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Quantum-classical crossover of the escape rate is studied for biaxial antiferromagnetic particles with a
magnetic field along the hard axis. The phase boundary line between first- and second-order transitions is
calculated, and the phase diagrams are presented. Comparing with the results of different directed fields, the
qualitative behavior of the phase diagram for the magnetic field along the hard axis is different from the case
of the field along the medium axis. For the hard axis the phase boundary linesksyd shift downwards with
increasingh, but upwards for the medium axis. It is shown that the magnetic field along the hard axis favors
the occurrence of the first-order transition in the range of parameters under the certain constraint condition. The
results can be tested experimentally for molecular magnets Fe8 and Fe4.
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Quantum spin tunneling at low temperatures has attracted
considerable attention in view of a possible experimental test
of the tunneling effect for mesoscopic single-domain par-
ticles. Up until now, molecular magnets are the most prom-
ising candidates to observe macroscopic quantum
coherence.1 When the temperature increases the thermal hop-
ping becomes dominant beyond some crossover tempera-
tures. Since the first- and second-order transitions between
the quantum and classical behaviors of the escape rates in
spin systems were introduced by Chudnovsky and
Garanin,2,3 a lot of work has been done theoretically and
experimentally.4–14 Most theoretical studies focus on ferro-
magnetic particles. It is shown that quantum tunneling occurs
at higher temperatures and higher frequencies in antiferro-
magnetic particles than in ferromagnetic particles of the
same size.15 Strictly speaking, the most so-called ferromag-
netic systems are actually ferrimagnetic. So the nanometer-
scale antiferromagnets are more interesting from experimen-
tal and theoretical aspects. For instance, quantum tunneling
on a supramolecular magnet dimerfMn4g2 with the antifer-
romagnetic coupling between two Mn4 units was investi-
gated experimentally and theoretically.16,17 The strong ex-
change interaction was also taken into account in the study
of quantum-classical crossover of the escape rates.18–21More
recently, the quantum-classical crossover in biaxial antiferro-
magnetic particles in the presence of an external magnetic
field along the medium axis or the easy axis was
investigated.19,20 It is noted that an experimental observation
of quantum phase interference, introduced by an external
magnetic field along the hard axis for molecular magnet Fe8,
was reported.1 Considering that molecular magnet Fe8 is
characterized by a large spin ground state that originates
from an incomplete compensation of antiferromagnetically
coupled spins,22 and is actually ferrimagnetic, in the study of
the quantum-classical crossover of biaxial antiferromagnetic
particles, the case of a magnetic field along the hard axis
deserves further investigation. In this paper we attempt to
investigate the effect of a magnetic field along the hard axis

on the quantum-classical crossover behavior of the escape
rate of biaxial antiferromagnetic particles. Comparing with
the results of different directed fields, the qualitative behav-
ior of the phase diagram for the magnetic field along the hard
axis is different from the case of the field along the medium
axis. For the hard axis the phase boundary linesksyd shift
downwards with increasingh, but upwards for the medium
axis. It is shown that the magnetic field along the hard axis
favors the occurrence of the first-order transition in the range
of parameters under the certain constraint condition.

We consider a small biaxial antiferromagnetic particle
with two magnetic sublattices whose magnetizations,m1 and
m2, are coupled by the strong exchange interaction
m1·m2/x', wherex' is the perpendicular susceptibility. The
system has a noncompensation of sublattices withms=m1

−m2.0d, with the easy axisx, the medium axisy, and the
hard axisz. In the presence of a magnetic field along the hard
axis, the Euclidean action is written as15

SEsu,fd = VE dtHi
m1 + m2

g
ḟ − i

m

g
ḟ cosu

+
x̃'

