<table>
<thead>
<tr>
<th>Title</th>
<th>The revolution of schooling? Changing patterns of teacher-student interactions in the era of new technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Lindstrom, B</td>
</tr>
<tr>
<td>Citation</td>
<td>CITE Seminar Series 07 (The revolution of schooling? Changing patterns of teacher-student interactions in the era of new technology), Hong Kong, China, 26 February 2001</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2001</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/44038</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
The revolution of schooling?

Changing patterns of teacher-student interactions in the era of new technology

Visions and realities.

Berner Lindström
Göteborg University

Email: berner.lindstrom@ped.gu.se http://www.ped.gu.se/berner
Personal background

• Professor of education at Göteborg University, Sweden
• Adjunct professor of information science at University of Bergen, Norway
Personal background

• Advisor to the vice-chancellor on IT
 – Infrastructure
 – Administrative support systems
 – ICT for learning
 – Staff development

• Board-member of the Swedish National Agency for Distance Education, SUNET and Ladok.
This is Sweden
This is Göteborg
This is Göteborg University
This is Faculty of Education
The Swedish school system

- Sweden has a decentralised school system.
- Curricula and syllabi are goal-oriented.
- Both the school and the individual teacher are responsible for deciding how to work in order to reach the goals set.
- Teachers are employed by the municipalities and the municipalities are responsible for the education sector as a whole (except higher education).
Agenda

• Observations on policies, ideologies and promises
• Observations on reality
Outline of the seminar

• Penetration of new technology in the Swedish society.
• Changes in pedagogical ideologies and rationales
• The conditions for "institutionalising" ICT
• Contemporary Swedish initiatives of introducing Information and Communication Technologies (ICT) in the Swedish educational systems.
• Pedagogical rationale(s) behind these initiatives
Bottom line

- Large programs to promote usage of ICT in schools
- Rhetoric – a belief in “the good effects” on society and an unavoidable track
 – You can’t not not do it (Collis & Moonen, 2001)
Rhetoric - technology

• ICT will completely change the conditions for schooling
 – “The gigabit net will change the conditions for education”
 – E-learning is the new mood of learning
Rhetoric - schooling

- New opportunities (for everything)
- New pedagogical methods
- Schooling should be an authentic practice
 - Problem based/oriented
 - Exploration
 - Children construct their knowledge
- Collaboration
- Life-long learning
- Democracy (reaching more and new students)
Important patterns of change in society with regard to ICT

• Expansion of high-quality ICT-infrastructure
• Increased functionality of ICT-tools
• Commercialisation of ICT
• Merging of mass-media and ICT
• Increased use of ICT in everyday life and at work
Expansion of high-quality ICT-infrastructure

- Access to computers at home (2000)

<table>
<thead>
<tr>
<th>Age</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-14</td>
<td>83%</td>
</tr>
<tr>
<td>15-19</td>
<td>80%</td>
</tr>
<tr>
<td>20-24</td>
<td>63%</td>
</tr>
<tr>
<td>25-34</td>
<td>78%</td>
</tr>
<tr>
<td>35-44</td>
<td>81%</td>
</tr>
<tr>
<td>45-54</td>
<td>77%</td>
</tr>
<tr>
<td>55-64</td>
<td>51%</td>
</tr>
<tr>
<td>65-79</td>
<td>23%</td>
</tr>
<tr>
<td>Tot</td>
<td>64%</td>
</tr>
</tbody>
</table>
Expansion of high-quality ICT-infrastructure

• Access to computers anyware
 – A digital divide: workers, retired, unemployed.
Expansion of high-quality ICT-infrastructure

• Access to Internet at home
 – 50% of the population (1998)
 – 78% in the agegroup 15-24 (1998)
Increased functionality of ICT-tools

- More powerful hardware
- Improved interfaces / userfriendliness
- More powerful tool for production
Commercialisation of ICT

- Information-services
- Communication-services
- Games
- Edutainment
- Multi-media
Merging of mass-media and ICT

• New standards for communication and presentation

• Changing ontologies and epistemologies
 – what is (important) knowledge
 – how do you gain this knowledge
Increased use of ICT tools in everyday life, at work and in school

- Computer use at home on a single day (1999):
 - 39% (15–19)
 - 26% (20–24)
 - 33% (25–34)

- Average using time: 1 hr. (1999)

- Use of Internet (home, school, work) (1999)
 - 31% of total pop on a single day.
 - 45% (15-24)
Increased use of ICT tools in everyday life, at work and in school

