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In terms of exact solutions of the time-dependent Sdimger equation for an effective giant spin modeled
from a coupled two-mode Bose-Einstein condengBieC) with adiabatic and cyclic time-varying Raman
coupling between two hyperfine states of the BEC, we obtain analytic time-evolution formulas of the popula-
tion imbalance and relative phase between two components with various initial states, especially2he SU
coherent state. We find the Berry phase depending on the number parity of atoms, and particle number
dependence of the collapse revival of population-imbalance oscillation. It is shown that self-trapping and phase
locking can be achieved from initial &) coherent states with proper parameters.
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[. INTRODUCTION pling between two components varies with time cyclically
and adiabatically. The Berry phase in the mesoscopic spin
The experimental discovery of Bose-Einstein condensamodel for the coupled two-component BECs has been ex-
tion in trapped atomic clouds opened up the exploration oplored recently in an elegant way by means of geometric
guantum mechanics of mesoscopic systems in a qualitativelgvolutions[16]. Trapped atomic BECs make it possible to
new regime. The cold gas clouds have many advantages fareate mesoscopic quantum objects containing of the order
investigation of quantum phenomena, and hence become I&° atoms in the same quantum state with a longer lifetime,
test ground of quantum-mechanical principles as well as thallowing the implementation of adiabatic evolution which is
interplay between macroscopic and quantum coherence. Thequired for the Berry Phase. However, the dynamics of the
observation of matter-wave interference implies the realizamesoscopic spin modeled from the two-mode BEC has not
tion of coherent atomic beams, atomic Josephson effect, anget been studied in the quantum-mechanical formalism. We
a variety of quantum interference phenomghh In particu-  in the present paper use the exact solution of the time-
lar, recent experiments on two-component Bose-Einsteilependent Schoinger equation for the mesoscopic spin to
condensatesBECS in ®Rb atoms[1,2] have stimulated provide a quantum-mechanical evaluation of the phase dy-
considerable interests in the phase dynamics and numbeamics and the number fluctuation. With the time-evolution
fluctuations of the condensates. Aside from its intrinsic ap-operator obtained by means of the generator of time-
peal, the capability demonstrated by the recent experimentdependent S(2) coherent statefl8] we are able to derive
might lead to applications also on quantum computationanalytic time-evolution formulas of both population imbal-
Based on the macroscopic wave-function approach it is demance and relative phase between the two-component BECs
onstrated that the Josephson effect exists in a driven twder various initial states, in particular, the &) coherent
state single-particle BEC in a single trap. The macroscopistate with which the new effect of particle number depen-
guantum self-trapping, as well as thephase oscillations in  dence is discovered. Moreover, our approach has the advan-
which the time-averaged value of the phase difference isage to obtain the phase dynamics and number fluctuation for
equal tom, has been studied extensivdlg—7]. It is also  both cases with and without the nonlinear interatomic colli-
shown that the population oscillation is modulated by thesions in the same framework so that the effects of inter-
collapses and revivals due to the quantum nature of the systomic collision can be recognized explicitly by comparing
tem[8—14]. The relative phase of two condensates in differ-the results between two cases. We show that interatomic col-
ent hyperfine atomic states can be meas(iPgdising Ram- lisions do not affect the Berry phase but lead to the damping
sey’s method of separated oscillating fields] and it is  and collapse revival of the population-imbalance oscillation
evident that the phase locking indeed occurs for small sepatepending explicitly on the coupling strength and the total
ration between condensatgl, implying the broken gauge number of atoms as well. The $2) coherent states are the
symmetry. Most theoretical studies are focused on semiclagnost realistic initial states for the two-species BEC created
sical analysis and a full quantum-mechanical formulation ofby coupling two hyperfine states of atoms with radiation field
the dynamics of the two-component BECs coupled by time{12]. To our knowledge, we in this paper report for the first
dependent driving is certainly of interest and importance. Itime a full quantum-mechanical evaluation of the dynamics
is well known that the system of two-component BECs carnof the two-species BEC described by an explicitly time-
be described by a giant or mesoscopic pseudddiihusing  dependent Hamiltonian with the initial $2) coherent states
Schwinger realization of angular momentum operators irend the phenomena such as self-trapping, phase locking, and
terms of two-mode bosons. Berry phdd&] emerges natu- collapse-revival are recovered theoretically in the same for-
rally in the mesoscopic pseudospin mod&6] if the cou-  malism.
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The plan of the paper is as follows. In Sec. Il we derive 5 K2 )
the mesoscopic spin model from the two-component BECs. w|=j d>rep (r)| — SmATHVI(D | #i(n),  T=ab,
The SU2) coherent states, which are considered as most
practical initial states for the two-species BEC, are briefly (7)
introduced. The dynamics and Berry phase of the pseudospin

