p21_{WAF1/CIP1} expression in gestational trophoblastic disease: correlation with clinicopathological parameters, and Ki67 and p53 gene expression

A N Y Cheung, D H Shen, U S Khoo, L C Wong, H Y S Ngan

Abstract

Background—The p21_{WAF1/CIP1} gene mediates growth arrest by inhibiting G₁ cyclin dependent kinases and has been considered as a downstream effector of the tumour suppressor gene p53.

Aim—To analyse the role of p21_{WAF1/CIP1} in gestational trophoblastic disease.

Methods—The immunohistochemical expression of p21_{WAF1/CIP1} gene was measured in 33 placentas, 28 partial hydatidiform moles, 54 complete hydatidiform moles, and 13 choriocarcinomas in paraffin wax embedded tissue. The results were correlated with p53 (DO7) and Ki67 (MIB1) immunoreactivity as well as clinical progress.

Results—p21_{WAF1/CIP1} immunoreactivity was found predominantly in the nuclei of the syncytiotrophoblasts. p21_{WAF1/CIP1} protein expression correlated with gestational age in normal placentas (p = 0.0001) but not in hydatidiform moles (p = 0.89). Complete hydatidiform moles and choriocarcinomas had a significantly higher p21_{WAF1/CIP1} expression compared with normal placentas and partial hydatidiform moles (p < 0.001); there was no difference between placentas and partial hydatidiform moles. No correlation between p21_{WAF1/CIP1} expression and either the proliferation (Ki67) index (p = 0.34) or p53 protein accumulation (p = 0.68) was demonstrated. There was no significant difference (p > 0.05) in p21_{WAF1/CIP1} expression between the 17 patients who developed persistent gestational trophoblastic disease and those who did not.

Conclusions—This study suggests that p21_{WAF1/CIP1} expression in trophoblastic disease may be induced by a p53 independent pathway. The proliferative activity of gestational trophoblastic diseases might not be determined solely by the control of the cell cycle operated by p21_{WAF1/CIP1}. p21_{WAF1/CIP1} expression is not an accurate prognostic indicator of gestational trophoblastic disease.

(J Clin Pathol 1998;51:159–162)

Keywords: p21_{WAF1/CIP1}; gestational trophoblastic disease; p53; Ki67

The WAF1 growth suppressor gene, also known as CIP1, encodes a 21 kDa protein p21_{WAF1/CIP1}. This protein is an inhibitor of the cyclin dependent kinases (CDKs), the activation of which is important for cell cycle progression. p21_{WAF1/CIP1} expression is induced by wild-type p53 but not the mutant p53 gene product. Thus, it is considered as a downstream effector of p53, responsible for the antiproliferative, apoptotic, and tumour suppressor effects of p53.

Gestational trophoblastic disease is a heterogenous group of lesions including complete and partial hydatidiform mole, invasive mole, choriocarcinoma, and placental site trophoblastic tumours. Some of these lesions are true neoplasms, whereas others may be abnormally formed placentas that have a predisposition to neoplastic transformation of the trophoblast. The pathogenesis and factors predicting the progression of these diseases remain uncertain.

In previous studies, we have demonstrated the absence of p53 mutation in hydatidiform moles as well as the overexpression of wild-type p53 RNA and protein in hydatidiform moles and choriocarcinomas compared with normal placentas (Cheung et al, unpublished data). There are no published data concerning the role of p21_{WAF1/CIP1} in the normal placenta and gestational trophoblastic disease. We investigated the immunohistochemical expression of p21_{WAF1/CIP1} in 33 placentas and 95 cases of gestational trophoblastic disease. Our aim was to evaluate p21_{WAF1/CIP1} expression in relation to p53 protein expression, proliferative activity, and other clinicopathological characteristics, especially the clinical progress of the patients, in an attempt to clarify the role of p21_{WAF1/CIP1} in gestational trophoblastic disease.

Methods and materials

The pathology reports of patients with a diagnosis of complete hydatidiform mole, partial hydatidiform mole, and choriocarcinoma treated at the Queen Mary Hospital, University of Hong Kong were reviewed. Thirty three placentas, 28 partial hydatidiform moles, 54 complete hydatidiform moles, and 13 choriocarcinomas with available paraffin wax blocks were selected. The gestational age of the placentas ranged from seven to 42 weeks, while that of hydatidiform moles ranged from eight to 28 weeks. Some of these cases had been investigated previously for p53 gene status as well as p53 (DO7) and Ki67 (MIB1) immunoreactivity (Cheung et al, unpublished data). The histological features of these cases were assessed using generally agreed and accepted diagnostic criteria.