% of students accessing the internet from school

<table>
<thead>
<tr>
<th>Country</th>
<th>@school</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweden</td>
<td>78%</td>
</tr>
<tr>
<td>Canada</td>
<td>74%</td>
</tr>
<tr>
<td>Taiwan</td>
<td>63%</td>
</tr>
<tr>
<td>UK</td>
<td>59%</td>
</tr>
<tr>
<td>US</td>
<td>59%</td>
</tr>
<tr>
<td>Japan</td>
<td>28%</td>
</tr>
<tr>
<td>Italy</td>
<td>28%</td>
</tr>
<tr>
<td>Germany</td>
<td>25%</td>
</tr>
<tr>
<td>France</td>
<td>25%</td>
</tr>
<tr>
<td>Urban China</td>
<td>13%</td>
</tr>
</tbody>
</table>
Conditions for adopting ICT in schools

- Infrastructure and services
- Teacher and student competences
- Use of ICT as a professional content and tool
- Institutional culture and individual mindsets
- Pedagogical ideas and approaches
ICT in schools - infrastructure

• High quality highways
• Schools have general access to Internet
• Teachers
 – Access to computers/networking at the workplace (public computers)
 – Access at home through private initiatives and special programs
• Students
 – Access to computers/networking at school
 – Workplaces never enough for students
ICT in schools – support

• Access to technical support is a crucial factor, generally noted by teachers and students.
• Support for utilizing the pedagogical potential of the computer is sought for
ICT in schools – ICT-literacy

- Most teachers and students have basic knowledge and skills of using the computer as a personal tool, but are not proficient
- Subject-matter related competence is more developed
- Competence in using ICT for pedagogical purposes is not very high
- But habits of using ICT on an everyday basis are more and more common
Institutional culture and individual mindsets

• Attitudes towards “new” technology (Becker)
• Work routines (Ekeblad et. al., Juhlin-Svensson)
Pedagogy - ideas and approaches

• Pedagogical philosophy and and amount and type of use co-vary (Becker; Juhlin Svensson)

• Examination forms/institutionalised demands is crucial for how students work (Bergqvist & Lindström; Lindström, Marton, Laurillard et. al.)

• The emergence of a new paradigm
Pedagogy – the emergence of a new paradigm

- From teaching to learning
- Problem-based learning
- Flexible learning
- Distance-learning
- Changing relations teacher – student - tools
Pedagogy – the emergence of a new paradigm

• Focus on:
 – The individual student
 – The individual in the context of the group
 – Learning as *knowledge construction* in specific subject-matter areas
 – Activities (processes of learning), not only outcomes
Pedagogy – the emergence of a new paradigm

• Focus on
 – General problem solving skills
 – Communication
 – Collaboration
 – Knowledge and skills
Pedagogy – the emergence of a new paradigm

• Focus on
 – Resources for learning – not teaching learning materials
 – Media technologies / ICT as not just complementary
Swedish initiatives

- Large programs to promote usage of ICT in schools
 - National Board of Education
 - KK-foundation
 - ITiS (The Delegation for IT in Schools)
National Board of Education

• Governmental reports on
 – Software
 – Computer literacy

• Pedagogy
 – The Computer and the School project (DOS)
KK-foundation

- 27 community projects
- >100 school projects
- Improving quality of
 - ICT-infrastructure and services
 - ICT-competence
 - Pedagogical tools and usage
 - Organizational restructuring
Evaluations

- It is very difficult, not to say impossible, to make the vision of changing students’ learning come true
- Not enough to run and implement projects
- Development must be linked to changes in teachers ways of working
 - Teamwork for teachers
 - Problem-based or project-based pedagogical agendas
- ICT per se does not change
The Delegation for IT in Schools

- 1999-2003
The Delegation for IT in Schools

- in-service training for 70,000 teachers in teams
- a computer for participating teachers
- state grants to improve the school's accessibility to the Internet
- e-mail addresses for all teachers and pupils
- support for developing the Swedish Schoolnet and the European Schoolnet
- measures for pupils with special needs
- awards for excellent pedagogical contributions
The Delegation for IT in Schools

• Equal standards between schools and quality for pupils
• School development
• Supplementing and reinforcing programmes planned and already completed by the municipalities.
• Increasing the school's accessibility to the Internet and e-mail
The Delegation for IT in Schools

- Pedagogically-oriented in-service training for teachers in teams
- To support implementation of this, the following will be arranged:
 - A course in basic use of computers for teachers - with little prior experience of computers - in participating teams
 - Seminars for school politicians and administrative heads
 - Training for those persons who will function as facilitators for participating teams
 - Training for head teachers at schools with participating teams.
Evaluations

• Teamwork problematic
• Reification of ICT and ICT-pedagogy
• Difficult to institutionalise and even to implement in the class-rooms
• Slow process
How does it work in schools and in the class-room?

