<table>
<thead>
<tr>
<th>Title</th>
<th>Human-Centered Development of Games-Based Learning Environments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kankaanranta, M; Nevanpaa, T</td>
</tr>
<tr>
<td>Citation</td>
<td>CITE Seminar: Human-Centred Development of Games-Based Learning Environments, Hong Kong, China, 8 June 2005</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2005</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/44005</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Human-Centered Development of Games-Based Learning Environments

http://www.peda.net/veraja/jyu/ac/agl/
University of Jyväskylä

- Today there are nearly 15000 degree students, and exchange students from some 150 foreign universities. http://www.jyu.fi/indexeng.shtml
- Seven Faculties, several separate Institutes

Agora Game Lab
Agora Center

Agora GameLab is a multi-disciplinary research and development centre for digital games and gaming culture.

http://www.peda.net/veraja/jyu/ac/aql
Main tasks

- Coordination of knowhow and activities in the area of digital games in the University of Jyväskylä
- Research on digital games
- Game Design and Development
- Seminars
- Student network
- Collaboration with companies
- Participation in national and international networks
Human-Centered Development of Games-Based Learning Environments (2005)

- Leader of the research group: Ph.D., docent Marja Kankaanranta (Educational sciences), Institute for Educational Research & Agora Center
- Professor Pekka Neittaanmäki (Mathematical information technology)
- Researcher, M.Ed. Elina Hämäläinen (Teacher education), Institute for Educational Research
- Researcher, M.Ed. Jenni Kaisto (Educational sciences), Agora Center
- Research assistant Juha Karvonen, Agora Center (Information systems)
- Researcher, M.Sc. Antti Kirjavainen (Mathematical information technology), Agora Center
- Researcher, M.Sc. Tiina Nevanpää (Science education), Institute for Educational Research
- Researcher, M.Ec. Tuula Nousiainen (Information systems), Agora Center
- Trainee Heikki Nevala (Mathematical information technology), Agora Center & Department of Mathematical Information Technology
- Trainee Jukka Miettinen (Mathematical information technology), Agora Center & Department of Mathematical Information Technology
Partners

- Students and teachers in various schools and kindergartens (e.g. in Jyväskylä, Joutsa, Leivonmäki, Tampere)
- Faculty of Information Technology (project studies)
- University of Hong Kong: Nancy Law (GameWorld)
- University of Berkeley: John Canny (Human-centered design)
- Embassy of Finland in Washington, D.C.
- University of Twente: Joke Voogt (development research)
- CoEduGame project (Tekes - National Technology Agency of Finland): Veikkaus Oy, TeliaSonera, MobileMirror, Innosonic Oy, PrimeChess Oy
- Jyväskylä Science Park
Development of Online and Mobile Learning Games

The aim of the research group is to develop online and mobile learning games / game-like learning environments, and study the possibilities provided by multi-channel technology for learning games.

The goal is to develop games and procedures that can be distributed both nationally and internationally through various channels.
Research Questions

- What are the essential factors in the design, development, testing, and usability analysis of educational games?
- How can users be involved in game design?
- What are the essential attributes of learning games / game-like learning environments?
- How are game design processes carried out in the development of different types of games?
- What are the effects of game play on learning?
Multi-disciplinary perspectives

- User-centered, participatory design
- Software engineering
- Game design
- Pedagogical design
 - Content development
 - Pedagogical game script
 - Authentic assessment
- Mobility
User-Centered, Participatory Design

- The aim is to develop and analyze user-centered design methods and principles that can be applied in the design of learning games.

- How can user participation be successfully put into practice in learning game design projects?
 - What are the benefits and challenges of user participation?
 - What are the special characteristics of user participation in the context of learning game design?
 - How can users’ participation promote the 1) educational, 2) motivational, and 3) game-like aspects of the game and 4) the usability of the game?
 - In which phases of the design process is users’ participation especially needed?
 - How can users’ feeling of empowerment be supported?
 - Which methods promote the active participation of users 1) in the innovation of requirements, and 2) in the evaluation of their implementation?
 - How can users’ participation be realized within the limits of the constraints in resources?