are investigated in terms of the 82 coherent-state tech- 2"
nique for both cases with and without the interatomic colli-
sions in Sec. III. ”':q'J d3r|gi(r)|4, 1=a,b.
II. MODEL AND INITIAL STATE The interaction operator between two species of atoms is
We consider the Bose-Einstein condensate of trapped N SRRt
- . . L . H,t=xa'ab'b, ©)]
atomic gas in a single trap consisting of two internal states
which are coupled by a spatially uniform radiation field with \yhere
a Rabi frequencyA. Atoms are subjected to trapping poten-
tial V| (I=a,b). The atoms interact via elastic two-body 3 ) 5
collisions with the interaction potential @tfunction-type. In X:%,bf ar| da(r)[“ du(r)]=.
the formalism of second quantization, the system is de-
scribed by the Hamilton operator The transition operator induced by the external field is
. o Hi=G(t)(a'be'¢*®+bTae'¢M) 9
H= 2 HAi+Hin Ay, (1)
I=ab with
N - h? R
H.=f d3r[wr<r>[— ﬁwvl(r)}wr) G<t>=A<t>f A% % (1) ().
Aoy ap = ~ The time-dependent coupling drive is characterized by its
+¥(NY, (r)\Iﬁ(r)\Iﬁ(r)], (2 Rabi frequencyA(t) and the phase(t). Here we consider

the adiabatically varying phasg(t) such that its time de-
A R ~ R R rivative is negligibly small. The study of the dynamics of the
Hint:qa,bf dsrqf;(r)‘l'g(r)\lfa(r)\lfb(r), 3 system would be greatly simplified by introducing of the
pseudoangular-momentum operators in terms of Schwinger
relation,
Hi=A(t) f AW IrWp(r)el?O+wl(r)W,(re #O]. 3, 1(a'h+b'a), (10
(4)
J,=—(a'b-b'a), (11)
Here we have used the field interaction representation in ro-
tating frame. The Rabi frequency(t) is time dependent in . an
the sense that it can be turned on and off adiabati¢ally J,=3(a’a-b'b). (12
The phasep(t) due to the small detuning of external field o o
from resonance excitation varies with time slowly and there-The Casimir invariant is
fore we work on the adiabatically time-varying Hamiltonian. N
The phasep(t) we see plays a central role in generating of 2 E
the Berry phase. 2
In the two-mode approximation of condensation such that o
W (1) ~ada(r), Wy (r)~Dey(r), wherea,b are the annihi- WhereN=a'a+b'b is the total number operator, which is a
lation operators obeying the usual boson commutation relgconserved quantity and thus is set equal to the total number
tions, we have of atomsN=2j with j being the quantum number of angular
momentum. The Hamilton operator apart from a trivial con-
stant reads

, (13)

A= wa'a+24Tataa, (5)
2 A=wd,+qR+G(1)(J.e0+] e ¢0) (14
Flo= w0, D+ Thb © Vhere wo=wamopt(N=1)(na=m)/2, q=(nat )12
2 —x, andJ.=J,*iJ,.
The relative phase of the two-mode BEC surely can be
with abstracted from the expectation value of the angular momen-
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tum operators . , which along with the expectation value of IIll. DYNAMICS AND BERRY PHASE
J, (giving rise to the population imbalance between two A. The case ofqg=0
(r:rcl)er?]?onents of BEGsis a measurable quantity in experi- We first of all consider the case gi=0 achieved by the

