
SIAM J. COMPUT. c© 2005 Society for Industrial and Applied Mathematics
Vol. 34, No. 3, pp. 669–682

NONMIGRATORY ONLINE DEADLINE SCHEDULING
ON MULTIPROCESSORS∗

HO-LEUNG CHAN† , TAK-WAH LAM† , AND KAR-KEUNG TO†

Abstract. In this paper we consider multiprocessor scheduling with hard deadlines and inves-
tigate the cost of eliminating migration in the online setting. Let I be any set of jobs that can
be completed by some migratory offline schedule on m processors. We show that I can also be
completed by a nonmigratory online schedule using m speed-5.828 processors (i.e., processors 5.828
times faster). This result supplements the previous results that I can also be completed by a non-
migratory offline schedule using 6m unit-speed processors [B. Kalyanasundaram and K. R. Pruhs,
J. Algorithms, 38 (2001), pp. 2–24] or a migratory online schedule using m speed-2 processors [C. A.
Phillips et al., Algorithmica, 32 (2002), pp. 163–200]. Our result is based on a simple conservative
scheduling algorithm called PARK, which commits a processor to a job only when the processor has
zero commitment before its deadline. A careful analysis of PARK further shows that the processor
speed can be reduced arbitrarily close to 1 by exploiting more processors (say, using 16m speed-1.8
processors). PARK also finds application in overloaded systems; it gives the first online nonmigratory
algorithm that can exploit moderately faster processors to match the performance of any migratory
offline algorithm.

Key words. online algorithms, multiprocessor scheduling, competitive analysis, resource aug-
mentation, job migration

AMS subject classifications. 68Q25, 68W15, 68W40

DOI. 10.1137/S0097539703435765

1. Introduction. In this paper we consider the online hard-deadline schedul-
ing problem on multiprocessors; our focus is on eliminating migration among the
processors. The hard-deadline scheduling problem is defined as follows: There are
m identical processors. Given a set of jobs, each characterized by its release time,
deadline, and processing time (work), the objective is to schedule all the jobs on the
processors so that each job can be completed by its deadline. Note that each job can
be scheduled on at most one processor at any time. Preemption is allowed and a pre-
empted job can resume later from the point of preemption. If migration is allowed, a
job can resume on a different processor. From a practical point of view, nonmigratory
schedules are preferable since migration may incur significant overhead. Yet allowing
migration simplifies the design of scheduling algorithms.

Let I be a set of jobs that can be completed by an offline schedule that allows
migration. Kalyanasundaram and Pruhs [8] showed that migration is actually of
limited power in offline scheduling; given a migratory offline schedule on m processors,
it is always possible to construct a nonmigratory offline schedule on 6m−5 processors.1

On the other hand, scheduling I online (i.e., the information about a job is known
only when it is released) is very difficult even if migration is allowed. In fact, I does

∗Received by the editors October 3, 2003; accepted for publication September 13, 2004; published
electronically March 17, 2005. A preliminary version of this paper appeared in the Proceedings of the
15th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, ACM, New York,
2004, pp. 963–972. This research was supported in part by Hong Kong RGC grant HKU-7024/01E.

http://www.siam.org/journals/sicomp/34-3/43576.html
†Department of Computer Science, University of Hong Kong, Hong Kong (hlchan@cs.hku.hk,

twlam@cs.hku.hk, kkto@cs.hku.hk).
1The construction runs in pseudopolynomial time but can be improved to run in polynomial time

if the processor bound is raised from 6m− 5 to 12m− 5.

669

670 HO-LEUNG CHAN, TAK-WAH LAM, AND KAR-KEUNG TO

not admit any online schedule on m processors if m ≥ 2 [5].2 Nevertheless, Phillips
et al. showed that I can be completed by a migratory online schedule on m processors
that are two times faster [13]. Migration seems to be a necessary tool in all online
algorithms that are known to be able to complete I on m moderately faster processors
(e.g., EDF (earliest deadline first), LLF (least laxity first), FR [13, 11]).

Main result. In this paper we devise a conservative online algorithm to show
that I can be completed by a nonmigratory online schedule on m speed-5.828 pro-
cessors. This result supplements the result of Kalyanasundaram and Pruhs [8], as
it illustrates that allowing migration in the online setting also gives limited power.
A careful analysis of the new algorithm further shows that the speed requirement of
5.828 can also be reduced arbitrarily close to 1 by exploiting more processors (say,
using 16m speed-1.8 processors). More precisely, we show that for any ε > 0, I can be
completed by a nonmigratory online schedule on �(1+ 1

ε)
2�m speed-(1+ε)2 processors.

Laxity assumption. It is widely believed that jobs with very tight deadlines or
very small laxity (i.e., deadline minus release time minus work) make online scheduling
difficult. Our nonmigratory online scheduling is no exception; in this paper we show
that advance knowledge of the laxity of jobs in I can reduce the speed or processor
requirement for a nonmigratory online schedule. For example, if the work requested
for every job in I is at most one-eighth of its span (i.e., deadline minus release time),
then we can have a nonmigratory online schedule for I on m speed-2.5 processors
or on 4m unit-speed processors. Note that the latter result does not demand the
presence of faster processors. In general, if the work-span ratio is at most w, then I
can be completed by a nonmigratory online schedule on m speed-(4w + 2) processors
or �2/(1 − 4w)�m unit-speed processors. (The latter result holds only for w < 1/4.)

PARK. The core of our results is a simple conservative online scheduling algo-
rithm called PARK; it does not commit a processor to any job unless the processor
has zero commitment before its deadline. This algorithm often lets a job wait for a
while before admitting it to a processor. The conservative nature of PARK keeps any
processor from being overcrowded and being tricked by the offline adversary. Like
many other online algorithms, PARK is very simple but the analysis of its perfor-
mance is relatively complicated. In this paper we present two different analyses of
PARK showing different dimensions of its performance.

