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Quantum-classical crossover of the escape rate is studied for biaxial antiferromagnetic particles with a
magnetic field along the hard axis. The phase boundary line between first- and second-order transitions is
calculated, and the phase diagrams are presented. Comparing with the results of different directed fields, the
qualitative behavior of the phase diagram for the magnetic field along the hard axis is different from the case
of the field along the medium axis. For the hard axis the phase boundaryklipeshift downwards with
increasingh, but upwards for the medium axis. It is shown that the magnetic field along the hard axis favors
the occurrence of the first-order transition in the range of parameters under the certain constraint condition. The
results can be tested experimentally for molecular magnetsuke Fg.
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Quantum spin tunneling at low temperatures has attractedn the quantum-classical crossover behavior of the escape
considerable attention in view of a possible experimental testate of biaxial antiferromagnetic particles. Comparing with
of the tunneling effect for mesoscopic single-domain parthe results of different directed fields, the qualitative behav-
ticles. Up until now, molecular magnets are the most promior of the phase diagram for the magnetic field along the hard
ising candidates to observe macroscopic quantumxis is different from the case of the field along the medium
coherencé.When the temperature increases the thermal hopaxis. For the hard axis the phase boundary lik@s shift
ping becomes dominant beyond some crossover tempergownwards with increasing, but upwards for the medium
tures. Since the first- and second-order transitions betweeskis. |t is shown that the magnetic field along the hard axis
the quantum and classical behaviors of the escape rates fgyors the occurrence of the first-order transition in the range
spin systems were introduced by Chudnovsky anchf parameters under the certain constraint condition.
Garanin?® a lot of work has been done theoretically and  \we consider a small biaxial antiferromagnetic particle
experimentally: Most theoretical studies focus on ferro- yith two magnetic sublattices whose magnetizationgand
magnetic particles. It is shown that quantum tunneling occurgn, are coupled by the strong exchange interaction
at higher temperatures and higher frequencies in antiferrqnl.mz/xl, wherey, is the perpendicular susceptibility. The
magnetic particles than in ferromagnetic particles of thesystem has a noncompensation of sublattices withm;
same sizé? Strictly speaking, the most so-called ferromag- _m, > 0), with the easy axix, the medium axis, and the

netic systems are actually ferimagnetic. So the nanometef, g axisz. In the presence of a magnetic field along the hard
scale antiferromagnets are more interesting from experimenyic the Euclidean action is writtens

tal and theoretical aspects. For instance, quantum tunneling

on a supramolecular magnet diniéin,], with the antifer-

romagnetic coupling between two Mrnits was investi- S:(6 ¢):Vf dr im1+mz¢_im¢cosg
gated experimentally and theoreticaifyt” The strong ex- ’ v v
change interaction was also taken into account in the study —

of quantum-classical crossover of the escape fétésMore + X—i['92 +(¢p—iyH)?sir? 6] + K, cog 6
recently, the quantum-classical crossover in biaxial antiferro- 2

magnetic particles in the presence of an external magnetic

field along the medium axis or the easy axis was +K, sir? 6sir’ ¢ —mHcosé [, (1)
investigated®2°1t is noted that an experimental observation

of quantum phase interference, introduced by an external

magnetic field along the hard axis for molecular magngt Fe whereV is the volume of the particley the gyromagnetic
was reported. Considering that molecular magnetgFis  ratio, andy, =y, (my/my). K; andKy(K;>Kj,) are the trans-
characterized by a large spin ground state that originategerse and longitudinal anisotropic coefficients, respectively.
from an incomplete compensation of antiferromagneticallyThe polar coordinate# and the azimuthal coordinaié for
coupled sping? and is actually ferrimagnetic, in the study of the angular components @i, in the spherical coordinate
the quantum-classical crossover of biaxial antiferromagnetisystem determine the direction of the Néel vector. A dot over
particles, the case of a magnetic field along the hard axia symbol denotes a derivative with respect to the Euclidean
deserves further investigation. In this paper we attempt tdime 7. The classical trajectory to the Euclidean acti{@his
investigate the effect of a magnetic field along the hard axisletermined by
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—in¢sin6+x<0——¢zsin 20+ib¢ sin 26>—thsin0 & pssinBwr), & Gs Co3wr) ®
2 where the analytic forms of real coefficierpg and g5 are
cumbersome, and are not listed in the paper. We also have

2¢1

ny?(w? - 02)(0? - w?) =a

1
+sin 26(1 —k sir? ¢)+§b2xsin 20=0, (2)

g(h ky), 9

iNO+x(¢ sin 0+ 20 cosd - 2ib o cos6) — k sin @ sin 2¢
-0 ¥ (hky) = gu(hk ) + o k.y) (10
1 e} = 1 t + 1 el 1

where n=m/(K;y), x=x,/(Ki¥%), k=K,/K;, b=yH, h g~ V)= Gy TGSy

=H/H,, andH,=2K,/m. and y=x/n’(=x,Ki/m?). The forms of gy(h,k,y) and
In the high-temperature regime the sphaleron solution of2(n,K,y) are given by

