof Because P̃m−k(vm) = c̃m−k � 0, (2.8) implies conclusion (i). For c̃m−k = 0, we rewrite

(2.8) to be

Pm(λ) = (vm − λ)k+1
m−k−1∏
i=1

(vi − λ)

(
1 +

m−k−1∑
i=1

Ki

)
= (vm − λ)k+1Pm−k−1(λ).

We reach conclusion (ii) as Q̃m−k(vm) � 0 implies Pm−k−1(vm) � 0, and Pm−k−1(vm) < ∞.

Finally, we reach conclusion (iii) as Q̃m−k(vm) = 0 implies Pm−k−1(vm) = 0, and λ = vm is

just a single root of Pm−k−1(λ) by Corollary 2.2. �

With reference to Lemma 2.1 and by the theorem below, we investigate whether

the multiplicity of each eigenvalue λ = vj coincides with the maximum number of its

linearly independent eigenvectors. A positive answer ensures a complete set of linearly
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independent eigenvectors of fu, thus system (2.1) is at least strongly hyperbolic; otherwise

it is non-strictly hyperbolic.

Theorem 2.2 For u ∈ D̄, the Jacobian fu has a complete set of linearly independent ei-

genvectors and thus system (2.1) is at least strongly hyperbolic if and only if Qm(vi) � 0,

i = 1, . . . , m. Here Qm(λ) is defined in (2.4).

Proof For any vj , Qm(vj) = 0 implies that vj is an eigenvalue. Therefore, we only need to

prove that the multiplicity of an eigenvalue λ = vj coincides with the maximum number

of its linearly independent eigenvectors if and only if Qm(vj)� 0. Here, we again set j = m

and follow Lemma 2.1. Hence, there are three cases for consideration.

Also note that Qm(λ) = Q̃m−k(λ) by (2.4) and (2.8), and that we can track back to (2.2)

(but not (2.3)) to continue row transformations on the corresponding matrix fu − λI . The

common step for these transformations is to divide the first (m − k − 1) rows of (2.2),

respectively by (v1 − λ), . . . , (vm−k−1 − λ), to have

fu − λI �




1 + K1 · · · K1 · · · K1 K1

...
. . .

...
...

...

Km−k−1 · · · 1 + Km−k−1 · · · Km−k−1 Km−k−1

cm−k · · · cm−k · · · cm−k cm−k

... · · ·
... · · ·

...
...

cm · · · cm · · · cm cm




. (2.9)

For case (i) of Lemma 2.1, we sum up the last k rows of (2.9) to its (m − k)th row, and

all elements in the row become
∑m−k

i=1 ci = c̃m−k � 0. The further transformations follow

so that we have

fu − λI �




1 · · · 0 0 · · · 0 0
...

. . .
...

...
...

...
...

0 · · · 1 0 · · · 0 0

0 · · · 0 1 · · · 1 1

0 · · · 0 0 · · · 0 0
...

...
...

...
...

0 · · · 0 0 · · · 0 0




.

By this, we have rank(fu − λI) = m − k, and k linearly independent eigenvectors,

pm1
= (0, · · · , 0,−1, 1, 0, · · · , 0)T , . . . , pmk

= (0, · · · , 0,−1, 0, 0, · · · , 1)T , (2.10)

where the −1 is in the (m − k)-th position.

For case (ii) of Lemma 2.1, c̃m−k = 0 implies ci = 0, i = m − k, . . . , m. We sum up all of

the first (m − k − 2) rows to the (m − k − 1)th row, thus the first (m − k − 1) elements in
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the row become Qm(vm)� 0. Then, similar row transformations give

fu − λI �




1 · · · 0 K̄1 · · · K̄1

...
. . .

...
...

...

0 · · · 1 K̄m−k−1 · · · K̄m−k−1

0 · · · 0 0 · · · 0
... · · ·

...
... · · ·

...

0 0 0 0 · · · 0




,

where K̄i = Ki(vm)/Qm(vm), i = 1, · · · , m − k − 1. Accordingly, rank(fu − λI) = m − k − 1,

and we have k + 1 linearly independent eigenvectors,

pm1
= (−K̄1, · · · ,−K̄m−k−1, 1, 0, · · · , 0)T , . . . ,

pmk+1
= (−K̄1, · · · ,−K̄m−k−1, 0, 0, · · · , 1)T . (2.11)

In the above two cases, Qm(vm) = ∞ (� 0) and the multiplicity of eigenvalue λ = vm
is truly equal to the number of the solved linearly independent eigenvectors. Therefore,

we only need to verify that the two numbers are not equal for case (iii) of Lemma 2.1.

We sum up the last (m − k − 2) rows of (2.9) to its (m − k − 1)-th row, which yields, by

Qm(vm) = 0,

fu − λI �




1 + K1 · · · K1 K1 K1 · · · K1

...
. . .

...
...

...
...

...

Km−k−2 · · · 1 + Km−k−2 Km−k−2 Km−k−2 · · · Km−k−2

0 · · · 0 0 −1 · · · −1

0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

0 · · · 0 0 0 · · · 0




. (2.12)

As Qm(vm) = 0 also implies that at least one element of the set {Ki}m−k−1
i=1 is not zero, we

assume that Km−k−1 � 0 as well. We then sum up the first (m − k − 3) rows of (2.12) to

its (m − k − 2)th row, thus the first (m − k − 2) elements in the row become −Km−k−1. Let

the row be divided by −Km−k−1, then the further transformations give

fu − λI �




1 · · · 0 α1 0 · · · 0
...

. . .
...

...
...

... 0

0 · · · 1 αm−k−2 0 · · · 0

0 · · · 0 0 1 · · · 1

0 · · · 0 0 0 · · · 0
... · · ·

...
... · · ·

...
...

0 · · · 0 0 0 · · · 0




,
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where αi = Ki/Km−k−1, i = 1, · · · , m− k− 2. It is easy to see that rank(fu − vm) = m− k− 1,

and we can only solve for at most k + 1 linearly independent eigenvectors, i.e.,

pm1
= (0, · · · , 0, 0,−1, 1, · · · , 0)T , . . . , pmk

= (0, · · · , 0, 0,−1, 0, · · · , 1)T ,

and

pmk+1
= (K1, · · · , Km−k−2, Km−k−1, 0, 0, · · · , 0)T . (2.13)

In this case the multiplicity of λ = vm is (k + 2). This completes the proof. �

Finally, some sufficient conditions for system (2.1) to be strictly hyperbolic can be

derived directly from the above. In a stronger sense, (2.5) guarantees m distinct eigenvalues

for u ∈ D, and the corresponding eigenvectors can be solved similarly. This is concluded

by the following theorem.