Firm-deadline scheduling. PARK also finds applications in scheduling over-
loaded systems, in which there may be too many jobs to be completed and the dead-
lines are firm (instead of hard) in the sense that failing to complete a job by its
deadline causes only a loss in value due to that job and does not cause a system
failure. Given a set I of such jobs, the objective of a scheduler is to maximize the
value obtained from completing the jobs. For any c ≥ 1, an online algorithm is said
to be c-competitive if, for any job sequence, it can obtain at least a fraction of 1/c
of the total value obtained by any offline schedule on m speed-1 processors. Consider
the special case when the value of a job is proportional to its processing time. The
work of Koren and Shasha [10] gave a nonmigratory online algorithm on m speed-1
processors that is 3-competitive. Lam and To [12] showed that, if migration is al-
lowed, it is possible to devise an online algorithm on m speed-3 processors that is
1-competitive. Based on the latter result, we can actually extend PARK to give a
nonmigratory online algorithm on m speed-10 processors that is 1-competitive.

In the context of offline scheduling, the study of the power of migration is centered
on the notion ωm, which is defined as the maximum over all input I, the ratio of the

2When m = 1, the earliest deadline first (EDF) strategy guarantees the completion of I [4].

NONMIGRATORY ONLINE SCHEDULING 671

value attained by the optimal migratory offline schedule for I to the value attained
by the optimal nonmigratory offline schedule for I [9, 8]. For jobs with arbitrary
values, the best upper bound of ωm is (6m− 5)/m [8]. This paper contributes to the
knowledge of ωm for the case when jobs are assumed to have a certain laxity. More
precisely, our work implies that ωm ≤ min(6, � 2

1−4w �) if the work-span ratio is at most
w < 1/4.

Organization of the paper. Section 2 presents the new online algorithm PARK
and discusses several interesting properties of PARK. Section 3 gives the first analysis
of PARK, showing how to obtain a nonmigratory online schedule on m speed-5.828
processors. As a byproduct, we show how to improve the resource bounds when all
jobs are assumed to have a certain laxity. Section 4 gives a slightly more complicated
analysis of PARK, showing that the speed requirement of 5.828 can be reduced arbi-
trarily close to 1 when extra processors are used. Section 5 presents a simple lower
bound result which shows that a nonmigratory schedule is not feasible on m speed-s
processors if s < 2m/(m+1). Also, the extension of PARK to firm-deadline scheduling
is discussed.

Notation. Throughout this paper, we denote the release time, work (processing)
time, and deadline of a job J as r(J), p(J), and d(J), respectively. We also assume
that jobs have distinct deadlines (ties are broken using the job IDs). The laxity and
span of J are defined as d(J) − r(J) − p(J) and d(J) − r(J), respectively. For any
s ≥ 1, a speed-s processor refers to a processor that can process s units of work in
one unit of time.

EDF refers to the strategy of scheduling jobs with earliest deadlines. Note that
when a new job J is released, the current job J ′ on a processor will be preempted
if J ′ has a deadline later than J ’s as well as the deadlines of the current jobs on all
other processors. When we say an algorithm completes a job sequence, we mean that
the algorithm completes all jobs in the sequence within their respective deadlines.

2. The PARK algorithm. In this section, we describe a nonmigratory online
algorithm called PARK and discuss several interesting properties of PARK. We will
show in the next section that for any sequence I of jobs that can be completed by
a migratory offline schedule on m unit-speed processors, I can also be completed by
PARK on m speed-5.828 processors.

PARK is a very conservative algorithm. Roughly speaking, whenever PARK
admits a job J to a processor, it ensures that the processor has no commitment to
other admitted jobs before the deadline of J . This concept of zero commitment is
made formal through the following notion of due.

Definition 1. Let t be the current time. Consider any job J .
• Denote xt(J) and pt(J) as the amount of work done on J up to time t and

the remaining work, respectively (note that pt(J) = p(J) − xt(J)).
• Define the latest processing interval (LPI) of J as the interval [d(J)− pt(J),
d(J)]. If d(J) − pt(J) < t, we say that J expires.

• For any t′ > t, define duet(J, t
′) as the minimum amount of J ’s remaining

work that a speed-1 processor needs to do by time t′ in order to complete J
by its deadline. More formally, duet(J, t

′) = max{0, t′ − (d(J) − pt(J))} if
t′ ≤ d(J), and pt(J) otherwise.

PARK is a nonmigratory algorithm using pm speed-s processors, where p and m
are positive integers and s ≥ 1 is any real number. It maintains a central pool to store
jobs that have been released but not yet admitted to any processor. PARK is nonmi-
gratory and each processor has its own queue of admitted jobs. Before describing the

672 HO-LEUNG CHAN, TAK-WAH LAM, AND KAR-KEUNG TO

algorithm, we have one more definition.
Definition 2. Let t be the current time. Consider any processor Pi used by

PARK. For any t′ > t, we define duet(Pi, t
′) as the sum of duet(J, t

′) over each job J
in the queue of Pi at time t.

In the rest of the paper, we say that at time t, (i) a job J has w units of work
due at time t′ > t if duet(J, t

′) = w; (ii) a processor Pi has w units of work due at t′

if duet(Pi, t
′) = w; (iii) a processor Pi is doing some work due at t′ if Pi is processing

a job J with duet(J, t
′) > 0.

Algorithm 1 (PARK).

Job release: A job upon release is put into the pool if it cannot be admitted
to one of the processors.
Job admission: At any time t, let S be the set of jobs in the pool plus possibly
the job just released at t. If S is nonempty, we attempt to admit such jobs as
follows: Let J ∈ S be the job with the earliest deadline.
• If J expires, discard J .
• Else if there exists a processor Pi such that duet(Pi, d(J)) = 0, admit J into
the queue of Pi.
Individual processor scheduling: Each processor schedules the jobs in its
queue using EDF.

