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Gravitational collapse of a Hagedorn fluid in Vaidya geometry
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The gravitational collapse of a high-density null charged matter fluid, satisfying the Hagedorn equation of
state, is considered in the framework of the Vaidya geometry. The general solution of the gravitational field
equations can be obtained in an exact parametric form. The conditions for the formation of a naked singularity,
as a result of the collapse of the compact object, are also investigated. For an appropriate choice of the arbitrary
integration functions the null radial outgoing geodesic, originating from the shell focussing central singularity,
admits one or more positive roots. Hence a collapsing Hagedorn fluid could end either as a black hole, or as a
naked singularity. A possible astrophysical application of the model, to describe the energy source of gamma-
ray bursts, is also considered.
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I. INTRODUCTION

Investigating the final fate of the gravitational collapse
an initially regular distribution of matter, in the framework o
the Einstein theory of gravitation, is one of the most act
fields of research in contemporary general relativity. O
would like to know whether, and under what initial cond
tions, gravitational collapse results in black hole formatio
One would also like to know if there are physical collap
solutions that lead to naked singularities. If found, such
lutions would be counterexamples of the cosmic censors
hypothesis, which states that curvature singularities in
ymptotically flat space-times are always shrouded by ev
horizons.

Penrose@1# was the first to propose the idea, known as
cosmic conjecture: does a cosmic censor exist who forb
the occurrence of naked singularities, clothing each one in
absolute event horizon? This conjecture can be formulate
a strong sense~in a reasonable space-time we cannot hav
naked singularity! or in a weak sense~even if such singulari-
ties occur they are safely hidden behind an event horiz
and therefore cannot communicate with far-away observe!.
Since Penrose’s proposal, there have been various atte
to prove this conjecture~see@2# and references therein!. Un-
fortunately, none have been successful so far.

Since, due to the complexity of the full Einstein equ
tions, the general problem appears intractable, metrics
special symmetries are used to construct gravitational
lapse models. One such case is the two-dimensional re
tion of general relativity obtained by imposing spheric
symmetry. Even with this reduction, however, very few i
homogeneous exact nonstatic solutions have been fo
One well-known example is the Vaidya metric@3#. It de-
scribes the gravitational field associated with the eikonal
proximation of an isotropic flow of unpolarized radiation, o
in other words, it represents a null fluid. It is asymptotica
flat and it is employed in modeling the external field of r
diating stars and evaporating black holes. The second on
the Tolman-Bondi metric@4#, which gives the gravitationa
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field associated with dust matter and is frequently appl
either in cosmological models or in describing the collap
of a star to a black hole. Tolman-Bondi space-times emb
the Schwarzschild solution, the Friedman universes, and
Oppenheimer-Snyder collapse, as well as inhomogene
expansions and collapses.

At first sight these two metrics are completely differen
Do the naked singularities that form in the collapse of n
radiation and in the collapse of dust bear any relation w
each other? Are there any features common to both s
tions? And if this is the case, what are the implications
cosmic censorship? As shown by Lemos@5#, the naked sin-
gularities which appear in Vaidya and Tolman-Bondi spa
times are of the same nature. Various important features s
as the degree of inhomogeneity of the collapse necessa
produce a naked singularity, the Cauchy horizon equat
the apparent horizon equation, the strength of the singula
and the stability of the space-time have a mutual corresp
dence in both metrics. For cosmic censorship, this result
plies that if the shell-focusing singularities arising from t
collapse of a null fluid are not artifacts of some~eikonal!
approximation, then the shell-focusing singularities aris
from the collapse of dust are also not artifacts~and vice
versa!. Conversely, if the naked singularities are artifacts
one of them so are they in the other.

Thus the Vaidya metric belongs to the Tolman-Bondi fa
ily. The most unbound case yields the Vaidya metric. Hen
one expects that major features which might arise in one
the metrics will also appear in the other. One example is
result that the strength in the Vaidya metric depends on
direction from which the geodesics enter the singularity@5#.