Theorem 2.3 Suppose that the inequalities of (2.5) hold for all u ∈ D. Then, system (2.1) is

strictly hyperbolic in D with m distinct eigenvalues, being in the sequence of inequality (2.7).

Moreover, the m linearly independent eigenvectors are

pi(λi) = (K1(λi), · · · , Km(λi))
T , i = 1, . . . , m, (2.14)

where Kj(λi) is given by (2.3).

2.2 General descriptions on characteristic fields

Based on the previous discussion, we define the characteristic fields of system (2.1), on

which some heuristic comments and conclusions are also presented. Primarily, we define

the velocity fields s̃ = {ṽi(ρ)}mi=1 as follows.

Given u and denote by s0 = {vi(ρ)}mi=1, then (i) set ṽ1(ρ) = minvj∈s0{vj(ρ)} and s1 =

s0 − {ṽ1(ρ)}; and (ii) for i = 2, . . . , m, set ṽi(ρ) = minvj∈si−1
{vj(ρ)} and si = si−1 − {ṽi(ρ)}.

The definition directly gives the following lemma.

Lemma 2 The function set s̃ = {ṽi(ρ)}mi=1 is in the sequence of inequalities:

ṽ1(ρ) � · · · � ṽi−1(ρ) � ṽi(ρ) � · · · � ṽm(ρ), ∀ρ; (2.15)

and each function ṽi(ρ) is continuous and strictly decreasing.

The proof of the continuity of ṽi(ρ) is trivial. Take m = 3, for example, the continuity

is evident since

ṽ1(ρ) = min(v1, v2, v3), ṽ3(ρ) = max(v1, v2, v3), ṽ2(ρ) =

3∑
i=1

vi − ṽ1 − ṽ3.

We then define m characteristic fields simply by numbering the m eigenvalues from the

smaller to the larger for a fixed u ∈ D̄, which implies that

λ1(u) � · · · � λi−1(u) � λi(u) � · · · � λm(u). (2.16)
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ρ = ρI ρmax ρ0

V1, 2

V2f

V1f

Figure 1. Intersection by velocity curves.

By the definition, we also have

Lemma 3 The function sets {λi(u)}mi=1 and s̃ = {ṽi(ρ)}mi=1 form the following interlaced

sequence of inequalities:

λ1(u) � ṽ1(ρ); ṽi−1(ρ) � λi(u) � ṽi(ρ), for i = 2, . . . , m, u ∈ D̃. (2.17)

Proof For a certain u, we can always arrange the sequence of {vi(ρ)}mi=1 such that

vi(ρ) = ṽi(ρ) for all i. Thus (2.17) is implied from the proof of Theorem 2.1. �

We have several comments on the cases when equality holds in (2.15)–(2.17), which

means an eigenvalue acquired by the intersection of some curves of {vi(ρ)}mi=1, or at a

boundary ρi = 0. For the former case, the intersection is denoted by ρ = ρI in figure 1

(m = 2), where the curves ṽ1(ρ) and ṽ2(ρ) are respectively the lower and upper parts of

v1(ρ) ∪ v2(ρ).

If all of these intersections are isolated, that is they are finite or infinitely denumerable,

then such a representative eigenvalue λ = vm(ρI ) (see the proof of Theorem 2.1) only

involves an m−1 dimensional subset of D̄, as shown by ρ1 +ρ2 = ρI in figure 2 (m = 2). If

the intersections form a continuous section of a curve, then such λ = vm(ρI ) involves an m-

dimensional domain. The former case should be trivial in affecting the strict hyperbolicity

of the system in D. However, λ = vm(ρI ) is not differentiable when involving such an single

intersection. This is also shown by figures 1 and 2, where ṽ1(ρ) and ṽ2(ρ) are generally

not smooth at ρI , so λ1,2(u) must not be differentiable in ρ1 + ρ2 = ρI . For the latter

case, the eigenvalue λ = vm(ρ) is differentiable in the involved open domain, where the

hyperbolicity is essentially different. See the further discussion in § 3.3.

For the case at a boundary ρi = 0, the eigenvalue that arises is not differentiable on

some subset that is just (m− 2) dimensional. It is in this subset where Qm(vi) = 0 and thus

system (2.1) is non-strictly hyperbolic (Theorem 2.2). This argument is illustrated by the

case of m = 2 below.
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ρ1 + ρ2 = ρI

ρ
1  + ρ

2  = ρ
m

ax

ρ10

ρ2

ρs
∗

Figure 2. Involved (m − 1)d subset on D̄.

Assume that v1(ρ) < v2(ρ) (ρ�ρmax), it is easily shown that

λ1 = 0.5(v1 + c1 + v2 + c2 −
√

(v1 + c1 − v2 − c2)2 − 4c1c2),

λ2 = 0.5(v1 + c1 + v2 + c2 +
√

(v1 + c1 − v2 − c2)2 − 4c1c2).

At the boundary ρ1 = 0 (also c1 = 0),

λ1(u) =

{
v1(ρ), if v1 � v2 + c2,

v2 + c2, otherwise,
λ2(u) = v1 + v2 + c2 − λ1. (2.18)

Clearly, λ1(u) and λ2(u) are not partially differentiable at (0, ρs) that is intersected by

v1 = v2 + c2, shown in figure 2. At this same point, we have λ1(u) = λ2(u) = v1(ρ), and the

corresponding eigen-matrix reads

fu − λI =

(
v1 + c1 − λ ρ1 + c1

ρ2 + c2 v2 + c2 − λ

)
=

(
0 0

c2 0

)
.

For c2 � 0, no two linearly independent eigenvectors exist, and (2.1) is thus non-strictly

hyperbolic.

In addition, for ρi = 0, whether vi = λi or vi = λi−1 depends on data u at the boundary

ρi = 0. Again, this is easily shown by (2.18). In general, we remark that it is just in the

critical subset {u | vi(ρ) = λi(u) = λi−1(ρ)} where λi(u) is not differentiable and where

system (2.1) is non-strictly hyperbolic.

From the above, we argue that the loss of the differentiability of some λi(u) corresponds

to the transitions at which the strict hyperoblicity of system (2.1) fails. However, λi(u) is

always differentiable in an open domain in which it is never identical to any velocity,

and thus system (2.1) is strictly hyperbolic. The latter statement is obvious because such

an eigenvalue is always derived from Qm(λ) = 0. See the discussion on Theorem 2.1 and

Lemma 3.2 for this argument.
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Finally, it is our opinion that the non-strict hyperbolicity is inherent in the system. At

a whole boundary ρi = 0, system (2.1) actually reduces to an (m − 1) × (m − 1) system

because its i-th equation becomes an identity. This reduction means that any discussion

must be made separately, as is done in (2.12)–(2.13). More significantly, the handling is

more complex for characteristic decomposition (if it is possible), i.e., the decomposition

can only be proceeded on the reduced system.