It is worth mentioning that though PARK is using speed-s processors, the defini-
tions of duet(Pi, t

′) as well as LPI are based on a unit-speed processor. To understand
the admission policy of PARK, we need to focus on the LPIs of the jobs. In general,
the LPIs of jobs may overlap with each other. For example, if two jobs have the same
deadline, their LPIs always share a common ending time. Yet the way PARK admits
jobs aims to guarantee that, at any time, all jobs admitted to the same processor have
nonoverlapping LPIs. This can be observed as follows. When a job J is admitted by
a processor Pi at time t, all the previously admitted jobs have zero work due at d(J).
It means that at time t, the LPI of any previously admitted job starts no earlier than
d(J) and cannot overlap the LPI of J . As time passes, the LPI of each individual job
might shrink (if Pi has worked on it) but cannot get bigger; thus, the nonoverlapping
property remains. The following is a precise statement about the nonoverlapping
property. Figure 1 shows the LPIs of the jobs at different times when PARK is given
a sequence of five jobs.

Property 1 (nonoverlapping property). Let t be the current time. Consider any
processor Pi. Let Ju and Jv be two jobs in the queue of Pi. The LPIs of Ju and Jv
do not overlap.

The nonoverlapping property allows us to bound the commitment of each proces-
sor easily.

Property 2 (bounded-commitment property). Let t be the current time. Con-
sider any processor Pi.

(a) For every job in the queue of Pi, its LPI starts no earlier than t. That is, no
job in the queue of Pi expires.

(b) For any t′ > t, Pi has at most (t′ − t) units of work due at time t′.
Proof. (a) For the sake of contradiction, assume that J is the first job that expires

in the queue of a processor Pi. When J is admitted to Pi, J has not yet expired. Let
t0 be the moment just before the first time J is found to expire. That is, at t0, the
LPI of J starts exactly at t0; all other jobs in the queue of Pi have not yet expired and
their LPIs, due to the nonoverlapping property, must start after J ’s LPI. In other

NONMIGRATORY ONLINE SCHEDULING 673

8 324 2016 24 28 360 12

24 32

204 8 16 24 28 32 36120

4 8 16120 20 28 36

4 8 16 36120 28 3220 24

J1

J1

J1

J1

J1

J2

J2

J2

J2

J2

J3

J3

J3

J3

J4

J4

J4

J4

J5

J5

J5

Release time DeadlineWork

(a) Input job sequence

0

0

1

1

2 12

12

12 16

16

16

28

32

32

36

P1

P1

P1

P1

P2

P2

P2

P2

The pool

The pool

The pool

The pool

(b)

current time = 0

At time 0, P1 admits J1 but it does not admit J2 because after
admitting J1, P1 has nonzero work due at d(J2). P2 admits J2.

(c)

current time = 1

At time 1, P1 admits J3 as it has no work due at d(J3). Both
processors have work due at d(J4), so J4 has to wait in the pool.

(d)

current time = 2

At time 2, both processors have work due at d(J5), so J5 has
to wait in the pool.

(e)

current time = 3

At time 3, P2 admits J5 because J5 is the job with earliest
deadline in the pool, and P2 has no work due at d(J5).

Fig. 1. Figure (a) shows a sequence of five jobs to be scheduled by PARK on two speed-4
processors. Figures (b)–(e) show the LPIs (not the schedules) of the jobs in each processor at
different times.

674 HO-LEUNG CHAN, TAK-WAH LAM, AND KAR-KEUNG TO

words, all jobs except J have deadlines later than d(J). Recall that Pi schedules jobs
using EDF and its speed is s ≥ 1. Thus, J must be processed by Pi at t0 and cannot
expire immediately after t0. A contradiction occurs.

(b) At any time t, consider the LPIs of all the jobs in the queue of Pi. The
LPIs are nonoverlapping and, by (a), the first LPI starts no earlier than t. For any
t′ > t, the amount of work due at t′ for Pi is equal to the total length of each LPI
(or its portion) that ends on or before t′. The latter is obviously upper bounded by
t′ − t.

Since a job admitted by a processor Pi never expires, it can be completed by Pi

by its deadline. In the next section, we will show that for a sequence of jobs that
can be completed by some offline schedule, PARK will admit every job to a processor
before they expire. PARK seems to be conservative in admitting jobs and often lets
jobs wait in the pool. The next property shows that whenever a job is waiting, all
processors are actually productive. In other words, such waiting is reasonable.

Property 3 (waiting property). At any time t, if there is a job J left in the
pool, then

• all processors are busy, and
• all processors are doing some work due at d(J).

Proof. Suppose on the contrary that, at time t, there exists a processor Pi that
is idle. Then Pi should admit J or another job from the pool and become busy at t.
A contradiction occurs. If Pi at t is working on a job Je that has no work due at
d(J), then the LPI of Je starts no earlier than d(J). Pi is using EDF and Je has the
earliest deadline among all jobs in Pi. By the nonoverlapping property, at t, every job
in Pi has no work due at d(J), and Pi should admit J , or another job with a deadline
earlier than d(J), from the pool. This contradicts that at t, Pi is working on Je.

3. Analysis of PARK. In this section, we prove the main result that any job
sequence that can be completed by some migratory offline schedule on m speed-1
processors can also be completed by PARK on m speed-(3 + 2

√
2) processors. Note

that 3+2
√

2 ≈ 5.828. We also show how to improve the resource bounds when jobs are
assumed to have a certain laxity. For ease of discussion, this section will first present
a lemma for the special case where every job has nonzero laxity, or equivalently, a
work-span ratio strictly less than one. This is to illustrate the core idea of our analysis
of PARK. Then we make use of a scaling technique to prove the general theorem,
followed by two corollaries that capture the results stated earlier.