Since the two-component BECs are experimentally cre-Condltlon (7 + 70)/2= x , which, although a special case, is

ated by coupling two hyperfine states with radiation field, itpracucal in the range of BEC parameters. The equality
has been shown that the prepared initial state can be a p
ticular case of the S(2) coherent stat¢12] (or known as
atomic coherent state in quantum optigghich describes a
state with a well-defined relative phase between the two sp

cies. However, a full quantum evaluation of the dynamics fo c ; X )
q y pecies scattering lengths aagl, is the scattering length for

the two-species BECs coupled by time-dependent drivin " . lii Th d-stat tunction i
with the initial spin coherent states has not yet been given.n erspecies collisions. the ground-state wave function 1s
The SU?2) coherent state is defined as same, $a(r) = y(r), and therefore the conditiony,~ 7,

~ x can be satisfied. The model in the casegef0 is ex-

3-n|n):j|n> (15) actly solvable. We start with a generalized gauge transforma-
' tion [19] in terms of the time-dependent unitary transforma-
wheren=(sin 6 cose,siné sin¢,cosd) is a unit vector. The  tion [20] defined by
SU(2) coherent state can be generated from an extreme

~(],~{ap Can be fulfilled practically for the two-component
aé_ECS consisting of’Rb atoms with different internal states
since the scattering lengths of atoms with the two internal
es_tates are known at the 1% level to B in proportion
I;eta:aab:abz1.031:0.97, wherea, and a, are the same-

- J e i9)_3 gle(®
Dicke state such that R(t)=eM2a-e7 03,7, (21)
O 0.6)i.iv=In). 16 which has the same form as the g_enerator(Eq) of SU(2)
(0. 4)[1.1)=Im (16 coherent states and is the key point of the present formula-
where tion. The time-dependent Scliinger equation is covariant
_ _ under the gauge transformatiph9] such that
ﬁ(ﬁ ¢)=eelz(j,e'¢—j+e"¢) (17)
’ ' d N
This is called the coherent state in the north pole gauge, as Il () =H"ly" (), (22)

compared to the generation of the coherent state from the
extreme staté¢j, —j) where it is called the state in the south where
pole gauge. The Dicke states are defined as uigjnja,lm) 5
=m|j,m) and can be generated from the vacuum by boson ST T -3 P B

creation operators, i.e., H'=RHR'-IR-R", [y'())=Rly(1)) (23

and .t.he statéy(t)) is assumed to be the solution of original

1 n~ e
j,m)= ah*™(b"i=Mo). (18 i i
|j,m) Grmi=m: (@ ™Mb’ =mo) ) Schrainger equation

. d R
The coherent state of EL6) can be expanded in terms of i— () = Al u(t 24
the Dicke states, dt|l/f( ))=H[¥(1)). (24

i 1/2

2j g\Itmig\i—m =Ml The auxiliary parametex, which is time dependent in gen-
|”>:m:2_j i +m cos; Siny e't lj,m). eral, is to be determined by requiring that the Hamilton op-
eratorH’ is diagonal in thel, representation. Using the re-
19 Jations given in the AppendiXEgs. (A1)—(A4)] [20], and
. . noticing the adiabatic condition thate/dt=0 and dx/dt
Itis easy to verify that =0, we obtain the Hamilton operator
- . N . N ., A
(J)=(nm)= 5cosh, (J.)=5sinoe'?, H'=a()J,, a(t)=ywi+4G2(t) (25
. N ’ with auxiliary parametek chosen as
(J,)=Esin6e"¢ (20
. 2G(t)
. ) sin\=— COSA (26)
and the phase'? is seen to be the relative phase of the two o
species prepared in the initial ) coherent state. In this
paper the generator of $2) coherent states EqL7) is used and
as a unitary transformation to formulate the dynamics of the
mesoscopic spin system modeled from the two-component _ @Yo
BECs. oSN =" (27
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It is easy to obtain the exact general solution of the original U(t):ﬁ‘r(t)e—iat:ﬁlzﬁ(o)_ (34)
Schralinger equation

i For a given initial stateéy(0)) of the system the population
(1)) = 2 Cmefiam(t)“ m)), |j m(t))zf?*(t)“ m) imbalance between two components can be evaluated by
m=—]