Null fluids are, in principle, easier to treat than matt
fields. A null fluid is the eikonal approximation of a massle
scalar field. Thus if one shows that the naked singulari
arising in the Vaidya metric can be derived from more fu
damental ~massless! fields, then the naked singularitie
which form in the Tolman-Bondi collapse, may also be d
rived from more fundamental~massive! fields. The same
types of relations and conclusions hold for charged radia
and charged dust matter. The structure and properties of
gularities in the gravitational collapse in Vaidya space-tim
have been analyzed, from different points of view, in@6–10#.
©2003 The American Physical Society05-1
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Within the framework of various physical models, th
spherical gravitational collapse has been analyzed in m
papers. The role of initial density and velocity distributio
towards determining the final outcome of spherical dust c
lapse and the causal structure of the singularity has b
examined in terms of evolution of apparent horizon
@11,12#. The collapse was described by the Tolman-Bo
metric with two free functions. The collapse can end in eith
a black hole or a naked singularity. The occurrence and
ture of naked singularities in the Szekeres space-times h
been investigated in@13#. These space-times represent irr
tational dust. They do not have any Killing vectors and th
are the generalizations of the Tolman-Bondi space-tim
There also exist naked singularities that satisfy both the l
iting focusing condition and the strong limiting focusin
conditions. The relevance of the initial state of a collaps
dust cloud towards determining its final fate in the course
a continuing gravitational collapse has been considere
@14#. Given any arbitrary matter distribution for the cloud
the initial epoch, there is always the freedom to chose
rest of the initial data, namely the initial velocities of th
collapsing spherical shells, so that, depending on this cho
the collapse could result either in a black hole or a na
singularity. Thus, given the initial density profile, to achie
the desired end state of the gravitational collapse one ha
give a suitable initial velocity of the cloud. The expressi
for the expansion of outgoing null geodesics in spherical d
collapse has been derived in@15#. The limiting values of the
expansion in the approach to singularity formation have b
computed. Using these results one can show that the cov
as well as the naked, singularity solutions arising in spher
dust collapse, are stable under small changes in the equ
of state.

The growth of the Weyl curvature is examined in tw
examples of naked singularity formation in spherical gra
tational collapse dust and Vaidya space-time in@16#. The
Weyl scalar diverges along outgoing radial null geodesics
they meet the naked singularity in the past. Although gen
relativity admits naked singularities arising from gravit
tional collapse, the second law of thermodynamics could
bid their occurrence in nature. A simple model for a coro
of a neutrino-radiating star showing critical behavior is p
sented in@17#. The conditions for the existence or absence
a bounce~explosion! are discussed. The charged Vaidya m
ric was extended to cover all of the space-time in@18# and
the Penrose diagram for the formation and evaporation
charged black hole obtained. The covariant equations c
acterizing the strength of a singularity in spherical symme
and a slight modification to the definition of singulari
strength have been derived in@19#. The idea of probing na-
ked space-times singularities with waves rather than w
particles has been proposed in@20#. For some space-time
the classical singularity becomes regular if probed w
waves, while stronger classical singularities remain singu

In order to obtain the energy-momentum tensor for
collapse of a null fluid an inverted approach was proposed
Husain@21#. First the stress-energy momentum tensor is
termined from the metric. Then the equation of state and
dominant energy condition are imposed on its eigenvalu
06400
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This leads to an equation for the metric function. The prec
form of the stress-energy tensor is then displayed. By us
this approach several classes of solutions describing the
lapse of a null fluid, satisfying barotropic and polytropic typ
equations of state, have been obtained. In the framewor
the same approach a large class of solutions, includ
type-II fluids, and which includes most of the known sol
tions of the Einstein field equations, has been derived, in f
dimensions by Wang and Wu@22#, and inN>4 dimensions
by Villas da Rocha@23#. The Vaidya radiating metric ha
been extended to include both a radiation field and a st
fluid by Glass and Krisch@24,25# and by Govinder and Gov
ender@26#.

When nuclear matter is squeezed to a sufficiently h
density, a phase transition takes place and neutron m
converts into three-flavor~strange! quark matter, which is
due to the fact that strange matter may be more stable
nuclear matter. The collapse of the quark fluid, described
the bag model equation of statep5(r24B)/3, with B
5const, has been studied by Harko and Cheng@27# and the
conditions for the formation of a naked singularity have be
obtained. The obtained solution has been generalized to
bitrary space-time dimensions and to a more general lin
equation of state by Ghosh and Dadhich@28,29#.

In 1965 Hagedorn@30# postulated that for large massesm
the spectrum of hadronsr(m) grows exponentially,r(m)
;exp(m/TH), where TH , the Hagedorn temperature, is
scale parameter. The hypothesis was based on the obs
tion that at some point a further increase of energy in prot
proton and proton-antiproton collisions no longer raises
temperature of the formed fireball, but results in more a
more particles being produced. Thus there is a maxim
temperatureTH that a hadronic system can achieve. The s
tistical model of the hadrons has been used to obtain a
scription of dense matter at densities exceeding nuclear
sity. The Hagedorn phase also arises in theories contai
fundamental strings, because they have a large numbe
internal degrees of freedom@31#. As a result of the existence
of many oscillator modes the density of states grows ex
nentially with single string energy. Thermodynamical qua
tities, such as the entropy, diverge at the Hagedorn temp
ture. If one considers an ensemble of weekly interact
strings at finite temperature, this behavior of the density
states is thought to lead either to a limiting temperature o
phase transition, in which the string configuration change
one which is dominated by a single long string@32#. The
high density Hagedorn phase of matter has been extens
used in cosmology to describe the very early phases of
evolution of the Universe@33–36#.