2g2fu̇2 + sḟ − igHd2 sin2 ug + K1 cos2 u

+ K2 sin2 u sin2 f − mHcosuJ , s1d

whereV is the volume of the particle,g the gyromagnetic
ratio, andx̃'=x'sm2/m1d. K1 andK2sK1.K2d are the trans-
verse and longitudinal anisotropic coefficients, respectively.
The polar coordinateu and the azimuthal coordinatef for
the angular components ofm1 in the spherical coordinate
system determine the direction of the Néel vector. A dot over
a symbol denotes a derivative with respect to the Euclidean
time t. The classical trajectory to the Euclidean action(1) is
determined by
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− inḟ sinu + xSü −
1

2
ḟ2 sin 2u + ibḟ sin 2uD − 2hksinu

+ sin 2us1 − k sin2 fd +
1

2
b2x sin 2u = 0, s2d

inu̇ + xsf̈ sinu + 2ḟu̇ cosu − 2ibu̇ cosud − k sinu sin 2f

= 0, s3d

where n=m/ sK1gd, x= x̃' / sK1g2d, k=K2/K1, b=gH, h
=H /Hc, andHc=2K2/m.

In the high-temperature regime the sphaleron solution of
Eqs. (2) and (3) is su0=arccosh0,f0=p /2d, where h0

=hk/ s1−k+xb2/2dø1. The crossover behavior of the escape
rate from the quantum tunneling to the thermal activation is
obtained from the deviation of the period of the periodic
instanton from that of the sphaleron.18,24 To this end we ex-
pand su ,fd about the sphaleron configurationsu0 and f0,
i.e., u=u0+hstd and f=f0+jstd, where f0=p /2. Denote
dVstd;fhstd ,jstdg, at finite temperature dVst+b"d
=dVstd. Thus it can be expanded in the Fourier series
dVstd=on=−`

` dVn expfivntg, where vn=2pn/b". To the
lowest orderh. iau1 sinsvtd and j.af1 cossvtd. Here,a
serves as a perturbation parameter. Substituting them into
Eqs. (2) and (3), and neglecting the terms of order higher
thana, we obtain the relation

f1

u1
=

xv±
2 + sin2u0s2 − 2k + xb2d

v±sn sinu0 − bxsin 2u0d
= −

v±sn − 2bxcosu0d
sinu0sxv±

2 − 2kd
,

s4d

and the oscillation frequency

v±
2 = −

1

2x2hxfsin2 u0s2 − 2k + xb2d − 2kg + sn − 2xbcosu0d2j

±
1

2x2h8kx2s2 − 2k + xb2dsin2 u0

+ fx„sin2u0s2 − 2k + xb2d − 2k… + sn − 2xbcosu0d2g2j1/2.

s5d

Next, let us writeh. iau1 sinsvtd+h2 andj.af1 cossvtd
+ ij2, whereh2 andj2 are of the order ofa2. Inserting them
into Eqs.(2) and (3), we arrive atv=v+ and

h2 = a2p0 + a2p2 coss2vtd, s6d

j2 = a2q2 sins2vtd, s7d

where the analytic forms of coefficientsp0, p2, and q2 are
listed in the Appendix. It implies that there is no shift in the
oscillation frequency. In order to find the change of the os-
cillation period, we proceed to the third order of perturbation
theory by writing h. iau1 sinsvtd+h2+ ih3, and j
.af1 cossvtd+ ij2+j3, whereh3 andj3 are of the ordera3.
Substituting them again into Eqs.(2) and (3), and keeping
the terms up toOsa3d, we yield equations to determineh3, j3

and the corresponding frequencyv. After some tedious alge-
bra we obtain

h3 = a3p3 sins3vtd, j3 = a3q3 coss3vtd, s8d

where the analytic forms of real coefficientsp3 and q3 are
cumbersome, and are not listed in the paper. We also have