Egs. (2) and (3) is (fy=arccoshy, pg=7/2), where hy 2

=hk/(1-k+xk?/2)<1. The crossover behavior of the escape 91(h,k,y) = (1 - 4hkycosp)wy hkywcosé,

rate from the quantum tunneling to the thermal activation is A

obtained from the deviation of the period of the periodic sin 60< 5

instanton from that of the sphalerdh?* To this end we ex- X - EYWZ)
pand (6, ¢) about the sphaleron configuratiods and ¢,

where

i.e., 0=60y+n(7) and ¢p=¢y+&(7), where ¢po=m/2. Denote - 40,k cos by — 8(2py — P2)hkywsin 6,
(1) =[n(7),&7)], at finite temperature SQ(7+pBh)
=8Q0(7). Thus it can be expanded in the Fourier series + 47\[(250 +P,)k cosfy — k sin 6,
S (n=2__, 8, exdio,7], where w,=27n/ph. To the
lowest orderp=ia#, sin(w7) and é=a¢, codw7). Here,a - 3.
serves as a perturbation parameter. Substituting them into = Po= 5Pz |yw” costy (11)
Egs. (2) and (3), and neglecting the terms of order higher
thana, we obtain the relation hky) = - (1 - 4hky cosfg)w 11 hcosd

by _ Xw +SiM (2~ &K+ X0 wy(n = 20xCOS6p) gAnKy) = sin 6, A3 0

6 w.nsinfy—bxsin26y)  sinfy(xw?—2k) +4(1 -k + 2h%k2y)cos o]

) 12w(1 ,

and the oscillation frequency * )\_<85m 0o~ hkysin 260)

, 1 ) 4l (1 _ 3
w;=- %{x[sm2 6o(2 — 2k + xb?) — 2k] + (n — 2xb cos Hp)?} + Ek + 4hkywig, — ‘—1yw2 cos X,

1 o~ N
* 7{8kx2(2 - 2k + xb?)sir? 6, +(2Po = P2)Nksin 6 —Gw cos
- —% Vi _ 2),2
+[X(sirf6p(2 — 2k + xb?) — 2k) + (n — 2xb cos by)? 122, 2ZPo = Po)sin 26(1 —k + 20k y)]
(5) + 4(k - yVVZ)az Sin 200 + 2(2'50 - ﬁz)W COSHO

Next, let us writep=iaé, sin(w7)+ 7, and é{=a¢, co{ w7) 3
+i&,, wheres, and &, are of the order of2. Inserting them - 8(2po — Po)hkywcos 2 (, (12

into Egs.(2) and(3), we arrive atw=w, and
_ 2 2 where w=nw, and \=¢;/6;. The parametery=x/n?

72 = &Po + &P, CO4207), 6) (=x . K,/m?P) indicates the relative magnitude of the noncom-
pensatlon For a large noncompensation<1, i.e., m
>\XJ_K ) the system becomes ferromggietlc while for a
where the analytic forms of coefficienfs, p,, andg, are  small noncompensatiofy>1, i.e., m<\y, K;) the system
listed in the Appendix. It implies that there is no shift in the becomes nearly compensated antiferromagﬁ%ﬂtlso, Po»
oscillation frequency. In order to find the change of the osP,, and{, are obtained by replacing, by ¢;/\ and drop-
cillation period, we proceed to the third order of perturbationping ¢?2 in po, p,, anda,, respectively. It is shown that for
theory by writing #n=iaé,sin(w7)+n,+in;, and ¢ h=0, Eq.(10) is reduced to Eq17) in Ref. 18.
=a¢, codwr) +i&,+ &, Wheren; and & are of the order®. According to the theory by Chudnovskythe order of
Substituting them again into Eq&) and (3), and keeping quantum-classical crossover is determined by the behavior of
the terms up t@(a%), we yield equations to determing, £&;  the Euclidean time oscillation periodE), whereE is the
and the corresponding frequeney After some tedious alge- energy near the bottom of the Euclidean potential. The exis-
bra we obtain tence of a minimum in the oscillation period with respect to

& = a’qp sin(2w7), (7)
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FIG. 1. Phase diagrark(y). The solid line corresponds to
=0.1 and the dashed line to=0. The dotted line is determined by
the constraint conditiohy<1 [i.e., hk/(1-k+2h%k?y)<1]. The in-
set corresponds th=0.2.

FIG. 2. Phase diagra(y) for different directed fields witth
=0.1. The solid line corresponds to field along the hard axis, the
dashed line to field along the medium axis, and the dashed-dotted
line to field along the easy axis. The dashed and dashed-dotted lines
are plotted according to Refs. 19 and 20. The dotted line is deter-
mined by the constraint conditionk/(1-k+2h%k?y)<1 for field
along the hard axis.