It is the purpose of the present paper to study the sph
cally symmetric gravitational collapse of the charged ma
in the Hagedorn phase. In order to simplify the mathemat
formalism we adopt the assumption that the high den
fluid moves along the null geodesics of a Vaidya type spa
time. The Vaidya geometry, also permitting the incorporat
of the effects of the radiation, offers a more realistic bac
ground than static geometries, where all back reaction is
nored. By adopting the Hagedorn equation of state for de
matter, the general solution of the field equations can
5-2
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GRAVITATIONAL COLLAPSE OF A HAGEDORN FLUID . . . PHYSICAL REVIEW D68, 064005 ~2003!
obtained in an exact form. For the sake of comparison
also consider the collapse of matter described by the
Zeldovich equation of state. The conditions of formation
naked singularities are obtained in both cases.

The present paper is organized as follows. The field eq
tions describing the collapse of a Hagedorn fluid are writ
down in Sec. II. The general solution of the field equations
presented in Sec. III. The equation of the null outgoing g
desics and the conditions of the formation of the naked
gularities are discussed in Sec. IV. An astrophysical appl
tion of the formalism to explain the gamma ray bursts ene
emissions is described in Sec. V. In Sec. VI we discuss
conclude our results.

II. GEOMETRY AND FIELD EQUATIONS

In ingoing Bondi coordinates (u,r ,u,w) and with ad-
vanced Eddington time coordinateu5t1r ~with r>0 the
radial coordinate andr decreasing towards the future! the
line element describing the radial collapse of a coher
stream of matter can be represented in the form@21,27#

ds252F12
2m~u,r !

r Gdu212dudr1r 2~du21sin2udw2!.

~1!

m(u,r ) is the mass function and gives the gravitation
mass within a given radiusr. In the following we use the
natural system of units with 8pG5c51.

The matter energy-momentum tensor can be written in
form @21,22#

Tmn5Tmn
(n)1Tmn

(m)1Emn , ~2!

where

Tmn
(n)5m~u,r !l ml n ~3!

is the component of the matter field that moves along the
hypersurfacesu5const,

Tmn
(m)5~r1p!~ l mnn1 l nnm!1pgmn ~4!

represents the energy-momentum tensor of the collap
matter, and

Emn5
1

4p S FmaFn
a2

1

4
gmnFabFabD ~5!

is the electromagnetic contribution.l m and nm are two null
vectors given byl m5d (m)

(0) andnm5 1
2 $12@2m(u,r )/r #%d (m)

(0)

2d (m)
(1) , so thatl al a5nana50 andl ana521 ~with d (b)

(a) the
Kronecker symbol! @21,22#. The energy density and pressu
in Eq. ~4! have been obtained by diagonalizing the ener
momentum tensor obtained from the metric@21#.

The electromagnetic tensorFmn obeys the Maxwell equa
tions @37#

]Fmn

]xl
1

]Flm

]xn
1

]Fnl

]xm
50, ~6!
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A2g

]

]xm
~A2gFmn!524p j m. ~7!

Without any loss of generality the electromagnetic vec
potential can be chosen as@6,7#

Am5
q~u!

r
d (m)

(u) , ~8!

with q(u) being an arbitrary integration function. From th
Maxwell equations~6! and ~7!, it follows that the only non-
vanishing components ofFmn areFru52Fur5q(u)/r 2 and,
consequently,

Em
n 5

q2~u!

r 4
diag~21,1,21,1!. ~9!

For the energy-momentum tensor~2! the gravitational
field equations take the form@27#

1

r 2

]m~u,r !

]u
5

1

2
m~u,r !, ~10!

2

r 2

]m~u,r !

]r
5r~u,r !1

q2~u!

r 4
, ~11!

2
1

r

]2m~u,r !

]r 2
5p~u,r !1

q2~u!

r 4
. ~12!

The stress-energy tensor~4! satisfies the dominant energ
condition if the following three conditions are met:

p>0, r>p, Tabw
awb.0, ~13!

wherewa is an arbitrary timelike four-vector. The first two o
these conditions imply that]m/]r>0 and]2m/]r 2<0. The
former just says that the mass function either increases
r or is a constant, which is a natural physical requirement
it. To satisfy the first two of the dominant energy conditio
one must impose an equation of state for the collaps
matter.

Usually two different equations of state are used for
description of matter at extremely high densities. One of
most widely investigated cases is the so-called causal lim
the linear barotropic equation of statep5(g21)r, g
5const, corresponding tog52, or the Zeldovich stiff fluid
equation of statep5r.