Lemma 3. Let I be any job sequence that can be completed by some migratory
offline schedule on m speed-1 processors. Let 0 < w < 1. If all jobs in I have a work-
span ratio of at most w, then PARK can complete I on m speed-(2

1−w) processors.

Proof. Note that the speed of the processors used by PARK is 2
1−w > 1. As

mentioned in the previous section, every job admitted by PARK to a processor can
be completed by its deadline. To prove Lemma 3, it suffices to show that every job
in I is admitted rather than discarded in the admission step of PARK.

For the sake of contradiction, we assume that in the course of scheduling I with
PARK, some job expires in the pool and is discarded. Let J be the first such job. Let
t0 = d(J) − w(d(J) − r(J)) = r(J) + (1 − w)(d(J) − r(J)). Since J has a work-span
ratio of at most w, J cannot expire on or before t0 and is in the pool during the time
interval [r(J), t0].

Let r(J) − l be the earliest time such that, at any time throughout the interval
[r(J) − l, t0], there is at least one job in the pool with deadline on or before d(J).
Note that l ≥ 0 is a real number. By the waiting property, during [r(J) − l, t0], all

NONMIGRATORY ONLINE SCHEDULING 675

the m processors of PARK are busy and the total work done by PARK is exactly

m× 2

1 − w
× (t0 − (r(J) − l)) = 2m(d(J) − r(J)) +

2lm

1 − w
.

By the waiting property again, at any time in [r(J) − l, t0], PARK schedules all
processors to do some work due at d(J). Such work can be classified into two types:

1. Work owing to jobs that are admitted to processors before r(J) − l.
2. Work owing to jobs admitted during [r(J) − l, t0].

By the bounded-commitment property, at time r(J) − l, each processor has at
most d(J)−(r(J)− l) units of work due at d(J), and hence the amount of type 1 work
is at most m× (d(J)− (r(J)− l)). Consider any job J ′ admitted during [r(J)− l, t0].
J ′ has a deadline no later than d(J) and, by definition of l, J ′ must be released no
earlier than r(J) − l. Note that the total work of jobs with release time at least
r(J)− l and deadline at most d(J) cannot exceed m(d(J)− (r(J)− l)); otherwise such
jobs cannot be completed by any offline schedule on m unit-speed processors. On
the other hand, J is one of such jobs but is not admitted by PARK. The amount of
type 2 work is at most m× (d(J)− (r(J)− l))− p(J). In summary, the total amount
of work done by PARK during [r(J) − l, t0] is at most

m(d(J) − (r(J) − l)) + m(d(J) − (r(J) − l)) − p(J)

< 2m(d(J) − r(J)) + 2lm

≤ 2m(d(J) − r(J)) +
2lm

1 − w
.

This leads to a contradiction, and Lemma 3 follows.
In the following, we present an extension to PARK so as to remove the assumption

that the work-span ratio must be less than one. This extension also allows for a
tradeoff between the processor speed and the number of processors used by PARK.

PARK(u) is a scaled version of PARK characterized by a real number u > 0.
Intuitively, PARK(u) scales every job by a factor of u and follows the schedules
of PARK for the scaled jobs. When u = 1, PARK(u) is identical to PARK. More
specifically, to schedule a job sequence I on n speed-s′ processors, PARK(u) simulates
a copy of PARK that uses n speed-s processors, where s = us′. Whenever PARK(u)
receives a new job J , it releases a job J ′ for PARK with r(J ′) = r(J), d(J ′) = d(J),
and p(J ′) = u × p(J). Denote the processors used by PARK(u) as P1, . . . , Pn and
those used by PARK as P ′

1, . . . , P
′
n. At any time, PARK(u) admits a job J to a

processor Pi if PARK admits the corresponding job J ′ to P ′
i ; PARK(u) discards J if

PARK discards J ′; and PARK(u) runs a job J on a processor Pi if PARK runs J ′

on P ′
i .
We notice that PARK(u) can always synchronize with the simulated copy of

PARK because the amount of time for PARK(u) to complete a job J is exactly the
same as that for PARK to complete the corresponding job J ′. The following is the
main theorem of this section.

Theorem 4. Let I be any job sequence that can be completed by some migratory
offline schedule on m speed-1 processors. Let 0 < w ≤ 1. If all jobs in I have
a work-span ratio of at most w, then PARK (u) can complete I using pm speed-
(p+u
pu(1−wu)) processors, where p is any positive integer and u is any real number such

that 0 < wu < 1.
Before proving Theorem 4, we illustrate how to choose the parameters in Theo-

rem 4 so as to obtain the results claimed in the introduction. Consider the case where

676 HO-LEUNG CHAN, TAK-WAH LAM, AND KAR-KEUNG TO

w = p = 1. Choosing u =
√

2 − 1 minimizes the speed requirement and gives the
following corollary.

Corollary 5. Let I be any job sequence that can be completed by some migratory
offline schedule on m speed-1 processors. PARK (u) with u =

√
2 − 1 can complete I

using m speed-(3 + 2
√

2) processors.
Putting u = 1/(2w) gives a more general corollary.
Corollary 6. Let I be any job sequence that can be completed by some migratory

offline schedule on m speed-1 processors. Let 0 < w ≤ 1. If all jobs in I have a work-
span ratio of at most w, then PARK (u) with u = 1/(2w) can complete I using (i) pm
speed-(4w+(2/p)) processors for any positive integer p, or (ii) �2/(s−4w)�m speed-s
processors for any s > 4w.

Proof of Theorem 4. Recall that PARK(u) uses pm speed-(p+u
pu(1−wu)) processors.