By the following theorem, however, all states of D̄ can be connected continuously by the

eigenvalues, and thus by their corresponding eigenvectors. This continuity may explain the

successful numerical simulations in § 4.2, even when they involve non-differential states.

Theorem 2.4 All functions of {λi(u)}mi=1 are continuous on D̄.

Proof We denote by Λ(u) ≡ (λ1(u), . . . , λm(u)). Given u ∈ D̄ and the increment ∆u,

u + ∆u ∈ D̄, suppose that Λ(u + ∆u) does not converge on Λ(u) as ∆u → 0. That is,

to have ∆un → 0, such that the sequence {Λ(u + ∆un)} along with all its subsequences

does not converge on Λ(u). As {λi(u + ∆un)} are all bounded (see (2.7) and (2.17)), hence

{Λ(u + ∆un)} must have one convergent subsequence {Λ(u + ∆unk )}, i.e.,

lim
k→∞

{Λ(u + ∆unk )} = Λ̃ ≡ (λ̃1, . . . , λ̃m), Λ̃�Λ(u).

First, by (2.17), we have

λ1(u + ∆unk ) � ṽ1(ρ + ∆ρnk ), ṽi−1(ρ + ∆ρnk ) � λi(u + ∆unk ) � ṽi(ρ + ∆ρnk ); (2.19)

then we re-denote by Pm(λ, u) the eigenpolynomial (2.4), which gives

Pm(λi(u + ∆unk ), u + ∆unk ) = 0. (2.20)

Note that λ̃i = lim
k→∞

λi(u + ∆unk ), and that Pm(λ, u) and all functions ṽi(ρ) are continuous

(Lemma 2.2). Hence, as k → ∞, (2.19)–(2.20) become

λ̃1 � ṽ1(ρ), ṽi−1(ρ) � λ̃i � ṽi(ρ); (2.21)

Pm(λ̃i, u) = 0, i = 1, . . . , m. (2.22)

Equation (2.22) indicates that all {λ̃i}mi=1 are m eigenvalues that correspond to u. By

comparison between (2.21) and (2.17), we must have λ̃i = λi(u), i = 1, . . . , m, namely

Λ̃ = Λ(u). But this is a contradiction. �

We now explain the physical meanings of the characteristic fields in the motion,

assuming that (2.5), (2.7) and u ∈ D.

First, for i � k, λi < vk indicates that the k-th flow from some x = x0 are influenced

by {λi}ki=1 from the downstream. Meanwhile, they are influenced by {λi}mi=k+1 from the

upstream because λi > vk for i � k+1: see figures 3 and 4, where lk denotes the trajectory

of the k-th flow, and {λi}mi=1 denotes the propagations of the m characteristic fields. Note

that all trajectories can be approximated as straight lines by means of local linearization.
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0 XX0

t

λ1

λm

λk+1

λk lk

...

...

Figure 3. lk is met by k propagations ahead.

0 XX0

t

λ1

λm

λk+1

λk lk

...

...

Figure 4. lk is met by m − k propagations behind.

Next, we say that the last m − 1 characteristic fields all arise from velocity differences

among the flow media. Precisely, the k-th field (k � 2) arises from the (k − 1)th flow being

overtaken by the kth. This is true by reduction to absurdity. If there is no overtaking

between the two flows, namely we reassume vk−1 ≡ vk in D, then the kth characteristic

field becomes λk(u) = vk(ρ): see the proof of Theorem 2.1. For the case, ρk−1, ρk and λk(u)

disappear after merging the (k − 1)-th and k-th equations of (2.1), and (2.1) reduces to an

(m − 1) × (m − 1) system with new variable ρ̃k−1 ≡ ρk−1 + ρk . Also see § 4.3, where the

system remains being m × m but the wave by λk = vk is explained as a contact across

which ρk−1 + ρk is a Riemann invariant.

Finally, λ1(u) < v1(ρ) is the fundamental characteristic field. Its influence flows from

the downstream. This has nothing to do with “overtaking” because it never disappears

even when we reset all velocities to be identical and thus (2.1) reduces to the scalar case

of (1.1).

Incidentally, for ρ = ρmax, we have v1(ρmax) = . . . = vm(ρmax) = 0 and λ2 = . . . = λm = 0.

This means that the whole flow is stagnant. Hence, “left overtaking” is impossible. For

ρi = 0, which means the absence of the ith flow, the eigenvalue λ = vi is a multiple root,

and its multiplicity equals the reduction in the number of equations of the system.
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3 Kinematic waves and solution properities

We are mainly concerned with a strictly hyperbolic admissible system (2.1) – a system

that consists of either nonlinear or linearly degenerate fields. This is achieved by assuming

(2.5) and (2.7) for u ∈ D; thus the strict hyperbolicity is ensured by Theorem 2.3. Of

course, the boundary ∂D is excluded from this discussion in § 3.1 and 3.2. In addition, the

investigation of the strong hyperbolicity is also briefed in § 3.3, where ρ = ρmax can be

included. The related Riemann problem is given by

u(x, 0) =

{
ul , if x < 0,

ur, if x > 0.
(3.1)

It is well known that local admissible solutions of strictly hyperbolic systems (2.1) and

(3.1) are existent, namely for sufficiently small ur − ul . That is, the initial data (3.1) break

into m simple waves in the sense of Lax, corresponding to the defined m characteristic

fields. Moreover, these waves divide the x-t upper plane into m+ 1 constant regions of all

solution variables. For detailed accounts of strictly hyperbolic systems [8, 9, 10, 16, 17, 18].

Global admissible solutions of the same problem are definitely a great concern. Indeed,

for considerable functions vi(ρ), this existence is strongly supported by many of our

conclusions, especially by the numerical results in § 4.2. However, the main difficulty for

the strict proof remains the same – all λi(u) are implicit for m > 2.

Therefore, it is important to investigate how to connect a wave and how solution

variables change in or across the wave. These changes are regular, as is shown in the

discussion. In § 3.1 and 3.2, only shocks and rarefactions are considered, because § 3.3

shows that a contact is possible only by reassuming, such that some λ = vm holds

continuously in a domain Dc ⊆ D. Such a contact is also investigated.

For all of these discussions, the left and right constant states of the studied k-wave

(k = 1, . . . , m) are represented by the superscripts “−” and “+”, respectively.