The tissues included uterine curettages and blocks from hysterectomy specimens, all of which were routinely fixed in 10% formalin and embedded in paraffin wax. Paraffin wax
sections (4 μm) were dewaxed and rehydrated. Endogenous peroxidase was blocked using 3% H2O2 in methanol. After microwave pretreatment for antigen retrieval,1 monoclonal mouse antibodies for p21WAF1/CIP1 (Calbiochem, Massachusetts, USA) was applied at 1/30 dilution and incubations were performed overnight at 4°C. Immunohistochemistry was performed using the ABC immunoperoxidase method (Dako, High Wycombe, Bucks, UK). Biotinylated sheep antimouse antibody was used as the linker molecule and diaminobenzidine/hydrogen peroxide was used as chromagen. A light haematoxylin counterstain was used. Sections were dehydrated in alcohol, cleared in xylene, and mounted.

Sections were examined at high power (×400) and 20 fields were chosen at random for each section. In each case, a quantitative estimate of the nuclear labelling index for p21WAF1/CIP1 immunoreactivity was made by scoring positive nuclei/total number of nuclei counted in a minimum of 300 trophoblastic cells. The syncytiotrophoblast and cytotrophoblast were evaluated separately. The p21WAF1/CIP1 nuclear labelling index was expressed as a percentage of the total number of nuclei counted. In effect, −2000 syncytiotrophoblasts and cytotrophoblasts were counted in each case. Normal colonic tissue was used as a known positive control and negative controls were included by substituting Tris buffered saline for the primary antibody.

Follow up data were available for 71 patients with partial and complete hydatidiform moles. Persistent gestational trophoblastic disease was diagnosed if there was a plateau in β human chorionic gonadotrophin (hCG) concentrations for four weeks or if there was a further increase in β-hCG for three consecutive weeks when pregnancy was excluded.11 According to these criteria, four patients with partial hydatidiform moles and 13 patients with complete hydatidiform moles were diagnosed as having persistent gestational trophoblastic disease.

Statistical analysis of p21WAF1/CIP1 expression among the four groups of trophoblastic tissues as well as correlation with p53 and Ki67 immunoreactivity was performed with the Mann-Whitney and Pearson tests.

Results

Immunostaining for p21WAF1/CIP1 protein product was predominantly found in the nuclei of syncytiotrophoblast cells in the normal placentas, partial hydatidiform moles, complete hydatidiform moles, and choriocarcinomas (fig 1). Mitotic figures were not immunoreactive for p21WAF1/CIP1 protein. Occasional stromal cells in the chorionic villi and the decidual glandular cells showed weak immunoreactivity for p21WAF1/CIP1, while the endothelium and decidual stromal cells were negative. Regional variation in staining of trophoblast cells was observed in the same section.

The staining was found to be heterogeneous in the different groups of trophoblastic tissue studied. Table 1 shows the wide range of variation in the p21WAF1/CIP1 immunoreactivity for each group of patients. The complete hydatidiform moles and choriocarcinomas had a significantly higher p21WAF1/CIP1 expression compared with normal placentas and partial hydatidiform moles (p < 0.001), while there was no difference between placentas and partial hydatidiform moles (table 2).

The normal placentas and the hydatidiform moles were divided into two groups based on their gestational age (< 20 weeks and > 20 weeks). The p21WAF1/CIP1 indices of each of these groups were compared. p21WAF1/CIP1 protein expression correlated with gestational age in normal placentas (p = 0.0001), with higher expression in early gestation. No such

<table>
<thead>
<tr>
<th>Number of cases</th>
<th>Mean (SD) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placentas</td>
<td>33</td>
</tr>
<tr>
<td>Partial hydatidiform moles</td>
<td>28</td>
</tr>
<tr>
<td>Complete moles</td>
<td>54</td>
</tr>
<tr>
<td>Choriocarcinomas</td>
<td>13</td>
</tr>
</tbody>
</table>

Table 2 Comparison of p21WAF1/CIP1 indexes

<table>
<thead>
<tr>
<th>Placentas</th>
<th>PM</th>
<th>CM</th>
<th>CCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placentas</td>
<td>PM</td>
<td>CM</td>
<td>CCA</td>
</tr>
</tbody>
</table>

*Significant difference.
PM, partial hydatidiform moles; CM, complete moles; CCA, choriocarcinomas.
correlation was observed in partial hydatidiform moles or complete hydatidiform moles \((p = 0.89) \).