To schedule a job sequence I as stated in the theorem, PARK(u) simulates a copy of
PARK that uses pm speed-(p+u

p(1−wu)) processors. Let I ′ be the sequence of the jobs

created for PARK while PARK(u) schedules I. As I can be completed by some offline
schedule on m speed-1 processors, I ′ can also be completed by some offline schedule
on m speed-u processors. Each job in I ′ has a work-span ratio of at most wu. To show
that PARK(u) can complete I, it suffices to show that PARK meets the deadlines of
all jobs in I ′. The proof is a straightforward generalization of Lemma 3.

First, note that p+u
p(1−wu) > 1, as both u > 0 and 1 > wu > 0. Suppose, for the

sake of contradiction, that PARK fails to complete a job in I ′. This job must expire
in the pool. Let J be the first such job. Let t0 = r(J)+(1−wu)(d(J)−r(J)). As the
work-span ratio of J is at most wu, J expires no earlier than t0 and must have resided
in the pool during the interval [r(J), t0]. Again, let l ≥ 0 be the largest number such
that, at any time throughout the interval [r(J) − l, t0], there is at least one job in
PARK’s pool with deadline on or before d(J). Note that l ≥ 0. During [r(J) − l, t0],
all m processors are busy and the total work done by PARK is exactly

pm× s× (t0 − (r(J) − l)) = (p + u)m(d(J) − r(J)) +
(p + u)lm

1 − wu
.

Furthermore, at any time in [r(J) − l, t0], every processor of PARK is always doing
work due at d(J) and such work belongs to either a job admitted before r(J) − l or
during [r(J) − l, t0]. Thus, the total work done by PARK during [r(J) − l, t0] is at
most

pm(d(J) − (r(J) − l)) + mu(d(J) − (r(J) − l)) − p(J)

< (p + u)m(d(J) − r(J)) + l(p + u)m

≤ (p + u)m(d(J) − r(J)) +
(p + u)lm

1 − wu
.

This leads to a contradiction, and PARK must be able to complete I ′. Hence, the
theorem follows.

4. Alternative analysis of PARK. In this section, we show a more com-
plicated analysis of PARK, resulting in the following theorem, which enables us to
construct a nonmigratory online algorithm for hard-deadline scheduling that can ex-
ploit extra processors to reduce the speed requirement arbitrarily close to one (see
Corollary 8).

Theorem 7. Let 0 < w < 1 be a real number. Let I be a job sequence that can
be completed by some migratory offline schedule on m speed-1 processors. If all jobs

NONMIGRATORY ONLINE SCHEDULING 677

in I have a work-span ratio of at most w, then I can be completed by PARK using
pm speed-s processors, where p is any positive integer such that p(1 − w) > 1 and
s = 1 + 1

p(1−w)−1 .

Using the scaling technique, we can remove the assumption of work-span ratios
and extend Theorem 7 to any job sequence I. Recall that PARK(u) scales every job
of I by a factor of u and schedules the scaled jobs using PARK. Let u = 1

1+ε for
some ε > 0, and denote the scaled version of I as I ′. Every job in I ′ has a work-span
ratio of at most 1

1+ε . By Theorem 7, I ′ can be completed by PARK using pm speed-s

processors where s = 1 + 1
p(1− 1

1+ε)−1
. PARK(u), using pm speed-s/u processors, can

synchronize with PARK and complete I. In particular, choosing p = �(1 + 1
ε)

2�, we
have s/u = (1 + 1

p(1− 1
1+ε)−1

)/u ≤ (1 + ε)2. This relationship is stated in the following

corollary. Note that choosing a small ε means using more and slower processors.
Corollary 8. Let I be a job sequence that can be completed by some migratory

offline schedule on m speed-1 processors. Let ε > 0 be any real number. PARK (u)
with u = 1

1+ε can complete I using �(1 + 1
ε)

2� ×m speed-(1 + ε)2 processors.
We are ready to prove Theorem 7. In the rest of this section, we assume that I

is a job sequence that can be completed by some migratory offline schedule OPT on
m speed-1 processors and all jobs in I have a work-span ratio of at most w < 1. PARK
is using pm speed-s processors, where p is a positive integer such that p(1 − w) > 1
and s = 1 + 1

p(1−w)−1 .

To prove Theorem 7, we need to compare the total amount of work due at any
particular time in PARK and in OPT. At any time t, for any t′ > t, we let C(t, t′)
be the total amount of work due at t′ in PARK, and similarly O(t, t′) for OPT. Let
L(t, t′) = C(t, t′) − O(t, t′). If L(t, t′) = β, we say that at time t, PARK lags behind
OPT by β units of work due at t′. Furthermore, PARK is said to be safe at time t
if for any t′ > t, L(t, t′) is proportional to the duration from t to t′ (see the following
definition).

Definition 9. In the course of scheduling I, at any time t, for any t′ > t, PARK
is t′-safe if L(t, t′) < m

s−1 (t′ − t). At any time t, PARK is safe if PARK is t′-safe for
all t′ > t.

The most nontrivial observation in analyzing PARK is that at any time, PARK
is safe (see Lemma 10). It is then relatively easy to see that, whenever a job J is
released to PARK, if PARK is safe at r(J), then J will be eventually admitted by
PARK (see Lemma 11).

Lemma 10. In the course of scheduling I, at any time t, PARK is safe.
Lemma 11. Let J be any job in I. If PARK is safe at r(J), then J will be

admitted by PARK on or before t0 = r(J) + (1 − w)(d(J) − r(J)).
Lemmas 10 and 11 together guarantee that every job in I must be admitted by

PARK. As mentioned in section 2, PARK meets the deadlines of all admitted jobs.
Thus, Theorem 7 follows. For ease of discussion, we will first present the proof for
Lemma 11. We start with a more technical lemma, which will also be used in the
proof of Lemma 10.

Proposition 12. Consider any time interval [a, b] and any time d > b. Assume
that PARK is d-safe at time a and, at any time in [a, b], there exists a job in PARK’s
pool with deadline no later than d. Then b−a < 1

p(s−1) (d−a). (Recall that s is chosen

as 1 + 1
p(1−w)−1 ; thus, 1

p(s−1) = 1 − w − 1
p .)