3.1 Shock waves

Let sk (or simply s) be the speed of the k-shock that arises from λk; the Rankine-Hugoniot

conditions read

s =
ρ+
i vi(ρ

+) − ρ−
i vi(ρ

−)

ρ+
i − ρ−

i

=

∑m
i=1 ρ

+
i vi(ρ

+) −
∑m

i=1 ρ
−
i vi(ρ

−)

ρ+ − ρ− , ∀i. (3.2)

These equalities of (3.2) also imply that

v+
i − s = ρ−

i

v−
i − v+

i

ρ+
i − ρ−

i

, v−
i − s = ρ+

i

v−
i − v+

i

ρ+
i − ρ−

i

,
v−
i − s

v+
i − s

=
ρ+
i

ρ−
i

> 0, v±
i ≡ vi(ρ

±). (3.3)

For a valid shock, the Lax entropy conditions must be satisfied, i.e.,

λ−
k > s > λ+

k , λ+
k+1 > s > λ−

k−1, λ± ≡ λ(u±). (3.4)

Here note that some invalid expressions in the above and in the following, namely λk+1

for k = m, and λk−1 for k = 1. They should be removed automatically.
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Theorem 3.1 For s satisfying (3.2), ∃k ∈ {i}mi=1, such that v±
k−1 < s < v±

k . Moreover, we must

have either

(i) ρ− < ρ+, ρ−
i > ρ+

i for i < k, and ρ−
i < ρ+

i for i � k; or

(ii) ρ− > ρ+, ρ−
i < ρ+

i for i < k, and ρ−
i > ρ+

i for i � k.

Proof We change the third equality of (3.3) to

ρ+
i =

v−
i − s

v+
i − s

ρ−
i > 0, (3.5)

then summation over i yields

ρ+ =

m∑
i=1

v−
i − s

v+
i − s

ρ−
i =

m∑
i=1

(
1 +

v−
i − v+

i

v+
i − s

)
ρ−
i =

m∑
i=1

v−
i − v+

i

v+
i − s

ρ−
i + ρ−,

which is equivalent to

1 +
1

ρ+ − ρ−

m∑
i=1

v+
i − v−

i

v+
i − s

ρ−
i = 0.

It is easy to verify that the left hand side of the above would be positive or ∞ if s � v+
i

for all i. This suggests some k, such that v+
k−1 < s < v+

k . Thus we have, by (3.5),

v±
k−1 < s < v±

k . (3.6)

Suppose that ρ− < ρ+, namely v−
i > v+

i (∀i), then we have (i) by (3.3), (3.6), and (2.5).

Similarly, we derive (ii) if ρ− > ρ+. Finally, ρ− = ρ+ is possible only at ρ = ρmax, such

that s = vi = 0 for all i. �

In the proof, we see that the second inequality of (3.4) is implied in the first, provided

that the Rankine-Hugoniot conditions of (3.2) hold. Therefore, it is unnecessary in the

consideration for a valid shock.

Importantly, we show that the k-shock which is characterized by ρ− < ρ+ is truly

compressive for all flow media in the following sense. By setting the shock as stationary, a

certain flow increases in density and decreases in velocity after it passes through the shock.

Actually, for the i-th flow of i � k, v±
i − s > 0 (see (3.6) and (2.5)), so it travels across the

k-shock from the flow direction, such that ρ−
i < ρ+

i and v−
i − s > v+

i − s (Theorem 3.1.(i)).

For the ith flow of i � k − 1, we have s − v±
i > 0. This suggests that the flow crosses the

k-shock from the inverse direction, such that ρ−
i > ρ+

i and s − v−
i > s − v+

i . See figure 5

for an illustration.

In general, we argue that these compressive shocks occur frequently. This is absolutely

true for the scalar case (m = 1) with strictly concave flux f(ρ) = ρv(ρ). Here, the strict

concavity f′′(ρ) < 0 also means the genuine nonlinearity of the waves [16, 18]. For the

cases m > 1, it is difficult to define a similar ‘concavity’ of the flux, namely to define its

properties sufficient and necessary to guarantee that all shocks are compressive. However,

we can see the high frequency of these shocks in our problem, by its analogy to the
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0 X

t

for ki > –1: vi
– > vi

+ > sk
k-shock

sk

for ki < : sk > vi
– > vi

+

Figure 5. Changes in density and velocity of all flows across the compressive k-shock.

scalar case, especially by the numerical simulations (§ 4.2). In contrast, the k-shock that

is characterized by ρ− > ρ+ (Theorem 3.1(ii)) must be expansive in the same sense; it is

unlikely to occur but cannot be completely excluded.

As an important evidence of the argument, a range of velocity functions of certain

types are verified to ensure that all shocks are compressive. For this proof and more, two

Lemmas are derived from our previous discussions.

Lemma 4 For u ∈ D, λ(u) is an eigenvalue if and only if

Q(λ, u) = 0, (3.7)

where we denote by Q(λ, u) ≡ Qm(λ), which is given by (2.4).

Lemma 5 For u ∈ D, the function G(λ, u) is strictly decreasing in λ in the m + 1 open

intervals divided by λ � vk(ρ), k ∈ {i}mi=1. Moreover, a certain λk(u) that is determined by

(3.7) is differentiable in D.

Proof We rewrite

Q(λ, u) = 1 +

m∑
i=1

ci(u)

vi(ρ) − λ
. (3.8)

Recall that ci(u) = ρiv
′
i(ρ) < 0, so it is obvious that

∂Q(λ, u)

∂λ
=

m∑
i=1

ci

(vi − λ)2
< 0, λ� vk(ρ), k = 1, . . . , m. (3.9)

Note that λk(u) ∈ (vk−1(ρ), vk(ρ)) in D, and it is valid to write, by (3.9),

∂λk
∂ρi

= − ∂Q

∂ρi

/
∂Q

∂λk
; (3.10)

and the differentiability of λk(u) is ensured by the implicit function theorem. �
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We now define all velocity fields from a concave function v(ρ), namely we have

vi(ρ) = biv(ρ), 0 < bi < bi+1, ∀i; v′(ρ) < 0, v′′(ρ) � 0, ∀ρ ∈ [0, ρmax], (3.11)

Compared with (1.6), this definition implies that v(0) = 1 and v(ρmax) = 0.

Theorem 3.2 Suppose that the velocities are given by (3.11), and the two states u− and u+

of D satisfy (3.2). Then, u− and u+ form a valid k-shock if and only if ρ− < ρ+.

Proof By Theorem 3.1, there exists k ∈ {i}mi=1, v
±
k−1 < s < v±

k (see (3.6)). We only need to

prove that ρ− < ρ+ if and only if we have the first inequality of (3.4). As mentioned, the

second inequality of (3.4) is self-evident in the proof.

Suppose that ρ− < ρ+. By Theorem 3.1, we then have

ρ+
i

ρ−
i

{
< 1, if i < k ,

> 1, if i � k .
(3.12)

Note that s, λ+
k ∈ (v+

k−1, v
+
k ), in which Q(λ, u+) is strictly decreasing in λ (Lemma 3.2).