n4y2sv2 − v+
2dsv2 − v−

2d = a2f1
2

4
gsh,k,yd, s9d

where

gsh,k,yd = g1sh,k,yd + g2sh,k,yd, s10d

and y=x/n2s=x̃'K1/m2d. The forms of g1sh,k,yd and
g2sh,k,yd are given by

g1sh,k,yd = s1 − 4hkycosu0dwH 2

l2hkywcosu0

+
sinu0

l
Sk −

5

2
yw2D

− 4q̃2k cosu0 − 8s2p̃0 − p̃2dhkywsinu0

+ 4lFs2p̃0 + p̃2dk cosu0 − k sinu0

− Sp̃0 −
3

2
p̃2Dyw2 cosu0GJ , s11d

g2sh,k,yd = −
s1 − 4hkycosu0dw

sinu0
H 1

l3f− hkcosu0

+ 4s1 − k + 2h2k2ydcos 2u0g

+
12w

l2 S1

8
sinu0 − hkysin 2u0D

+
4

l
FS1

2
k + 4hkywq̃2 −

3

4
yw2Dcos 2u0

+ s2p̃0 − p̃2dhksinu0 − q̃2w cosu0

− 2s2p̃0 − p̃2dsin 2u0s1 − k + 2h2k2ydG
+ 4sk − yw2dq̃2 sin 2u0 + 2s2p̃0 − p̃2dw cosu0

− 8s2p̃0 − p̃2dhkywcos 2u0J , s12d

where w=nv+ and l=f1/u1. The parametery=x/n2

s=x̃'K1/m2d indicates the relative magnitude of the noncom-
pensation. For a large noncompensation(y!1, i.e., m
@Îx̃'K1) the system becomes ferromagnetic, while for a
small noncompensation(y@1, i.e., m!Îx̃'K1) the system
becomes nearly compensated antiferromagnetic.18 Also, p̃0,
p̃2, and q̃2 are obtained by replacingu1 by f1/l and drop-
ping f1

2 in p0, p2, andq2, respectively. It is shown that for
h=0, Eq.(10) is reduced to Eq.(17) in Ref. 18.

According to the theory by Chudnovsky,23 the order of
quantum-classical crossover is determined by the behavior of
the Euclidean time oscillation periodtsEd, whereE is the
energy near the bottom of the Euclidean potential. The exis-
tence of a minimum in the oscillation period with respect to
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energy, i.e., in thet,E curve, was proposed as a criteria for
first-order transition. Thus, the periodts=2p /vd in Eq. (9)
should be less thant+s=2p /v+d, i.e., v.v+ for the first-
order transition. It implies thatgsh,k,yd.0 in Eq. (9), and
gsh,k,yd=0 determines the phase boundary between the
first- and the second-order transition. We first solve Eq.(9)
numerically to obtain the phase boundary linesksyd’s for
several values ofh, which are plotted in Fig. 1, where the
constraint conditionh0ø1 [i.e., hk/ s1−k+2h2k2ydø1] has
been considered. Figure 1 shows that the phase boundary
linesksyd shift downwards with increasingh. For instance, in
the case ofy=0.25 the first-order transition vanishes fork
=0.844, 0.785, 0.728, andh=0.0, 0.1, 0.2, respectively. It is
also interesting to consider the limit case ofy→0. The case
corresponds to biaxial ferromagnetic particles. Note that the
quantum-classical crossover for biaxial ferromagnetic par-
ticles in the presence of an external magnetic field along the
hard axis was investigated in Ref. 10. From Fig. 1 in the
limit case ofy→0, the first-order transition vanishes fork
=0.5, 0.493, 0.476, andh=0.0, 0.1, 0.2, respectively. The
results agree with those obtained from Eq.(19) in Ref. 10
(note thath defined in Ref. 10 corresponds tohk here). Com-
paring with the results of different directed fields19,20 (see
Fig. 2), the qualitative behavior of the phase diagram for the
magnetic field along the hard axis is different from the case
of the field along the medium axis, in which the phase
boundary lineksyd shifts upwards with increasingh. Figure 2
shows that in the range of parameters under the constraint
condition h0ø1, the magnetic field along the hard axis fa-
vors the occurrence of the first-order transition. For instance,
in the case ofh=0.1 andk=0.85 the first-order transition
vanishes beyondy=0.138, 0.261, and 0.335 for the field
along the medium axis, easy axis, and hard axis, respectively.
To illustrate the above results with concrete examples, firstly
we discuss the molecular magnet Fe8, which is actually fer-
rimagnetic, and therebyy should be taken into account in the
biaxial symmetry. Take the measured value of the anisotropy
parameter, e.g.,k=0.728 for Fe8.