(28) AN(t) = Na(t) = Np(t) = 2(4(0)|3,()[#(0)),  (35)

with |j,m) being the usual eigenstate of angular momentum here the time-d dent | . Bty
N A el ; where the time-dependent angular momentum ope
J; 50 thatl;|j,m)=m[j,m). The total phase is seen to be in the Heisenberg picture is given in the Appenfdgq. (A5)]

¢ with the help of Eqs(Al)—(A4). For the sake of simplicity,
ap(t)y=en(t)+ ym(t)=mJ a(t')dt’, (29)  we have set the initial phase to zero, i€(0)=0. To have

0 the phase dynamics we need also the time-dependent angular
momentuml, (t) or J_(t) in the Heisenberg picture and the

which consists of the dynamical part given by - A . i ]
explicit formula of J, (t) is shown in Eq.(A6). The time

t . ) , evolution of population imbalance and the expectation value
em(t)= fO<J ,m(t )|H|J ,m(t )>dt (30) of j+(t) given by
and the geometric part, i.e., the Berry phase (3)=(p(0)|I(1)|¢(0)) (36)

(. R , ) are evaluated for various initial states as follows.
Ym(t)=—1i 0<Jam(t )|§|J,m(t ))at’, 3D (1) We consider, first of all, the initial statpy(0)),
=|j,m) and obtain in terms of Eq$A5) and (A6)

which is defined in the usual way. In the following we only
consider a time-independent Rabi frequefizyor the sake
of simplicity. For a variation of one period, i.e., ¢(T)
—¢(0)=2m, the Berry phase is found as

2m )
ANl(t)Z—Z[wO+4GZ cojat+ ¢(t)}] (37)
o

and
on—

Som (32

Ym(T)=—m % (1—cos\)de=m

o ) N
(J;)y=msin\ —cos)\e"‘F’(t)nLcoéze'“t

which has an obvious, geometric meaning from the view-
point of differential geometry that the one fordyp is exact N
but not closed, wherer=\/w2+4G?, which is a time- —Sinzzef'[z"’(mm]
independent parameter. The Berry phase does not depend on

an explicit form of the functionp(t) and is simplym times

. (39

) : . X The population imbalance exhibits a simple oscillation. It is
of a solid angle with the polar angle, in agreement with the 0 resting to see a fact that the state of vanishing imbalance
recent result reported in Regfl6] in which the Berry phase is can be achieved for the case of even number of partictes

evaluated in terms of geometric evolutions for the coupleq —N/2 is intege with the initial state ofm=0, but not for
two-component BECs. We, however, following the original the case of odd number of particles wh’eie, half-integer
procedure of Berry17], obtain the Berry phase and the exact and the state ofn=0 does not exist

wave function as well by solving the time-dependent Sehro (2) For a general S[2) coherent état@p(O)) =|n), the
dinger equation. In our approach the time evolution of bot opulation imbalance is found as 2 '
population imbalance and relative phase between two conl-
ponents of BECs can be investigated analytically. The ex- N

plicit dependence of the Berry phase on the parameters oAN,(t)= —({CO&Z)\-FS"’IZ)\ cog at+ o(t)]}cos @
two-species BECs is also given with our procedure and the 2

properties of the Berry phase can be explored. The geometric

phase is actually the same as obtained in the context of —sin A COSA sin #cos¢+
SU(2) coherent-state path integraf&sl]. To study the dynam-

ics of the mesoscopic spin it is useful to derive the explicit A
time-evolution operator such that + ¢]—sir? Ecos{ at+ o(t)— @]

cog %COS{ at+ (1)