energy, i.e., in the~ E curve, was proposed as a criteria for
first-order transition. Thus, the pericd=27/w) in EQq. (9)
should be less tham,(=27/w,), i.€., ®> w, for the first-

order transition. It implies thag(h,k,y)>0 in Eq.(9), and  order transition vanishes, is about 0.313. Next we consider
g(h,k,y)=0 determines the phase boundary between theénolecular magnet REOCH,)s(dpm)g, Fe, for simplicity, as
first- and the second-order transition. We first solve ).  another example. The cluster Fis characterized by a6
numerically to obtain the phase boundary lindg)'s for =5 ground state arising from antiferromagnetic interaction
several values oh, which are plotted in Fig. 1, where the between central and peripheral iron spifi$é According to
constraint conditiorhy<1 [i.e., hk/(1-k+2h%k?)=<1] has the estimate of the transverse and longitudinal anisotropic
been considered. Figure 1 shows that the phase boundagyefficients for Fg in Refs. 25-28,k=0.822. The phase
linesk(y) shift downwards with increasiny For instance, in  boundary lineh(y) for k=0.822 is also shown in Fig. Golid

the case ofy=0.25 the first-order transition vanishes for line). For Fg the maximum of the critical valug. is about
=0.844, 0.785, 0.728, arte=0.0, 0.1, 0.2, respectively. It is 0.378.

also interesting to consider the limit caseyof> 0. The case In conclusion, the quantum-classical crossover of the es-
corresponds to biaxial ferromagnetic particles. Note that theape rate for biaxial antiferromagnetic particles is investi-
gquantum-classical crossover for biaxial ferromagnetic pargated in the presence of a magnetic field along the hard axis.
ticles in the presence of an external magnetic field along th&he nonlinear perturbation method is applied to establish the
hard axis was investigated in Ref. 10. From Fig. 1 in thephase diagrams for first- and second-order transitions. Com-
limit case ofy— 0, the first-order transition vanishes fr  paring with the results of different directed fields, it shows
=0.5, 0.493, 0.476, and=0.0, 0.1, 0.2, respectively. The that in the range of parameters under the constraint condition
results agree with those obtained from Ef9) in Ref. 10  hy<1, the magnetic field along the hard axis favors the oc-
(note thath defined in Ref. 10 correspondshé& here. Com-

paring with the results of different directed fiel®$° (see 05 - - - - -
Fig. 2, the qualitative behavior of the phase diagram forthe ¢ .7 ' |
magnetic field along the hard axis is different from the case 0.4 (a) ................... : .
of the field along the medium axis, in which the phase LT
boundary lin&(y) shifts upwards with increasirty Figure 2 0.34 — k=0822 s i
shows that in the range of parameters under the constraint . ® AR
conditionhy=<1, the magnetic field along the hard axis fa- B )
vors the occurrence of the first-order transition. For instance, ’ >
in the case ofh=0.1 andk=0.85 the first-order transition first order %
vanishes beyondg/=0.138, 0.261, and 0.335 for the field 0.14 1
along the medium axis, easy axis, and hard axis, respectively. second order
To illustrate the above results with concrete examples, firstly 0.0 r T e T T .

0.00 005 010 0.15 0.20 0.25 0.30 0.35 0.40

we discuss the molecular magnetsFehich is actually fer-
rimagnetic, and thereby should be taken into account in the

Y

biaxial symmetry. Take the measured value of the anisotropy FiG. 3. Phase diagram for the orders of transition in ()
parameter, e.gk=0.728 for Fg.! The phase boundary line plane in Fg(k=0.728 and Fa(k=0.822. The dotted linga) deter-

h(y) for k=0.728 is shown in Fig. 3dashed ling For Fe
the maximum of the critical valug,, beyond which the first-
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mined by the constraint conditiohk/(1-k+2h%k?%y)<1 corre-
sponds to the the case ofdrand the dotted lingb) to Fe,.
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currence of the first-order transition. Two cases of the mo-

lecular magnets eand Fg are also investigated.
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Po = {2bXw 6, 1 cOS Wy — hke? sin 6y + (2 — 2k

Xw?
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2
— Nwby ¢, COSH{2 Sirt Oy(2 — 2k + b?X)},

+b%) & sin 200+(k— )qﬁi sin 26,

py=— {hk(k - 2Xw?) 6 Sin O + 2bxw (kb1 + N SN Oy — 2Xw?6, ;) + 2bXCw(4w? — 3w2) 616, COS b,

1
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+ 4Xw? 6 Sin 20, — NXw 0y 1 (20° — 3w?)CcOS by — XPww? ¢? Sin 200}/{— 4(h cosf, + cos Vp)k? + 2k[4hxw? cos b,
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0o = {2610 2nbxwd; + 6,(2 — 2k + b?X + 4xw?)bx sin 6, + hknd; sin 6,] — 26, ¢, cOS G[4k? — 2K(2 + b?X + 3Xw?) + 6Xw?
+ b2P(— 8w? + 3w?)] - 2 o o kb1 (2k — 3xw?) + 2bxw((— 2 + 2k — b2X) 65 Sin By + 3wy + (2K + Xw?) @2 SiN 6p) ]
+ COSO[4K20,hy + 2n2w? 01 by — 2N SIN Gp(2(2 +b2X) 7 — X2 dh3) + X011 (B(1 + 2xw?) w? + b?X(— 8w? + 3w?))
+ 2K(4nw 6 Sin O + 2Nwd? Sin Oy — 011 (2 + b?X + 4xw? + 3xw?)) {4 sin 6[2(h cos b, + cos Hp)K?
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