Therefore, we prove Q(s, u+) < 0, and thus s > λ+
k is implied by Q(s, u+) < 0 ≡ Q(λ+

k , u
+)

(Lemma 3.1). For this estimation of Q(s, u+), we replace all denominators of (3.8) with

the first equality of (3.3) to have

Q(s, u+) = 1 +

m∑
i=1

[
v′
i(ρ

+)
ρ+
i − ρ−

i

v−
i − v+

i

]
ρ+
i

ρ−
i

< 1 +

m∑
i=1

v′
i(ρ

+)
ρ+
i − ρ−

i

v−
i − v+

i

.

The above inequality is achieved by (3.12) because the terms in [·] are positive for i < k

and negative for i � k. The substitution of vi by (3.11) makes further estimation,

Q(s, u+) < 1 − v′(ρ+)
ρ+ − ρ−

v+ − v− = 1 − v′(ρ+)

v′(ρ̃)
� 0, ρ− < ρ̃ < ρ+. (3.13)

We can similarly prove that Q(s, u−) > 0 to have s < λ−
k .

In a similar manner, it can be verified that all of the inequalities above will be inverse

if ρ− > ρ+, so is the first inequality of the Lax entropy conditions (3.4). �

Note that the estimation of (3.12) can be altered to be closer, replaced by

ρ+
i

ρ−
i

{
< v−

i /v
+
i , if i < k ,

> v−
i /v

+
i , if i � k .

(3.14)

This is due to the last inequality of (3.3), but only for s > 0. Accordingly, (3.13) is altered

to be

Q(s, u+) < 1 − v′(ρ+)
ρ+ − ρ−

v+ − v− · v
−

v+
< 1 − v′(ρ+)/v(ρ+)

v′(ρ̃)/v(ρ̃)
� 0, ρ− < ρ̃ < ρ+.

The last inequality above is acquired by reassuming v(ρ) of (3.11), namely that v′(ρ)/v(ρ)

is decreasing or v′′ � (v′)2/v. The new assumption is weaker but so will be the new

conclusion (for s > 0). This indicates that the proof of Q(s, u+) < 0 is very difficult for
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weaker settings of {vi(ρ)}mi=1. However, we stress that this cannot exclude the compressive

shocks that are widely observed in the numerical simulations (§ 4.2).

3.2 Rarefaction waves

The k-rarefaction wave arises from the following inequality:

λ−
k < λ+

k . (3.15)

Wave solutions are well-known for their self-similarity, say u(x, t) = u(θ) and θ = x/t. By

the substitution, system (2.1) becomes

(fu(u(θ)) − θI)u′(θ) = 0, u′(θ) ≡ (ρ′
1(θ), . . . , ρ

′
m(θ)T . (3.16)

In the rarefaction fan θ ∈ [λ−
k , λ

+
k ], u′(θ)� 0 , so by (3.16) (θ, u′(θ)) is an eigen-pair. That

is, u′(θ) || pk(θ), namely

ρ′
1(θ)

K1(θ)
= · · · =

ρ′
i(θ)

Ki(θ)
= · · · =

ρ′
m(θ)

Km(θ)
=

ρ′(θ)

−1
, u′(θ)� 0, (3.17)

where pk(θ) and Ki(θ) are given by (2.14) and (2.4), respectively. The last equality of (3.17)

is by Lemma 3.1, namely by

Q(θ, u(θ)) = 0, or

m∑
i=1

Ki(θ) = −1, vk−1(ρ(θ)) < θ < vk(ρ(θ)). (3.18)

It is obvious that (3.17) and (3.18) define m + 1 nontrivial smooth curves ρ = ρ(θ) and

ρi = ρi(θ), i = 1, . . . , m; and the k rarefaction fan including the two states must be linked

by these curves such that (3.15) holds. We describe the main features of these smooth

curves namely rarefaction curves.

For fixed k, the curves are confined to vk−1(ρ(θ)) < θ < vk(ρ(θ)), which is called the

k-th solution field of (3.17)–(3.18). In figure 6, we have m solution fields such that all

curves ρ = ρ(θ) of these m fields in the ρ-θ coordinate plane are completely separated by

m curves Li: vi(ρ) = θ, i = 1, . . . , m. In the kth (each) field, we note that vi(ρ(θ)) − θ or

Ki(θ) keep the sign unchanged for certain i. This property is stressed. Hence, we can give

the following lemma.

Lemma 6 For solutions of (3.17)–(3.18) in the k-th field, we have

vi(ρ(θ)) < θ or Ki(θ) < 0, for i < k; vi(ρ(θ)) > θ or Ki(θ) > 0, for i � k. (3.19)

Combining the above lemma and (3.17), we directly have

Theorem 3.3 In the k-th field of (3.17)–(3.18), we have either

(i) ρ′(θ) < 0, ρ′
i(θ) > 0 for i < k, ρ′

i(θ) < 0 for i � k; or

(ii) ρ′(θ) > 0, then ρ′
i(θ) < 0 for i < k, and ρ′

i(θ) > 0 for i � k.
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θ

ρ

k−field

1-field

vk-1(ρ) < θ < vk(ρ) 

v1(ρ) = θ vk-1(ρ) = θ vk(ρ) = θ vm(ρ) = θ

L1 ... Lk Lk-1 Lm
...

......

Figure 6. Division of solution fields of rarefaction curves by solving (3.17)–(3.18).

It is interesting (but not surprising) to note that Theorem 3.3 is parallel to Theorem 3.1,

as are many of the following conclusions and comments. Likewise, we say that the

k-rarefaction that is characterized by ρ′(θ) < 0 (Theorem 3.3.(i)) is expansive in the

same sense; that is, all media accelerate and increase their densities after they enter

the rarefaction fan. Furthermore, these expansive rarefaction waves should be regular

in our problem. Compare this to the corresponding discussion for shocks. Meanwhile,

these compressive rarefactions that are characterized by ρ′(θ) > 0 (Theorem 3.3.(ii)) are

infrequent, subject to the velocity fields.

Parallel to Theorem 3.2, we prove that the monotonicity of each k curve is certain, i.e.,

ρ′(θ) < 0, provided that the velocity fields are given by (3.11). This is ascribed to the

following lemma.

Lemma 7 The velocities are given by (3.11). Then the solutions of (3.17)–(3.18) in the k-th

field are monotone such that ρ′(θ) < 0.