- These questions are studied during the development of different game prototypes.
Children and Technology Design

- **Children in the design of technology**
 - Usability testing
 - Participatory design (PD)
 - User-centered design (UCD)

- **Characteristics of children**
 - Age / developmental stage
 - Gender
 - Motivation
 - Social aspects
 - Etc.

- **Child-centeredness**
 - Roles

- **User involvement**
 - Methods
 - Guidelines

- **Benefits & challenges**
 - Principles
 - Methods

- **Child-centeredness**
 - Methods
 - Guidelines

Methodologies
- User-centered design (UCD)
- Participatory design (PD)
- Usability testing

Principles
- Child-centeredness
- Age / developmental stage
- Gender
- Motivation
- Social aspects
- Etc.

User involvement
- Methods
- Guidelines

Benefits & challenges
- Principles
- Methods

Characteristics of children
- Age / developmental stage
- Gender
- Motivation
- Social aspects
- Etc.
Pedagogical Design – Research on Learning

Designing a game / learning environment that supports learning
- Pedagogical choices and technological implementations
 - E.g. site structure, presentation forms, layout, functionality
 - pedagogical game script

Materials and contents that support learning
- Contents, goals, target group
 - E.g. assignments, games, animation, text

Supporting teaching and learning: Didactical basis and educational solutions
- Motivation
- Recalling what has been learned
 - E.g. experiences of success, possibility to choose
- Assessment of learning and deepening what has been learned
 - E.g. giving and receiving feedback
- Instructions
Research Areas of Games-Based Learning

- Motivation and class/peer dynamics
- Communication skills
- Skills in using information technology
- Self-regulative and collaborative learning
- Development of thinking and cognitive skills
- Use of Games for Learning in different subjects
- Health education
- Music
- Mathematics
- Native tongue
- Foreign languages
- Supporting learning in special education
- Children as designers of learning games
Software Engineering and Game Design

- The aim is to develop and analyze software engineering and game design methods and principles that can be applied in the design of learning games.

- How do we design and develop a learning game that meets the expectations?
 - Which software engineering methods are best suited for the design of learning games?
 - How can software design methods support learning game design that is carried out as multidisciplinary team work?
 - How can a learning game be modeled in different phases of the design process?
 - How can software engineering methods be linked with participatory design methods?
 - Which game design principles and methods are suitable for designing of learning games?
Design Methods for Learning Games

- Requirements
 - Requirements analysis
 - Requirements negotiation

- Modeling
 - UML
 - Requirements modeling

- Design methods
 - Concept documents

- Concepting
 - Game design models
 - Game modeling
 - Design documents
Game Prototypes and Target Groups

1. Talarius – Children’s board game design environment
2. Worldmaker – Learning application for modeling scientific phenomena
3. VISU – Virtuaalisuo (“Virtual Peat Land”) e-learning environment
4. Mobile learning games: Random Equal
5. Moomin game (ProjectFinland)
Talarius

Basics
- A tool with which children can create their own educational electronic board games and play them on the computer
- Can be used with different topics and themes
- Making questions, creating the board, playing the game
- Two dimensions: 1) Learning by designing and 2) Learning by game playing

Partners
- Design partnership with a class of 5th-graders (Jyväskylän Normaalikoulu)
- Research on emotional usability with 3rd-graders (Jyväskylän Normaalikoulu)
- Research on the effects on learning with 4th-graders (Jyväskylän Normaalikoulu)
- Starting a collaboration with two kindergartens (Ikuri and Leinola in Tampere)
- Design partnership with a school class in the upcoming design projects (2005 and 2006)
- Student project groups at the Faculty of Information Technology
WorldMaker / GameWorld / Gameli
Learning Application for the Modeling of Scientific Phenomena

- Simulation-based learning game for modeling complex scientific phenomena
- Integrating motivational, game-like features into a simulation software
- Based on a simulation software, WorldMaker, developed by professor Nancy Law and her colleagues at CITE (Centre for Information Technology in Education of the University of Hong Kong)
WorldMaker as a learning tool