Proof. Due to the waiting property, at any time in the interval [a, b], all the
pm processors of PARK are busy and doing work due at d. The total work done by

678 HO-LEUNG CHAN, TAK-WAH LAM, AND KAR-KEUNG TO

PARK during [a, b] is exactly

pm× s× (b− a).(1)

PARK is d-safe at a and L(a, d) < m
s−1 (d−a). At a, PARK and OPT have C(a, d) and

O(a, d) units of work due at d, respectively. Consider all the jobs that are released
from a to b; the sum of their work due at d is at most m(d− a)−O(a, d) (otherwise,
even OPT cannot complete these works by d). During the interval [a, b], the total
amount of work due at d that PARK can possibly work on is at most

C(a, d) + m(d− a) −O(a, d) = L(a, d) + m(d− a)(2)

<
m

s− 1
(d− a) + m(d− a)(3)

=
ms

s− 1
(d− a).(4)

Combining (1)–(4), we have pms(b − a) < ms
s−1 (d − a), or equivalently, (b − a) <

1
p(s−1) (d− a).

Lemma 11 is in fact a corollary of Proposition 12. Details are as follows.
Proof of Lemma 11. Suppose on the contrary that at time t0 = r(J) + (1 −

w)(d(J) − r(J)), J has not been admitted. As J is assumed to have a work-span
ratio of at most w, J has not yet expired at t0 and is in the pool during the interval
[r(J), t0]. Note that t0 − r(J) = (1 − w)(d(J) − r(J)) and, by Proposition 12 (with
a = r(J), b = t0, and d = d(J)), we have (t0 − r(J)) < (1−w− 1

p)(d(J)− r(J)). This

implies that 1
p < 0, contradicting that p ≥ 1.

The rest of this section is devoted to the proof of Lemma 10, which is further
broken into two lemmas. We first state a simple fact about how the value of L(t, t′)
changes over time.

Fact 1. Let [t1, t2] be a time interval before a certain time t′. Assume that during
the interval [t1, t2], PARK has done at least x units of work due at t′ and OPT has
done at most y units of work due at t′. Then, L(t2, t

′) ≤ L(t1, t
′) − x + y.

Intuitively, we prove Lemma 10 inductively over time. Assume that PARK is safe
at time a. We first consider two basic types of time intervals [a, b] and show that, in
either case, PARK is safe at time b. Precisely, for any t′ > b, we call [a, b]

• a t′-quiet period if at any time in [a, b] there is no job in PARK’s pool with
work due at t′, and

• a t′-hectic period if at any time in [a, b] there is at least one job in PARK’s
pool with work due at t′.

During a t′-quiet period, any job with work due at t′ in PARK is admitted to some
processor. Since PARK is using speed-s processors, we can argue that PARK will not
lag behind OPT too much on work due at t′ during a t′-quiet period (see Lemma 13).
A hectic period is more complicated. In Lemma 14 we first show that with the extra
speed and number of processors given to PARK, a t′-hectic period cannot last for too
long. Then we notice that within such a short period, the amount of PARK’s work
due at t′ that lags behind OPT’s cannot change too drastically and PARK is still
t′-safe at b. Below we prove the above observations regarding quiet and hectic periods
(see Lemmas 13 and 14). Then it is easy to show that PARK is safe at any time (i.e.,
Lemma 10).

Lemma 13. Consider a time interval [a, b] and a certain time t′ > b. Assume
that at any time in the interval [a, b] there is no job in PARK’s pool with work due
at t′. If PARK is safe at a, then PARK is t′-safe at b.

NONMIGRATORY ONLINE SCHEDULING 679

Proof. We prove inductively that, at any time in [a, b], PARK is t′-safe. Let r > a
be the first time a job is released; if no jobs are released on or before b, let r = b.
Below we first show that PARK is t′-safe at time r, i.e., L(r, t′) ≤ m

s−1 (t′ − r). Note
that, at time r, if a job J is released, it contributes exactly p(J) to both C(r, t′)
and O(r, t′) and does not affect the value of L(r, t′). To derive an upper bound of
L(r, t′), it suffices to consider the amount of work released before r. In particular, we
can tighten the trivial upper bound of L(r, t′) from C(r, t′) to Ĉ(r, t′), where Ĉ(r, t′)
denotes, at time r, the amount of work in PARK that has been released before r and
due at t′.

Denote by Φr the set of PARK’s processors which, at r, have work released before r
and due at t′. Then Ĉ(r, t′) ≤ |Φr|(t′ − r). If |Φr| < m

s−1 , then L(r, t′) ≤ Ĉ(r, t′) <
m
s−1 (t′− r). Bound L(r, t′) for the case when |Φr| ≥ m

s−1 is more complicated. During
[a, r], the pool contains no job due at t′ and no job is released until r. Thus, at any
time t where a ≤ t < r, if a processor of PARK does not have any work due at t′,
this processor cannot be in Φr. In other words, throughout the interval [a, r], every
processor in Φr has work due at t′ and PARK has done at least |Φr|s(r − a) units of
work due at t′. Note that OPT achieves at most m(r − a). Thus,

L(r, t′) ≤ L(a, t′) − |Φr|s(r − a) + m(r − a)

<
m

s− 1
(t′ − a) − m

s− 1
s(r − a) + m(r − a) (at time a, PARK is t′-safe)

=
m

s− 1
(t′ − r).

In summary, we have proven that, at time r, PARK is t′-safe. If r < b, we can repeat
the above argument to prove that PARK is t′-safe at each subsequent release time
and eventually at time b.