Proof Suppose that the conclusion is not true, then there exist θ1 and θ2, θ1 < θ2, such

that ρ′(θ) > 0 for θ ∈ [θ1, θ2]. As limθ→θ2
(vk(ρ(θ)) − θ2) = vk(ρ(θ2)) − θ2 > 0, θ1 can be

sufficiently close to θ2 such that vk(ρ(θ)) − θ2 > 0, ∀θ ∈ [θ1, θ2]. Generally, for θ ∈ [θ1, θ2),

we can have,

vi(ρ(θ)) − θ2 < vi(ρ(θ)) − θ < 0, i < k; vi(ρ(θ)) − θ > vi(ρ(θ)) − θ2 > 0, i � k, (3.20)

By (3.17), we always have

ρ′
i(θ)

ρi(θ)
=

−(vi(ρ(θ)))′

vi(ρ(θ)) − θ
<

−(vi(ρ(θ)) − θ2)
′

vi(ρ(θ)) − θ2
, ∀i. (3.21)

Note that −(vi(ρ(θ)))′ = −v′
i(ρ)ρ′(θ) > 0 in the above. By the formula (ln |ϕ|)′ = ϕ′/ϕ,

(3.21) changes to

(ρi(θ)|vi(ρ(θ)) − θ2|)′ < 0,
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which gives

ρi(θ2)|vi(ρ(θ2)) − θ2| < ρi(θ1)|vi(ρ(θ1)) − θ2|, ∀i.
More conveniently, the inequality above is rewritten as

ρi(θ2)

ρi(θ1)
<

vi(ρ(θ1)) − θ2

vi(ρ(θ2)) − θ2
, ∀i. (3.22)

The signs in | · | above are decided by (3.17)–(3.18), of which θ is replaced by θ1. In

addition, (3.22) can be written as

ρi(θ2) − ρi(θ1)

ρi(θ1)
<

vi(ρ(θ1)) − vi(ρ(θ2))

vi(ρ(θ2)) − θ2
, ∀i. (3.23)

Furthermore we have, by Theorem 3.3 and the assumption ρ′(θ) > 0 on [θ1, θ2],

ρ(θ2) > ρ(θ1),
ρi(θ2)

ρi(θ1)

{
< 1, if i < k ,

> 1, if i � k ,
vi(ρ(θ1)) > vi(ρ(θ2)), ∀i. (3.24)

Based on (3.8), (3.11), (3.23) and (3.24), and also noting that v′
i(ρ(θ2)) < 0, we have

Q(θ2, u(θ2)) = 1 +

m∑
i=1

ρi(θ2)v
′
i(ρ(θ2))

vi(ρ(θ2)) − θ2
< 1 +

m∑
i=1

ρi(θ2)

ρi(θ1)

(ρi(θ2) − ρi(θ1))v
′
i(ρ(θ2))

vi(ρ(θ1)) − vi(ρ(θ2))

< 1 +

m∑
i=1

(ρi(θ2) − ρi(θ1))v
′
i(ρ(θ2))

vi(ρ(θ1)) − vi(ρ(θ2))
= 1 +

(ρ(θ2) − ρ(θ1))v
′(ρ(θ2))

v(ρ(θ1)) − v(ρ(θ2))
< 1 − v′(ρ(θ2))

v′(ρ̃)
� 0,

(3.25)

where ρ(θ1) < ρ̃ < ρ(θ2). However, this contradicts with the fact that Q(θ2, u(θ2)) = 0

from Lemma 3.1. �

By Lemma 3.4, (3.15) is equivalent to having ρ− > ρ+ (and the description by Theo-

rem 3.3(i)) for the two states at the same k curves of (3.17)–(3.18), provided that the

velocities are given by (3.11). Therefore the following theorem is self-evident.

Theorem 3.4 Suppose that the velocities are given by (3.11). Then, for two states u− and

u+ that are in the same certain curves of (3.17)–(3.18) in the k-th field, the k-rarefaction

wave is formed if and only if ρ− > ρ+, and is expansive as described by Theorem 3.3(i).

The conclusions by Lemma 3.4 and Theorem 3.4 are true for θ ∈ [λ−
k , λ

+
k ] ⊂ (0, λ+

k ],

provided that v′′(ρ) � 0 of (3.11) is altered to be v′′ � (v′)2/v. Following the same steps

that prove Lemma 3.4, the conclusion is reached through the replacement of (3.24) by

ρi(θ2)

ρi(θ1)
<

vi(ρ(θ1))

vi(ρ(θ2))
, if i < k ,

ρi(θ2)

ρi(θ1)
>

vi(ρ(θ1))

vi(ρ(θ2))
, if i � k .

The first part of the above is implied by (3.22) (θ2 > 0); the second part can be similarly

obtained such that in (3.21) θ2 is replaced by θ1 and the inequality is inverse. Compare

this to (3.14) and the associated comments.
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Finally, the discussion on shock curves is similar to that of rarefaction curves, though

for simplicity they are not mentioned in § 3.1. See Smoller [16] for a detailed account of

this issue.

3.3 Heuristic comments on nonlinearity and linearly degeneration

A linearly degenerate field of the eigen-pair (λ, p) corresponds to

�uλ · p ≡ 0, �u = (∂ρ1
, · · · , ∂ρ1

), (3.26)

from which a contact discontinuity arises. If �uλ · p � 0, then the characteristic field is

genuinely nonlinear [16]. By (3.10), we proceed with the following:

(
− ∂Q

∂λk

)
�λk · pk =

(
− ∂Q

∂λk

) m∑
i=1

∂λk
∂ρi

Ki =

m∑
i=1

∂Q

∂ρi
Ki =

m∑
i=1

ρi(v
′
i)

2

(vi − λk)2
−

m∑
i=1

ρiv
′′
i

vi − λk
.

(3.27)

Above, by Lemma 3.2 note that −∂Q/∂λk > 0.

Several comments are necessary on the nonlinearity of the characteristic fields. We first

have two conclusions as follows:

(1) If all vi(ρ) are linear functions such that v′′
i (ρ) = 0, then �uλk · pk > 0, and thus all

fields λk are nonlinear globally in D.

(2) If v′′
i (ρ) < 0, which includes those given by (3.11), then �uλ1 · p1 > 0, and thus λ1

field is nonlinear globally in D.

Secondly, whether �uλk · pk > 0 in D and for all k is generally unclear, subject to the

velocity fields. This investigation is also difficult mainly due to the implicit λk(u). By (3.27),

however, it seems that �uλk · pk � 0 is unlikely in D for most cases. Even that is true, the

set {u | �uλk · pk = 0} is only m − 1 dimensional, and not so “large” in D. In this sense,

we can say that all fields λk are essentially nonlinear.

Finally, for the above two statements, λ1 generates the main wave to connect the two

initial states ul and ur given by (3.1). As observed in numerical simulations, this means that

1-wave is always sharp for large ur − ul , whereas other waves are very thin in connecting,

so that �uλk · pk = 0 (k � 2) might be avoided in the k-wave. Also see § 4.2, where these

‘standard’ compressive shock and expansive rarefaction waves are always observed.

These comments are merely heuristic and might be conducive to future studies.