Some examples
Example: E-learning - new mode(l)s of learning

• On-line problem-based learning – student activity and the formation of goals
 – Upholding the asymmetry between teacher and students
 – The interchange of form and content
Example: E-learning - new modes of learning

• Videoconferencing – the extended classroom
 – The importance of control
 – Good teaching – thought through planning
 – Break-down of communication
Example: Pupils search on the Internet

• Challenge to teacher authority
 – De-classification of teachers

• Challenge many teachers demand for control
 – Of content
 – Of activity

• Students are cutting and pasting
 – “Knowledge in pieces” - amplification of a specific epistemology
Example: Exploraration and discovery in the classroom?
Working in a “constructionist” learning environment
Working in a “constructionist” learning environment

• Students do engage in “exploratory talk” (Mercer), but the focus of the talk is not the subject matter, rather the “school-meaning” of the task, in their attempts to “frame” (Goodwin) the situation
• mainly by asking the teacher.
• The teacher is
 – a resource, but also a
 – a coach or a supervisor that guides the student as to what to do and how to do it
 – And sets the criteria for good performance
Example: Microcomputer-based laboratories

- Mechanics and mathematical/symbolic modeling
Example: MBL
The MBL-environment

- Figure 1. Typical setup of a MBL-experiment. A low-friction cart is pushed towards a motion sensor. A fan unit attached to the cart provides an approximately constant force in a direction opposite to the initial movement and the cart will thus change its direction of motion. The results are shown in Figure 2. Note that the fan unit provides a visible force.
The MBL-environment

Figure 2. Results of the MBL laboratory shown in Figure 1. The position, velocity and acceleration as functions of time are displayed. A common misconception is that the cart has zero acceleration at the turning point. Another common misconception is that the acceleration is in the direction of motion (see the poor results on the pre-test for "coin acceleration" in Figure 4). By asking the students to make a prediction and sketch the \(s(t) \), \(v(t) \) and \(a(t) \) graphs before the experiment and by the rapid display of the experimental results these misconceptions can effectively be addressed.
The MBL-environment

- Figure 3. Results from an MBL-experiment with two colliding carts with equal and unequal masses respectively. Force sensors are mounted on top of each cart. The graphs show the forces measured by the sensors during the collision and the area below curves. Note the time scale. Most students are surprised to discover that the forces are equal when the carts have different masses.
Example of results – Thornton

- Conceptual understanding in mechanics as measured by the FMCE-test.
Example of results - Thornton

- Conceptual understanding in mechanics as measured by the FMCE-test.
The MBL-environment – Why is it effective

- The learner is part of a dynamic interaction with a system that makes the consequences of actions visible
- The sensuous and the conceptual are integrated through symbolic representation of simultaneous bodily experiences
- Interactions with other people decisive
- Understandings are promoted by experiencing certain patterns of variation
- Patterns of variation/focal awareness are promoted by task structure and/or teacher intervention
Example of task
Example of task
Results

• The specific task structure and task representation is crucial
 – The graph “phase” the learning process
 – Subjects try to “smooth” the registered graph
• An important part of communication is non-verbal and indexical
• The teacher fit into the task structure – important for
 – refocusing students
 – setting criteria for
 • how to work and
 • what’s right and wrong
Summing up

• The didactical use of ICT is of minor importance.
• ICT is much more a tool for personal productivity.
• Empirical observations of the introduction of computers in education tell us that, so far, the changes of basic pedagogical forms are not very revolutionary.
• Technology push pedagogy to a very little extent. The major finding is that new technology is used to “re-dress” old pedagogies.
Summing up

• The administrative use of ICT is basic
• Access to a developed infrastructure is necessary, but not sufficient.
• More important are general usage (habits) of ICT and societal “ICT-literacy”.
• The single most important factor in schools is the examination procedures used.
Summing up

• New ICT-based tool for production of “text” (multimedia), information search and handling, and communication will probably make a difference in the longer run.

• Teacher roles are changing
 – Less a presenter
 – More
 • Designer of learning environments
 • Guide
 • Master?

• The digital divide is a real problem!