Next, we consider the case of hectic periods.
Lemma 14. Consider a time interval [a, b] and a certain time t′ > b. Assume

that, just before a, there is no job in PARK’s pool with work due at t′ and that, at any
time in [a, b], there is at least one job in PARK’s pool with work due at t′. If PARK
is safe at a, then

(i) (b− a) < 1
s (t′ − a), and

(ii) PARK is t′-safe at b.
Proof. (i) Due to the condition of Lemma 14, we know that, at any time in [a, b],

there is a job J in the pool with work due at t′ and J must be released on or after a.
Due to the work-span ratio assumption, any job released after a and with work due
at t′ must have a deadline on or before a+ 1

1−w (t′ − a) ≥ t′. Let d = a+ 1
1−w (t′ − a).

At time a, PARK is safe and, in particular, d-safe. By Proposition 12, (b − a) <
(1 − w − 1

p)(d − a) = (1 − w − 1
p)(t′ − a)/(1 − w). Note that s = 1 + 1

p(1−w)−1 and
1
s = p(1−w)−1

p(1−w) = (1 − w − 1
p)/(1 − w). Thus, (b− a) < 1

s (t′ − a), and (i) follows.

(ii) Consider the pm processors used by PARK. Let Ψ be the set of PARK’s
processors which, at any time in the interval [a, b], are doing work due at t′. Let
|Ψ| = ψ. If ψ ≥ m

s−1 , then,

L(b, t′) ≤ L(a, t′) − ψs(b− a) + m(b− a)

<
m

s− 1
(t′ − a) − m

s− 1
s(b− a) + m(b− a)

=
m

s− 1
(t′ − b).

680 HO-LEUNG CHAN, TAK-WAH LAM, AND KAR-KEUNG TO

Next, we consider ψ < m
s−1 . Label the processors in Ψ as P1, P2, . . . , Pψ. At a,

each of these processors has at most t′−a units of work due at t′. Label the processors
not in Ψ as Pψ+1, . . . , Ppm. At a, for each processor Pi not in Ψ, let wi be the amount
of work due at t′. Let W =

∑pm
i=ψ+1 wi. Then L(a, t′) ≤ C(a, t′) ≤ ψ(t′ − a) + W .

From a to b, each of P1, P2, . . . , Pψ, has done exactly s(b − a) units of work due
at t′. For each Pi, where i = ψ + 1, . . . , pm, Pi at some point in [a, b] is doing some
work due at a time later than t′; thus Pi has done at least wi units of work due at t′.
In summary, during [a, b], PARK, by time b, must have done at least ψ×s(b−a)+W
units of work due at t′; note that OPT has done at most m(b− a) units of work due
at t′. Hence, we have the following conclusion:

L(b, t′) ≤ L(a, t′) −
(
ψs(b− a) + W

)
+ m(b− a)

≤ ψ(t′ − a) + W −
(
ψs(b− a) + W

)
+ m(b− a)

= ψ
(
t′ − a− s(b− a)

)
+ m(b− a)

<
m

s− 1

(
t′ − a− s(b− a)

)
+ m(b− a)

(by Lemma 14(i), (t′ − a− s(b− a)) > 0)

=
m

s− 1
(t′ − b).

In summary, no matter what the value of ψ is, L(b, t′) < m
s−1 (t′ − b). Thus, PARK is

t′-safe at time b.
With the observations on the quiet and hectic periods, proving that PARK is safe

at any time (i.e., Lemma 10) is straightforward.
Proof of Lemma 10. We first notice that, at time 0, L(0, t′) is equal to 0 for any

t′ > 0. Thus, PARK is safe at time 0. Let γ0 = 0 and let γ1 = min{γ > γ0 | at time γ,
PARK switches from a t′-quiet period to a t′-hectic period for some t′ > γ}. Consider
any time t ≤ γ1. For any t′ > t, [γ0, t] is a t′-quiet period and, by Lemma 13, PARK is
t′-safe. Thus, PARK is safe at any time t ≤ γ1. We can repeat the above argument to
show inductively that PARK is safe at any time. In general, let γi+1 = min{γ > γi | at
time γ, PARK switches from a t′-quiet period to a t′-hectic period for some t′ > γ,
or vice versa}. Consider any time t ≤ γi+1. For any t′ > t, let j ≤ i be the smallest
integer such that [γj , t] is entirely a t′-quiet period or a t′-hectic period. By Lemma
13 and 14, PARK is t′-safe.

It is worth mentioning that, at any γi, a job is either released or admitted by
PARK. Thus, in the course of scheduling I, there are only a finite number of γi’s.
The above argument will complete eventually to show that PARK is safe at any
time.

5. Remarks.
Lower bound. Consider the following job sequence: m + 1 identical jobs are

released at time 0, each with m units of work and deadline m+1. The set of jobs can
be completed by a migratory schedule on m speed-1 processors. For a nonmigratory
(online or offline) schedule to complete the jobs on m processors, some processor must
admit at least two jobs, and thus the speed requirement is at least 2m

m+1 = 2 − 2
m+1 .

Firm-deadline schedule. Recall that in the firm-deadline scheduling problem,
there may be too many jobs to be completed, and failing to complete a job causes
only a loss in value due to that job and does not cause a system failure. Given a set
I of such jobs, the objective of a scheduler is to maximize the value obtained from

NONMIGRATORY ONLINE SCHEDULING 681

completing the jobs. An online algorithm is said to be c-competitive for some c ≥ 1
if, for any job sequence I, the algorithm can obtain at least a fraction of 1/c of the
value obtained by the optimal offline schedule on m speed-1 processors.