\(p21^{\text{WAF1/CIP}} \) expression was found to be independent of p53 protein accumulation \((p = 0.68) \). Cases with a high Ki67 index seemed to show high \(p21^{\text{WAF1/CIP}} \) immunoreactivity; however, no significant difference was demonstrated \((p = 0.34) \). There was also no statistical correlation \((p > 0.05) \) in \(p21^{\text{WAF1/CIP}} \) expression between the 17 patients who required chemotherapy and the 54 patients with spontaneous regression of the disease.

Discussion

Deregulation of cell proliferation and differentiation is important in neoplastic transformation. \(p21^{\text{WAF1/CIP}} \) is known to be related to the control of proliferation and differentiation of cells. In normal cells, \(p21^{\text{WAF1/CIP}} \) exists in quaternary complexes with cyclin, CDK, and proliferating cell nuclear antigen (PCNA). \(p21^{\text{WAF1/CIP}} \) can induce G1 arrest and block entry into the S phase by inactivating CDKs or by inhibiting the activity of PCNA.10 On the other hand, induction of \(p21^{\text{WAF1/CIP}} \) expression has been demonstrated during differentiation of various cell types, both during embryological development11,12 and in vitro experiments.9 Although the expression of \(p21^{\text{WAF1/CIP}} \) varies among different human tissues, it occurs mainly in quiescent cells.14 For example, \(p21^{\text{WAF1/CIP}} \) immunoreactivity in colonic normal mucosa and adenomas was seen in the superficial third of the crypts (maturation compartment) and in surface (terminally differentiated) epithelium.19

Thus, \(p21^{\text{WAF1/CIP}} \) may be important in the maintenance of growth arrest in terminally differentiated cells by inhibiting DNA synthesis.1

In this study on trophoblastic tissues, \(p21^{\text{WAF1/CIP}} \) expression in normal placentas and gestational trophoblastic disease, irrespective of gestational age, was demonstrated mainly in the terminally differentiated syncytiotrophoblast, while that for p53 and the proliferation marker Ki67 was found almost exclusively in the germinal layer of cytotrophoblast.3,9,19 These results suggest that \(p21^{\text{WAF1/CIP}} \) might be associated with the senescence and terminal differentiation of trophoblastic tissue and is in agreement with the conventional belief that the syncytiotrophoblast is the differentiated zone of the placenta.

There are two issues that we would like to address: what initiates the overexpression of \(p21^{\text{WAF1/CIP}} \) in gestational trophoblastic diseases, especially complete hydatidiform moles and chorionic carcinomas; and what are the biological consequences of \(p21^{\text{WAF1/CIP}} \) overexpression.

Although \(p21^{\text{WAF1/CIP}} \) was first established as a negative regulator of the cell cycle through a p53 dependent pathway,1,2,18 induction of \(p21^{\text{WAF1/CIP}} \) can also be produced by p53 independent mechanisms.15,19 In trophoblastic tissues, there appears to be a higher expression of \(p21^{\text{WAF1/CIP}} \) with increasing expression of wild-type p53. However, the correlation did not reach significance \((p = 0.68) \). While these data do not exclude a component of p53 dependent \(p21^{\text{WAF1/CIP}} \) expression, it is likely that other p53 independent mechanisms are operating.

A review of the literature also shows a lack of correlation between \(p21^{\text{WAF1/CIP}} \) expression and p53 status in cancers of the lung, stomach, pancreas, breast, and ovary.16-25 A finding that is of particular interest is the p53 independent induction of \(p21^{\text{WAF1/CIP}} \) expression during terminal differentiation in various cell lineages.11 In differentiated cells, such as are found in the syncytiotrophoblast, p53 independent \(p21^{\text{WAF1/CIP}} \) expression is probably involved in cell cycle withdrawal. \(p21^{\text{WAF1/CIP}} \) expression may also be induced by other factors related to differentiation and growth arrest.9 Epidermal growth factor (EGF) and fibroblast growth factor (FGF) have been found to induce \(p21^{\text{WAF1/CIP}} \) expression.17