Sin\ sin @

() =0()[4(0)), (33 (39
where the time-evolution operator is found from the exactThe self-trapping with nonvanishing population imbalance

general solution of the time-dependent Sdfinger equation takes place for the initial state with=0 andé=— \. The
[4(t)) in Eq. (28) as[20] population imbalance thus reduces to
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N wq under 27 evolution of the phase angle for the odd number

> (40) of particles fn is half-integer in this cagesimilar to the spin
parity effect in the macroscopic quantum coherence in spin

The asymmetric trap potential, i.e., nonvanishing is the systemq22-24.

necessary condition to achieve the self-trapping. The expec-

N
AN,y (t;p=0,0=—N\)= Ecos)\=

(47

tation value of angular momentum operathy(t) for the B. With nonlinear interactions
initial SU(2) coherent state is seen to be We now consider the general case with nonvanishing but
small q for the practical model at hand, i.e., the two-species
<j+>2:E{ sin\ Coszfei at_ SinZEe*i[atJchp(t)] BEC cregted by coupling two hyperfine st_a_teng_Rb atoms.
2 2 2 For a single trap a reasonable condition dg=0 (\

= —/2). With the help of time-dependent unitary transfor-

—coshe M| cosh+ coé‘%e‘ at mation, Eq.(21), and the relation given by

RIZRT=32 cod N+ £[(J,d, +3.3,)e'e®

) N 1 ) )
+sinf= e ett2¢(0] 4 —gjr? \e ¢ ¢ sing A _ Lo
2 2 +(J3,3_+3_3,)e "¢®]cos\ sin\ + £ (32 e2¢)
N —cos’-%sinzg(e‘““re_i["”z"’(t)]) +3,3_43.3, +3% e i2eM)sin? \, (47)
1 we obtain, apart from a trivial constant,
+ Esin2 e ¢ |e714 gin 0] (41) q
A'=-GJ,— 53, (48)

and reduces to

G where the two-photon transition term@roportional to
(3.)2(p=0,0=—N)=N—g~¢® (42)  J2€'?¢M andJ? e '2¢(M) have been neglected as a reason-

@ able approximatiorf13,14 which is good enough for the
for the initial state with¢=0 and 6= — \, indicating obvi- small q in comparing with the transition coupling t?etwe_en
ously the phase locking. We see that self-trapping of botdWO components, namelg<G. The Berry phase in this
population imbalance and relative phase of the two-aSe is the same as E@3) due tow,=0. The interatom
component BECs can be obtained simultaneously from thgolllsmns_do not affect the Berry phase. The time-evolution
SU(2) coherent state. For the particular case of symmetri@Perator Is

trap potentialw,= wp, (we=0) we havex = — /2 seen from
Eq. (27), and the Berry phase then reduces to 0q< — gt) = @T( _ g’t ex;{it(GTJZﬂL gjg Fz( _ go)
Ym(T,0o=0)=m 45 de=m2. (43) (49)

The population imbalance for the initial stafe/,(0))

=|j,j) is possible to be evaluated with the help of Etp)
—0)— and the Dicke-state representation of the(&Ucoherent
=0)= +

AN;(t,wo=0)=mcog 2Gt+ ¢(1)] (44) state Eq/(19) as

The population imbalance is

and
N N/2—1 N
j =0)=m leiZGt_ ;e—i[2<p(t)+2Gt] ) 45 AN t :(_) -1 N=2m| N
(3:)1(wo=0)=m[3 ; IC) ab=\3 2 (-1 N

The population imbalance for the initial $2) coherent state
vanishes as seen obviously from E40) in the case ofw, N 12
=0, while X|gtm+l