Consider the special case when the value of a job is proportional to its processing
time. If migration is allowed, EDF-AC (EDF with admission control) using m speed-
3 processors is 1-competitive [12]. Since EDF-AC decides whether to complete or
discard a job once the job is released, we can use it to select jobs for scheduling in
PARK without migration. The actual operation is as follows. Whenever EDF-AC
decides to complete a job J , we release J to PARK with p(J) scaled down to p(J)/3.
The job sequence selected by EDF-AC can be completed by m speed-3 processors,
so the scaled job sequence can be completed by m speed-1 processors and all jobs
in the scaled sequence have work-span ratio of at most 1/3. By Corollary 6 with
p = 1 and w = 1/3, the scaled job sequence can be completed by PARK using m
speed-(10

3) processors. As any job in the scaled sequence has only one-third of the
original work, to complete the job actually selected by EDF-AC, we further increase
the speed of the processors by a factor of 3. In summary, EDF-AC plus PARK gives
a new algorithm which, using m speed-10 processors, is 1-competitive nonmigratory
for the firm-deadline scheduling problem.

Effect of laxity on ωm. Consider the offline scheduling problem. Recall that
ωm is the maximum ratio, over all possible inputs, between the value attained by the
optimal migratory schedule and that attained by the optimal nonmigratory schedule.
The analysis of PARK reveals some information about the value of ωm when all
jobs are assumed to have a certain amount of laxity. More precisely, if all jobs have
a work-span ratio no greater than w, where w < 1

4 , Corollary 6 shows that, for
any job sequence, the subset of jobs that can be completed by the optimal offline
migratory schedule on m processors can also be completed by �2/(1 − 4w)�m (unit-
speed) processors. By selecting the m processors that achieve the highest values, we
obtain a nonmigratory offline schedule attaining a value of at least 1

�2/(1−4w)� of the

value of the optimal migratory schedule. Hence, ωm ≤ �2/(1 − 4w)�.
Implementation of PARK. We notice that PARK admits a simple distributed

implementation which does not require a centralized scheduler. Instead, each proces-
sor can monitor the pool and admit a job according to its own status, i.e., each
processor does not need to inquire about the status of other processors. This is dif-
ferent from many other scheduling algorithms (e.g., EDF, LLF) in which the status
of all processors is needed in order to make a scheduling decision. Thus, PARK is
particularly useful when it is difficult to obtain complete information about all pro-
cessors.

Open problems. Let I be a job sequence that can be completed by some
migratory offline schedule on m speed-1 processors. Consider the processor speed
required to obtain a nonmigratory online schedule for I. There is a gap between the
upper bound of 5.828 and the lower bound of 2− 2

m+1 . The current analysis of PARK
seems to be quite loose and we believe that a better analysis could possibly reduce
the speed requirement to 4. We have shown that when extra processors are given,
the speed requirement of PARK can be reduced arbitrarily close to 1. However, we
do not know of any (migratory or nonmigratory) online algorithm that can guarantee
the completion of I using only f(m) speed-1 processors, where f(m) is a function
of m. For the problem of firm-deadline scheduling, the current analysis depends
on EDF-AC as the job selection module. In fact, we conjecture that PARK alone
(say, with m speed-9 processors) is sufficient to match the performance of any offline
schedule.

682 HO-LEUNG CHAN, TAK-WAH LAM, AND KAR-KEUNG TO

REFERENCES

[1] S. Baruah, G. Koren, B. Mishra, A. Raghunathan, L. Rosier, and D. Shasha, On-line
scheduling in the presence of overload, in Proceedings of the IEEE Real-Time Systems
Symposium, 1991, pp. 101–110.

[2] P. Berman and C. Coulston, Speed is more powerful than clairvoyance, Nordic J. Comput.,
6 (1999), pp. 181–193.

[3] M. Chrobak, L. Epstein, J. Noga, J. Sgall, R. van Stee, T. Tichý, and N. Vakhania, Pre-
emptive scheduling in overloaded systems, J. Comput. System Sci., 67 (2003), pp. 183–197.

[4] M. L. Dertouzos, Control robotics: The procedural control of physical processes, in Proceedings
of the IFIP Congress, North-Holland, Amsterdam, 1974, pp. 807–813.

[5] M. L. Dertouzos and A. K. L. Mok, Multiprocessor on-line scheduling of hard-real-time
tasks, IEEE Trans. Software Engrg., 15 (1989), pp. 1497–1506.

[6] J. Edmonds, Scheduling in the dark, Theoret. Comput. Sci., 235 (2000), pp. 109–141.
[7] B. Kalyanasundaram and K. R. Pruhs, Speed is as powerful as clairvoyance, J. ACM, 47

(2000), pp. 617–643.
[8] B. Kalyanasundaram and K. R. Pruhs, Eliminating migration in multi-processor scheduling,

J. Algorithms, 38 (2001), pp. 2–24.
[9] G. Koren, E. Dar, and A. Amir, The power of migration in multiprocessor scheduling of

real-time systems, SIAM J. Comput., 30 (2000), pp. 511–527.
[10] G. Koren and D. Shasha, MOCA: A multiprocessor on-line competitive algorithm for real-

time system scheduling, Theoret. Comput. Sci., 128 (1994), pp. 75–97.
[11] T. W. Lam and K. K. To, Trade-offs between speed and processor in hard-deadline schedul-

ing, in Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SIAM, Philadelphia, ACM, New York, 1999, pp. 623–632.

[12] T. W. Lam and K. K. To, Performance guarantee for EDF under overload, J. Algorithms, 52
(2004), pp. 193–206.

[13] C. A. Phillips, C. Stein, E. Torng, and J. Wein, Optimal time-critical scheduling via re-
source augmentation, Algorithmica, 32 (2002), pp. 163–200.

[14] K. Pruhs, J. Sgall, and E. Torng, Online scheduling, in Handbook of Scheduling: Algo-
rithms, Models and Performance Analysis, J. Leung, ed., CRC Press, Boca Raton, FL,
2004, pp. 15-1–15-41.

[15] J. A. Stankovic, M. Spuri, K. Ramamritham, and G. C. Buttazzo, Deadline Scheduling
for Real-Time Systems: EDF and Related Algorithms, Kluwer Academic Publishers, Dor-
drecht, 1998.