1 The phase boundary line
hsyd for k=0.728 is shown in Fig. 3(dashed line). For Fe8
the maximum of the critical valueyc, beyond which the first-

order transition vanishes, is about 0.313. Next we consider
molecular magnet Fe4sOCH3d6sdpmd6, Fe4 for simplicity, as
another example. The cluster Fe4 is characterized by anS
=5 ground state arising from antiferromagnetic interaction
between central and peripheral iron spins.25–28According to
the estimate of the transverse and longitudinal anisotropic
coefficients for Fe4 in Refs. 25–28,k=0.822. The phase
boundary linehsyd for k=0.822 is also shown in Fig. 3(solid
line). For Fe4 the maximum of the critical valueyc is about
0.378.

In conclusion, the quantum-classical crossover of the es-
cape rate for biaxial antiferromagnetic particles is investi-
gated in the presence of a magnetic field along the hard axis.
The nonlinear perturbation method is applied to establish the
phase diagrams for first- and second-order transitions. Com-
paring with the results of different directed fields, it shows
that in the range of parameters under the constraint condition
h0ø1, the magnetic field along the hard axis favors the oc-

FIG. 1. Phase diagramksyd. The solid line corresponds toh
=0.1 and the dashed line toh=0. The dotted line is determined by
the constraint conditionh0ø1 [i.e.,hk/ s1−k+2h2k2ydø1]. The in-
set corresponds toh=0.2.

FIG. 2. Phase diagramksyd for different directed fields withh
=0.1. The solid line corresponds to field along the hard axis, the
dashed line to field along the medium axis, and the dashed-dotted
line to field along the easy axis. The dashed and dashed-dotted lines
are plotted according to Refs. 19 and 20. The dotted line is deter-
mined by the constraint conditionhk/ s1−k+2h2k2ydø1 for field
along the hard axis.

FIG. 3. Phase diagram for the orders of transition in thesy,hd
plane in Fe8sk=0.728d and Fe4sk=0.822d. The dotted line(a) deter-
mined by the constraint conditionhk/ s1−k+2h2k2ydø1 corre-
sponds to the the case of Fe8, and the dotted line(b) to Fe4.
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currence of the first-order transition. Two cases of the mo-
lecular magnets Fe8 and Fe4 are also investigated.
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APPENDIX

The coefficients in Eqs.(6) and (7) are listed as follows:

p0 = h2bxvu1f1 cos 2u0 − hku1
2 sinu0 + s2 − 2k

+ b2xdu1
2 sin 2u0 + Sk −

xv+
2

2
Df1

2 sin 2u0

− nvu1f1 cosu0j/h2 sin2 u0s2 − 2k + b2xdj,

p2 = −Hhksk − 2xv2du1
2 sinu0 + 2bxvsku1f1 + nvu1

2 sinu0 − 2xv2u1f1d + 2bx2vs4v2 − 3v+
2du1f1 cos2 u0

+ k2s2u1
2 + f1

2dsin 2u0 − nkvu1f1 cosu0 − ks2 + b2x + 4xv2du1
2 sin 2u0 −

1

2
kxf1

2s4v2 − v+
2dsin 2u0

+ 4xv2u1
2 sin 2u0 − nxvu1f1s2v2 − 3v+

2dcosu0 − x2v2v+
2f1

2 sin 2u0J/h− 4sh cosu0 + cos 2u0dk2 + 2kf4hxv2 cosu0

+ 2 cos2 u0s2 + b2x + 4xv2d − 2 −b2x − 8xv2g + 4v2fn2 − 4nbxcosu0 + 2x + b2x2 + 4x2v2 − 2x cos2 u0s2 − b2xdgj,

q2 = h2u1vf2nbxvf1 + u1s2 − 2k + b2x + 4xv2dbxsinu0 + hknu1 sinu0g − 2u1f1 cos3 u0f4k2 − 2ks2 + b2x + 3xv+
2d + 6xv+