R N . ® 1

<J+)2(¢>=0,0:—)\,w0:0)=5e e, (406) xcos |G+q m+§ t—o(t)|. (50

The relative phase of two components is locked exactly tofo compare the time evolution of population imbalance ob-
the phase of external field. The phase locking, remains in th&ined here with that in the case @& 0, i.e., Eq.(44) (for
case with interatom collisions, i.e., the nonvanishipglt ~ m=j=N/2) where the time variation of imbalance is a
may be worthwhile to emphasize that the Berry phase of Egsimple oscillation, the time evolution of E¢p0) is shown in
(43) is trivial in the case of an even number of particlesié  Fig. 1 with various values of the ratiyG and the number of
integed while it would lead to an antiperiodic wave function particlesN. It is seen that the damping goes faster when the
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number of particlesN, and the ratiog/G increase[Figs. (@)
1(a,b]. The N dependence of the oscillation of population
imbalance for fixed ratiay/G is shown in Fig. {a) for N 604 9/2=0.01 === N=10
=10? (dashed ling N=10° (dotted ling, andN= 10" (solid

line), respectively. The nonlinear interaction dependence for
a fixed number of particle$y =103, is shown in Fig. 1b) for
g/G=0.01~0.1. With the similar method the time-evolution =

of population imbalance from the initial spin coherent state 2"
Eqg. (16), |#»(0))=]|n), with nonvanishingy is obtained as

N/2—1 N 1/2 .~
AN5(g,t)=— N —+m+1
2(a.t) m;:N/Z 5 tm+l 2
XCOé\l+2m+1(_7T/2+9) o 5 10 15 20 25 30 35
2 Gt
7T+0
o2
X sifN—2m~1 2 20 4
1
xoos{ G+q(m+§ t—¢—<p(t)], (51

—

where we again use the Dicke-state representation ¢2)SU =
coherent state Eq19). The oscillation of population imbal-
ance is shown in Fig. 2 with various values of the coupling
strengthq/G and angled [for the sake of simplicity we set
¢=¢(t)=0]. Besides the damping, the most important ef-
fect of the nonlinear interaction with initial spin coherent
state is the collapse revival of the population-imbalance os-  -20-
cillation. The particle number dependence of collapse revival 0 " 5 ) 10 ) 15 ' 20
is shown in Fig. 2a) for fixed q/G and the parametet. We Gt
observe an interesting phenomenon that the frequency of the
collapse revival depends on both the number of particles and FIG. 1. Time evolution of population imbalance from initial
the coupling strengtly/G. In Figs. 2b,0) we show the fre-  state|#,(0))=]j,j), ¢(t)=0. (@ q/G=0.01;N=10% 101" (b)
quency behavior of the collapse revival varying with theN=10% q/G=0.01~0.1.
product of the particle number and the coupling strength,
Ng/G. The frequency is almost the same for the same valudith and without the nonlinear interatom collisiofeee Eq.
of the productNg/G while different individual values oN  (52)]. The phase-locking state is achieved again by seeing
and q/G. MoreoverNg/G dependence of collapse-revival that
frequency is not monotonic. A critical valudg/G=65 is
found at which the frequency of collapse revival approaches 3 —00="|= E —ie(t)
.. . . . <‘]+(q!t)>2 ¢ 010 e 3 (53)
a minimum. To see the effect of nonlinear interatom colli- 2] 2
sions closely we look at the population imbalance B29) o
with ¢=e(t)=0 for the case ofj=0 as a comparison. In Which is the same as E(6) for the case ofy=0. In other
that case the population imbalance of E89) reduces to a words, phase locking is |ndeApendent of the nonlinear inter-
simple oscillation such that action. The expectation valyd. (q,t)), for generalg, 6 is
also derived analytically with the help of Eq4.6) and(19).

N The resulting formula is tedious and may not be of interest to

AN,(t,wg=0)= Ecose coq 2Gt) (52 pe presented here.

0 4

for wy=0. It is obvious that the nonlinear interaction results IV. CONCLUSION

in both damping and collapse revival of population-

imbalance oscillation. The simple oscillation of E§2) with Using the exact solution of the time-dependent Sehro

Rabi frequency is in agreement with the experimental obserdinger equation the population imbalance and phase dynam-

vation[2]. ics are evaluated with various initial states, particularly with
Particularly, the initial state can be prepared such that SU(2) coherent states which are the most realistic initial