One question that has not been answered by this study is the functional status of the \(p21^{\text{WAF1/CIP}} \) protein found to be overexpressed in the trophoblastic tissue. It is known that mutations of the \(p21^{\text{WAF1/CIP}} \) gene can abolish its tumour suppressor activity.26 However, no mutations of the \(p21^{\text{WAF1/CIP}} \) gene have been detected in various studies on carcinomas of the lung, pancreas,17 oral cavity,27 and colon,28 as well as melanomas29 and the study of Shiohara et al, which investigated 351 cases of 14 different types of human malignancy.30 Future sequencing studies may be necessary to determine whether \(p21^{\text{WAF1/CIP}} \) mutation occurs in gestational trophoblastic disease.

As \(p21^{\text{WAF1/CIP}} \) negatively regulates cell cycle progression, an inverse correlation between \(p21^{\text{WAF1/CIP}} \) expression and proliferative activity or malignant behaviour would be expected. In gestational trophoblastic disease, the pattern is complex. At the single cell level, \(p21^{\text{WAF1/CIP}} \) and MIB1 immunoreactivity were observed separately in the syncytiotrophoblast and cytotrophoblast, respectively. Such a mutually exclusive pattern involving \(p21^{\text{WAF1/CIP}} \) and Ki67 expression has also been observed in colonic15 and gastric10 tissues. \(p21^{\text{WAF1/CIP}} \) expression in early placentas, which display more active trophoblastic proliferation, is higher than in mature placentas, where the proliferative activity is lower.9,12,31 Yet, statistically significant direct correlation between \(p21^{\text{WAF1/CIP}} \) expression and proliferative activity could not be established in gestational trophoblastic disease.

This lack of correlation between \(p21^{\text{WAF1/CIP}} \) expression and the proliferative (Ki67) index has also been reported in cancers of the stomach, colon, breast, and ovary.15,32-34 Yasui et al suggested that tumour cells might have escaped terminal differentiation and growth arrest by becoming refractory to the inhibitory signals from \(p21^{\text{WAF1/CIP}} \).35 Moreover, proliferation and progression of trophoblastic tissues may be regulated by factors other than \(p21^{\text{WAF1/CIP}} \). Association of \(p21^{\text{WAF1/CIP}} \) overexpression with tumorigenesis has been well established. In most neoplasms, \(p21^{\text{WAF1/CIP}} \) protein and RNA were expressed at higher levels than in the corresponding normal tissues. For example, the levels of \(p21^{\text{WAF1/CIP}} \) expression in normal or...
reactive brain and lung tissue were much lower than in gliomas or pulmonary carcinoma. Complete hydatidiform mole has a higher potential to develop persistent gestational trophoblastic disease compared with partial hydatidiform mole and, according to the beliefs of most gynaecological oncologists, only complete hydatidiform mole will develop into choriocarcinoma. Our findings that complete hydatidiform mole and choriocarcinoma have a higher level of p21WAF1/CIP1 expression concur with the association between p21WAF1/CIP1 expression and tumorigenesis.

We were thus interested to see whether p21WAF1/CIP1 expression can predict the clinical behaviour of trophoblastic diseases. Our previous studies on PCNA, Ki67, and p53 showed that these indices could not predict the progression of molar pregnancies to persistent trophoblastic disease (Cheung et al., unpublished data). In this study, there was no significant difference in the p21WAF1/CIP1 index between the patients who developed persistent gestational trophoblastic diseases and those who did not. Thus, the p21WAF1/CIP1 index is not useful in predicting the prognosis of molar pregnancies.

To conclude, our study demonstrates a complex relation between p21WAF1/CIP1 expression and phenotypes of gestational trophoblastic disease. p21WAF1/CIP1 is found to be overexpressed in gestational trophoblastic disease compared with the normal placenta, although p21WAF1/CIP1 expression could not predict the clinical progress of the disease. p21WAF1/CIP1 expression did not correlate with proliferative activity or p53 expression. This is compatible with the observation that p21WAF1/CIP1, p53, and Ki67 immunoreactivity operate in different populations of trophoblasts. This also suggests that the proliferative activity in trophoblastic tissue may be controlled by factors other than p21WAF1/CIP1. The lack of correlation with p53 expression supports the possibility that p21WAF1/CIP1 is being induced at least in part by p53 independent mechanisms.

This study was supported by Research Grant Council Grant (977-030-7863) from the University of Hong Kong.