2

+ b2x2s− 8v2 + 3v+
2dg − 2 cos2 u0fhku1f1s2k − 3xv+

2d + 2bxv„s− 2 + 2k − b2xdu1
2 sinu0 + 3nvu1f1 + s2k + xv+

2df1
2 sinu0…g

+ cosu0f4k2u1f1 + 2n2v2u1f1 − 2nv sinu0„2s2 + b2xdu1
2 − xv+

2f1
2
… + xu1f1„6s1 + 2xv2dv+

2 + b2xs− 8v2 + 3v+
2d…

+ 2k„4nvu1
2 sinu0 + 2nvf1

2 sinu0 − u1f1s2 + b2x + 4xv2 + 3xv+
2d…gj/h4 sinu0f2sh cosu0 + cos 2u0dk2

+ k„8xv2 sin2 u0 − 4hxv2 cosu0 − cos 2u0s2 + b2xd… − 2v2
„n2 − 4nbxcosu0 + 2x + b2x2 + 4x2v2 − 2x cos2 u0s2 − b2xd…gj.

1W. Wernsderfer and R. Sessoli, Science284, 133 (1999).
2E.M. Chudnovsky and D.A. Garanin, Phys. Rev. Lett.79, 4469

(1997).
3D.A. Garanin and E.M. Chudnovsky, Phys. Rev. B56, 11102

(1997).
4H.J.W. Müller-Kirstenet al., Phys. Rev. B60, 6662(1999).
5J.-Q. Lianget al., Phys. Rev. Lett.81, 216 (1998).
6G.-H. Kim, Phys. Rev. B59, 11847(1999).
7G.-H. Kim and E.M. Chudnovsky, Europhys. Lett.52, 681

(2000).
8D.A. Garaninet al., Phys. Rev. B57, 13639(1998).
9D.A. Garanin and E.M. Chudnovsky, Phys. Rev. B59, 3671

(1999).
10X. Martínez Hidalgo and E.M. Chudnovsky, J. Phys.: Condens.

Matter 12, 4243(2000).
11B. Zhouet al., Physica B301, 180 (2001).
12S.Y. Leeet al., Phys. Rev. B58, 5554(1998).
13A.D. Kent et al.,Europhys. Lett.49, 521 (2000).
14L. Bokacheva, A.D. Kent, and M.A. Walters, Phys. Rev. Lett.85,

4803 (2000).

15E.M. Chudnovsky, J. Magn. Magn. Mater.140, 1821(1995); B.
Barbara, and E.M. Chudnovsky, Phys. Lett. A145, 205
(1990).

16W. Wernsdorferet al., Nature(London) 416, 406 (2002).
17K. Parket al., Phys. Rev. B68, 020405(2003); G.-H. Kim, ibid.

67, 024421(2003); J.M. Hu, Z.D. Chen, and S.-Q. Shen,ibid.
68, 104407 (2003); Y. Su and R. Tao,ibid. 68, 024431
(2003).

18G.-H. Kim, Europhys. Lett.51, 216 (2000).
19B. Zhouet al., Phys. Rev. B64, 132407(2001).
20G.-H. Kim, Phys. Rev. B67, 144413(2003).
21B. Zhouet al.,Phys. Rev. B68, 214423(2003).
22A. Caneschiet al., J. Magn. Magn. Mater.200, 182 (1999).
23E.M. Chudnovsky, Phys. Rev. A46, 8011(1992).
24D.A. Gorokhov and G. Blatter, Phys. Rev. B56, 3130

(1997).
25A.L. Barra et al., J. Am. Chem. Soc.121, 5302(1999).
26A. Bouwenet al., J. Phys. Chem. B105, 2658(2001).
27G. Amorettiet al., Phys. Rev. B64, 104403(2001).
28T.J. Burns and J. Oitmaa, Europhys. Lett.63, 764 (2003).

BRIEF REPORTS PHYSICAL REVIEW B70, 012409(2004)

012409-4