- Field trial with 5th and 6th graders in Finnish comprehensive school (n= 73)
- 2 sessions with each group
- Objectives:
 1. Are pupils able to master the GameWorld?
 2. Are pupils able to understand complex scientific concepts, such as carrying capacity?
Field trial results

- The environment was easy to use and attractive for pupils.
- WM helped number of children to appreciate the idea of food as a limiting resource for determining the population size and further helped some pupils to understand the idea of inter-specific competition and to make predictions about global population changes.
- Visualization helped pupils to conceptualize the population dynamics at systems level.
- However, pupils that did not understand the significance of food as setting up the population size, i.e the carrying capacity, had also difficulties in understanding the population dynamics.
- Anthropocentric thinking, visual representations alone was inadequate for helping pupils to change their reasoning into systems level.
Phases of Further Research and Development

- GameWorld prototype 1: Developing the simulation software WorldMaker into an educational game
 - GameWorld 1.0 pilot version (March 2005), project group Gameli (game-like features, separate editor mode)
 - Evaluating the process and products of the pilot project (spring 2005)
 - Implementing a new game field (summer 2005)
 - Designing a game field from content and pedagogical starting points
 - Trials of the new game field (autumn 2005)
Trials in the Spring 2005

- Class of 6th-graders from Keltinmäki school
 - Design partnership
 - Evaluation of game fields
 - Further development

- 5th- and 6th-graders from Pohjanlampi school
 - Assessment of learning
 - Evaluation of game fields (participatory design)

- 6th-graders from Lohikoski school
 - Evaluation of game fields (participatory design)
Phases of Further Research and Development, cont.

- GameWorld prototype 2: Possibility to create new fields and edit existing game environment
 1. Improving the editing functions and game-like features
 - Creating game fields in schools or by experts of different topic areas
 2. Content development: curriculum, textbooks, teacher and pupil involvement
 3. Pedagogical development
 - Integration with Knowledge Forum (online discussion space and collaborative learning)
 - Development of evaluation tools, online GameWorld?
Virtuaalisuo (”Virtual Peat Land”) - e-Learning Environment for the Leivonmäki National Park

- An interactive web-based e-learning environment about peatlands ecosystems
- An open web-based learning environment to be used at Leivonmäki national park, can be accessed from anywhere
- For educational and academic use
 - Users include e.g. teachers and students from educational institutions of different levels, as well as other people who are interested in the topic
 - Can be expanded into a more general application to be used in science education
- Provides a tool for generating and deepening one’s knowledge about peatland nature, and assessing one’s skills
Mobile Learning Games

- Mobile game for studying mathematics
 - Random Equal game as the focus of the study
 - The idea is to form an equation of given numbers and operators within a time limit
 - Developed by 3D Arts

- Usability study of the game, April-May 2005
 - Goal: To identify the most essential usability shortcomings of the game, and to propose recommendations for its further development
 - Points of view: Game usability and pedagogical usability
 - Method: Usability testing (observation) and player interviews after playing

- Preliminary results
 - The starting level of the game has been regarded as rather demanding; it is difficult (especially for younger players) to get a grasp of the game
 - The idea of the game is fresh and interesting; on the other hand it suffers from lack of variation
 - Is well suited for playing on a mobile platform
 - Possible learning advantages: Improving mental arithmetic skills, understanding equations, improving logical thinking
Project Finland

- Interactive web application (www.projectfinland.org) developed by the Embassy of Finland in Washington, D.C.
- Designed for 9 to 12-year-old children in American schools
- An educational game that consists of three interactive tours: The Environment, Social Change, and Global Connection
- Each tour includes a quiz and a “take action” section → Children collect badges and animation clips into a virtual backpack
- The Moomin character created by Tove Jansson accompanies and guides the user on the site
Further Information

Leader of the Research Group
Dr. Marja Kankaanranta
marja.kankaanranta@cc.jyu.fi

Researcher Tiina Nevanpää
tiina.nevanpaa@ktl.jyu.fi

http://www.peda.net/veraja/jyu/ac/agl