=/2, the population imbalance vanishes for both casestates for the two-species BEC created by coupling two hy-
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6 - 9/G=0.01  6=0.8w/2 (@) '57 wN-6.5x10° q/G=0.01 e=0.8m2
4] 10 4
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-2 -5
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0 2 4 6 8 10 0 2 a 6 8 10
Gt Gt
159 N=6.7x10° =0.01 ©=0.8n/2
15 N-6x10° Q/G=0.01 0-0.8w/2 6.7x10°  q/G=0.0 0.8/
10 10
—~ 5 = 5 -
ho S
g" o @
.5 -5
10 10
o 2 4 6 8 10 ° 2 4 6 8 10
Gt Gt
1s] N=8x10° q/G=0.01 e=0.8w/2
15 N=6.2x10° q/G=0.01 ©=0.8%/2
10
10
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£ z"
2" o °
5 -5
10 10
o 2 P s 8 10 0 2 4 6 8 10
Gt Gt
s N=2x10° N(q/G)=60 ©=0.87/2 (b) 8 N=3x10° N(q/G)=60 ©=0.8x/2
6
4 4
~ 2 o 2
- )
2" ° 3 .
-2
.2 4
-4 -6
-6 -8
1 T T y ) 5 10 15
o 5 10 15
Gt Gt
3
® N=2x10" N(q/G)=65 0-0.8m/2 N N=3x10° N(q/G)=65 6=0.87/2
o .
4
4
= g 2
%N fo) %N 0
-2 -2
-4
-4 6
-8 -8
o 5 10 15 0 5 10 15
Gt Gt
8 3
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4
-~ 2
g Zu o
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Gt Gt

FIG. 2. Time evolution of population imbalance from initial stai,(0))=|n), ¢(t)=¢=0, §=0.87/2. (8) q/G=0.01, N=10°
~8x%10%. (b) Ng/G dependence akN,(q,t), for Ng/G=60~70; left N=2x 10%; right N=3x 1C®. (c) Ng/G dependence afN,(q,t),

for Ng/G=60~70; left N=4x 10%; right N=5X10°.
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FIG. 2 (Continued.

perfine states _of atoms with rgdiation figl]. \_N_e_ conclude ﬁjzﬁr:jz COS\ + %(j+eizp(t)+jie—kp(t))sin)\, (A3)
that self-trapping can be achieved from the initial(8)co-
herent state with an asymmetric trap potential only. Phase
locking is obtained also from the initial $B) coherent state
and is independent of the nonlinear interaction, which may
be observed experimentally in terms of Ramsey’s method )
measuring the relative phase of two components of BEC in n ! dl(e“pj _ei9] ) (A4)
different hyperfine atomic states. The nonlinear interatom 2 dt * e

coupling does not affect the Berry phase but leads to the

damping and collapse revival of the population-imbalance _ -
oscillations. The interesting particle number dependence of 1he time-dependent angular momentum operalprand
the collapse revival and Berry phase as well is explored. J. are obtained, respectively, as

quin)\(ei‘Pj++e*“":L)

.0 . de A, 1
Bt P oy L HP
IR-R'=2 stZJZ > Gt

dt
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1 N
+ =sin\| — cos\ + cog ~ e~ lat+ O]
APPENDIX 2 2
i i i . N - 1
It is easy to prove the following useful relatiof20]: —sin2§e'[“”¢(t)] J++§ Sin\
RI.R'=3, cogh—3_e 20 siP> —Je ¢V sin \
" T2 T 2 77 ’ X | —cos\ +cog - ef(at+ ()
(A1) :
in ay n N N _ siP R gitat o) 3 (A5)
RI_RT=J_ co§§—J+e2"F“) sinZE—JZe"P“) sin\, 2 o

(A2) and
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J,(t)=sin\ Coszgei“(‘)—sinzge‘”“(t)”“’(‘)]—cos)\e““’(t) J,+ coé‘%e‘“(‘brsin“%e“[“(t)”@(m

1 ) n A N ) 1 ) n
+ Esinz)\e""’(t) J.+ —cos’-zsinzz[e'“(tMe"["(‘)”*”(‘)]]+ Esin2 )\e"‘P(‘)]J_ . (AB)
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