However, a contact discontinuity is possible if the assumptions are released such that

some λ = vm(ρ) is an eigenvalue in some sub-domain say Dc ⊆ D ∪ {u | Σm
i=1ρi = ρmax}.

This is to recall the discussions in § 2 (Lemma 2.1, Theorem 2.3 and their proofs). We

assume that

vm(ρ) = vm−1(ρ) = · · · = vm−k(ρ), ρ ∈ [ρc, ρmax], (3.28)

where vm(ρ) is not necessarily the largest velocity and not identical to any other velocity

in the same interval. This corresponds to the k multiple eigenvalue,

λm = · · · = λm−k+1 = vm, u ∈ Dc.
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The k linearly independent eigenvectors that are given by (2.10) are redenoted as

pm1
= (0, · · · , 0,−1, 1, 0, · · · , 0)T , . . . , pmk

= (0, · · · , 0,−1, 0, 0, · · · , 1)T .

For u ∈ Dc, (3.26) is obviously satisfied by all eigen-pairs (λm, pmj
), i.e.,

�uλm · pmj
≡ 0, u ∈ Dc, j = 1, . . . , k.

We show that the wave arising from λm is actually a contact discontinuity.

Note that system (2.1) is strongly hyperbolic on Dc: namely, m linearly independent

eigenvectors are guaranteed. Hence, by generalization, m − k Riemann invariants of the

wave (casually named the mk-wave here) are defined such that

li · du = 0, i = 1, . . . , m − k.

Here li are left eigenvectors of λi; and by scaling {li}mi=1 are bi-orthonormal to the set of

right eigenvectors {pi}mi=1, which implies that

li · pmj
= 0, i = 1, · · · , m − k, j = 1, . . . , k.

Therefore, we have

li · (du − pmj
) = 0, i = 1, · · · , m − k, j = 1, . . . , k. (3.29)

Clearly, (3.29) suggests that du || S , where S = {α1pm1
+ · · · + αkpmk

| ∀αi, i = 1, . . . , k}, and

α1pm1
+ · · · + αkpmk

= (0, · · · , 0,−Σk
j=1αj , α1, · · · , αk). That is,

dρ1

0
= · · · =

dρm−k−1

0
=

dρm−k

−Σk
j=1αj

=
dρm−k+1

α1
= · · · =

dρm

αk
,

by which these m − k Riemann invariants of the mk-wave are clearly ρ1, . . . , ρm−k−1

and Σm
j=m−kρj . As a result, ρ = Σm

j=mρj is also a Riemann invariant, as are all vi(ρ) and

λm(u) = vi(ρ). This clearly indicates that the mk-wave is a contact discontinity. Across the

wave we have

ρ−
1 = ρ+

1 , . . . , ρ
−
m−k−1 = ρ+

m−k−1, Σ
m
j=m−kρ

−
j = Σm

j=m−kρ
+
j ,

ρ− = ρ+, v−
i = v+

i , ∀i, λ−
m = λ+

m.

The Rankine-Hugoniot conditions of (3.2) can be easily verified.

The interpretation of such a contact is similar to what is discussed at the end of § 2.2.

Let k = m − 1, for example, then (3.28) means that all flow media are the same in their

velocity as the total density is larger than some critical value ρc. Moreover, it is easy to

see that the contact is formed if and only if, initially, ul = u− ∈ Dc or ur = u+ ∈ Dc.

Suppose that ur = u+ ∈ Dc, for example, the contact is needed to separate the original

state ur = u+ from the state u− formed behind, such that generally ρ+
i �ρ−

i but ρ− = ρ+.

Note that we only have two waves by the assumption. Also compare this argument with

figures 17 and 18 in § 4.2.
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4 Numerical approximations

To confirm the conclusions that are clear (or unclear) in the previous discussions, numerical

implementation is made. High resolution schemes are adopted. However, here the main

difficulty is the characteristic decomposition [5, 13]. Analytically it is impossible for m > 2

because in this case all λi(u) are implicit. Though it could be made for m = 2, the

discussion must be separated at each boundary ρi = 0; thus the handing will be very

complex. See the comments in § 2.2 and around Theorem 2.4.

Due to this difficulty, Lax-Friedrichs flux-splitting is applied as an alternative. Because

this compromise involves considerable numerical viscosity, the fifth order accurate WENO

(Weighted Essentially Non-Oscillatory) reconstruction is used, coupled with the third order

accurate TVD Runge-Kutta time discretization. The scheme is only briefly described. For

a detailed account of the ENO and WENO methods [6, 12, 15].

4.1 Flux-splitting WENO schemes

The solution procedure consists of three major blocks: the flux-splitting, the WENO

reconstruction, and the TVD Runge-Kutta time discretization. For the first step, the flux

vector f(u) of (2.1) is split into two parts as follows:

f(u) = f+(u) + f−(u), f+(u) =
1

2
(f(u) + αu), f−(u) =

1

2
(f(u) − αu).

In the above, the constant α is given by

α0 = max
u

max
1�j�m

|λj(u)|,

or greater, where the first maximum is taken over all u involved. In each of our examples,

α is well evaluated by (2.8), such that α − α0 is small enough. By such α, f+(u) and f−(u)

are guaranteed to be non-negative and non-positive, respectively, i.e.,

f+
u (u) = fu(u) + αI � 0, f−

u (u) = fu(u) − αI � 0.

For the discretization of (2.1), (f+(u))x and (f−(u))x are approximated by numerical fluxes

separately, such that

dui

dt
+

1

∆x

(
f̂+
i+1/2 − f̂+

i−1/2

)
+

1

∆x

(
f̂−
i+1/2 − f̂−

i−1/2

)
= 0. (4.1)

These fluxes f̂±
i+1/2 are acquired by the WENO reconstruction below.

Given all of the discrete values vj of a function v(x) in Ij , we denote by vi±1/2 the

approximate boundary values of v(x) on a fixed cell Ii. Then, vi±1/2 are obtained by

applying vi and its neighboring r + s point values. Here, r is the number of the cells

in the left side of Ii, and k = r + s + 1 cells are thus involved. Moreover, we have k

approximations of v(xi±1/2), denoted by

v
(r)
i+1/2 =

k−1∑
j=0

crjvi−r+j , v
(r)
i−1/2 =

k−1∑
j=0

c̃rjvi−r+j , r = 0, . . . , m − 1. (4.2)
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In (4.2), c̃rj = cr−1,j; and for k = 3, crj are given by

c−1,0 = 11/6, c−1,1 = −7/6, c−1,2 = 1/3; c00 = 1/3, c01 = 5/6, c02 = −1/6;

c10 = −1/6, c11 = 5/6, c12 = 1/3; c20 = 1/3, c21 = −7/6, c22 = 11/6.

For certainty, vi±1/2 are made to be the following weighted averages of (4.2):

v−
i+1/2 =

k−1∑
r=0

ωrv
(r)
i+1/2, v+

i−1/2 =

k−1∑
r=0

ω̃rv
(r)
i−1/2, (4.3)

with all weights given by

ωr =
αr∑k−1
r=0 αs

, αr =
dr

(ε + βr)2
; ω̃ =

α̃r∑k−1
r=0 α̃s

, α̃r =
d̃r

(ε + βr)2
, d̃r = dk−1−r.

In the above, ε = 10−12; and for our application of k = 3, these constants are d0 = 0.3,

d1 = 0.6, d2 = 0.1, and

β0 =
13

12
(vj−2 − 2vj−1 + vj)

2 +
1

4
(vj−2 − 4vj−1 + 3vj)

2;

β1 =
13

12
(vj−1 − 2vj + vj+1)

2 +
1

4
(vj−1 − vj)

2;

β2 =
13

12
(vj − 2vj+1 + vj+2)

2 +
1

4
(3vj − 4vj+1 + vj+2)

2.

Now, the f̂±
i+1/2 that are applied in scheme (4.1) are determined by the following procedure:

(1) let vi = f+
i and compute v−

i+1/2 by (4.3), then set f+
i+1/2 = v−

i+1/2; and

(2) let vi = f−
i and compute v+

i+1/2 by (4.3), then set f−
i+1/2 = v+

i+1/2.

The reconstruction guarantees the (2k − 1)-th order accuracy.

Finally, for the TVD-Runge-Kutta time discretization, scheme (4.1) can be rewritten as

the following ODEs:

ut = L(u).

Given the initial values u(x, 0) ≡ u0(x) and the division {un}Nn=0 in time direction, then for

n = 0, . . . , N, we follow the steps below:

(1) Set u(0) = un.

(2) For j = 1, . . . , K , compute the values of intermediate functions as

u(j) =

j−1∑
l=0

(
αjlu

(l) + ∆tβjlL
(
u(l)

))
.

(3) Set un+1 = u(K).
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Figure 7. Changes in all densities at t = 1.2, with ul = (0.2, 0.1, 0.1), and ur = (0.25, 0.25, 0.3).

This approximation achieves the K-th order accuracy in time direction. For our applic-

ation of K = 3, the coefficients are

α10 = 1, α20 = 3/4, α21 = 1/4, α30 = 1/3, α31 = 0, α32 = 2/3;

β10 = 1, β20 = 0, β21 = 1/4, β30 = 0, β31 = 0, β32 = 2/3.

4.2 Resolution of waves in the Riemann problem

To compare with the analytical results, numerical examples are given by the Riemann

problem (3.1), with the change of the interface from x = 0 to some x = x0. To capture

these compressive shocks and expansive rarefactions, moreover, the velocity fields of (3.11)

are applied with ρmax = 1, m = 3, (b1, b2, b3) = (0.6, 0.8, 1), and

v(ρ) = 1 − ρµ, (4.4)

except that v′′(ρ) > 0 for µ < 1. The computational range is (0, 1), with division ∆x =

1/800; the temporal increment ∆t = 0.6∆x/α. In all examples, the types of all m waves

are also identified in comparison with analytical results in § 3.

In figures 7–16 the density of all different classes are shown on the left side; whereas

the total density is shown on the right side. All waves follow the descriptions given by

Theorem 3.2.(i) or Theorem 3.4.(i), i.e., all shocks are compressive and all rarefactions are

expansive. Note that these are also true even with µ < 1 of (4.4) (figures 13–16), which

means the convexity v′′
i (ρ) > 0, ∀i.

To simulate a contact, (4.4) is altered to be

vi(ρ) =

{
v(ρ), if ρ > ρc,

bi + ρ(1 − bi − ρc)/ρc, otherwise,
i = 1, 2, 3; (4.5)

see the discussion in § 3.3. The numerical result is shown in figures 17 and 18. Note that

the initial state ur = (0.25, 0.25, 0.3) is in the region of Dc. On the left side, the number

of the waves reduces to two, because λ2 = λ3 for u ∈ Dc. On the right side, the second
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Figure 8. Changes in all densities at t = 1.2, with ul = (0.2, 0.1, 0.1), and ur = (0.25, 0.25, 0.3).
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Figure 11. Changes in all densities at t = 1.2, with ul = (0.05, 0.1, 0.15), ur = (0.3, 0.2, 0.25).
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Figure 12. Changes in all densities at t = 1.2, with ul = (0.05, 0.1, 0.15), ur = (0.3, 0.2, 0.25).
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Figure 14. Changes in all densities at t = 1.2, with ul = (0.05, 0.09, 0.06), and ur = (0.3, 0.2, 0.25).
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Figure 15. Changes in all densities at t = 0.6, with ul = (0.4, 0.25, 0.35), and ur = (0.05, 0.08, 0.12).
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wave disappears because the total density is a Riemann invariant for this contact. See our

comments in the end of § 3.3.

5 Conclusions

We have proven that system (2.1) is hyperbolic, because it has m real eigenvalues. More

precisely, it is non-strictly hyperbolic somewhere at a boundary ρi = 0, and it is only

(m − 2) dimensional. Moreover, it is strongly hyperbolic at the intersections by at least

two velocity curves, and it is just m − 1 dimensional. The system is strictly hyperbolic in

other solution regions at large.

Some important properties of the characteristic fields are also discussed. In particular,

it is confirmed that the last (m − 1) fields are due to overtaking. Precisely, the k-field is

due to the (k − 1)-th flow being overtaken by the k-th, provided that ρi � 0, ∀i.
All waves are investigated. In general, a characteristic field is essentially genuinely

nonlinear, and the involved wave is characterized by the so called compressive shock or

expansive rarefaction. That is, the density of each class increases after it passes through
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a shock but decreases after entering a rarefaction fan. A contact is formed such that the

propagation of a certain family of characteristics coincides with at least two flows. For

this case all Riemann invariants of the wave are easily acquired and the meanings in the

motion are clearly understood.

All of the main results are verified numerically. All of the examples adopt the Lax-

Friedrichs flux-splitting WENO scheme. Their declared compressive shocks and expansive

rarefactions are always observed, along with the described contact.

In summary, this paper presents a comprehensive study and provides many important

results for the discussed system. These are of much significance for studies of hyperbolic

equations, and probably also for applications.

What is left unclear is the existence of global solution of the Riemann problem. A

strict proof for this will be more challenging, based on the conclusions in this paper, and

subject to assumptions on the velocity fields. Besides, system 2.1 can be further extended

say through combination with those factors considered by several authors [22, 23, 24], so

that more interesting and complicated waves could be presented.
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