The Zeldovich equation of state, valid for densities s
nificantly higher than nuclear densities,r.10rnuc , with
rnuc51014 g/cm3, can be obtained by constructing a relati
istic Lagrangian that allows bare nucleons to interact attr
tively via scalar meson exchange and repulsively via the
change of a more massive vector meson@38#. In the non-
relativistic limit both the quantum and classical theori
yield Yukawa-type potentials. At the highest densities t
vector meson exchange dominates and by using a mean
approximation one can show that in the extreme limit
5-3
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T. HARKO PHYSICAL REVIEW D 68, 064005 ~2003!
infinite densities the pressure tends to the energy densitp
→r. In this limit the sound speedcs5Adp/dr→1, and
hence this equation of state satisfies the causality condi
with the speed of sound less than the speed of light@38#.

An alternative approach to the equation of state at ul
high densities is based on the assumption that a whole
of baryonic resonant states arise at high densities. In
Hagedorn model the baryon resonance mass spectrum, t
the increase in the number of species of particles with m
between m and m1dm, is given by dN5N(m)dm
;a exp(m/TH)/(m0

21m2)ldm, whereN(m)dm is the number
of resonances between massm and m1dm. Fitting to the
existent experimental data on baryon resonances show
m05500 MeV and a52.633104 MeV3/2 @39#. If dN in-
creased any faster asm→` than in the above formula, th
partition function would not converge. Also the partitio
function converges only if the temperature of the system
less thanTH . Thus TH , the Hagedorn temperature, is th
effective highest temperature for any system. By interpret
the transverse momentum distribution of secondaries in v
high energy collisions in terms of the model one obta
TH;150–190 MeV andl 55/4 @39#. The corresponding
equation of state for the matter is

p5p01r0 ln
r

r0
, ~14!

where p050.31431014 g/cm3 and r051.25331014 g/cm3

@40,41#. The velocity of sound in this type of matter iscs

5Ar0 /r. For the Hagedorn equation of state the speed
sound has the propertycs→0 for r/r0→`, in striking con-
trast with the mean field theory approach, leading to the Z
dovich equation of state, in whichcs→1. The Hagedorn
equation of state creates new ‘‘particles’’ continuously w
increasing density, rather than enlarging the Fermi sea
single species. The equation of state~14! could be valid as-
ymptotically for densities greater than about 10 times
nuclear densityrn5231014 g/cm3. The vacuum boundary
of the initial matter distribution is defined by the equati
p50, a condition corresponding to a surface densityrs
5r0e21/4'0.77831014 g/cm3, two times smaller in magni-
tude as the nuclear density. This condition also defines
physical radius of the initial matter distribution and define
boundary for the null fluid.

Hence, as a possible physical model to describe h
density matter in the final stages of the gravitational colla
we shall adopt the Hagedorn equation of state. In the follo
ing section we present the general solution of the grav
tional field equations for the null Hagedorn fluid.

III. SPHERICAL COLLAPSE OF THE HAGEDORN NULL
FLUID

From Eq.~11! we immediately obtain

r~u,r !

r0
5

1

r0r 2 F2
]m~u,r !

]r
2

q2~u!

r 2 G . ~15!
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With the use of the Hagedorn equation of state, Eq.~14!, and
of Eq. ~15!, Eq. ~12!, can be written in the form

2
1

r F ]2m~u,r !

]r 2
1

q2~u!

r 3 G5p01r0 lnH 1

r0r 2 F2
]m~u,r !

]r

2
q2~u!

r 2 G J . ~16!

By introducing a new variable

w~u,r !5 ln
r

r0
5 lnH 1

r0r 2 F2
]m~u,r !

]r
2

q2~u!

r 2 G J , ~17!

it is easy to show that

1

r0r F ]2m~u,r !

]r 2
1

q2~u!

r 3 G5ewS 1

2
r

]w

]r
11D . ~18!

Therefore Eq.~16! becomes

r
]w

]r
522

a1w1ew

ew
, ~19!

wherea5p0 /r0'0.25. By integrating Eq.~19! we obtain

r

C~u!
5expS 2

1

2E ew

a1w1ew
dwD 5expF2

1

2
F~w!G ,

~20!

whereC(u) is an arbitrary integration function and we d
noted F(w)5*@ew/(a1w1ew)#dw. Equation ~20! for-
mally definesw as a function ofh5r /C(u), w5H(h). The
variation of the mass function is described by the equatio

2
]m~u,r !

]r
5

q2~u!

r 2
1r0r 2ew, ~21!

having the general solution given by

2m~u,r !5D~u!2
q2~u!

C~u!
e(1/2)F(w)

2
r0

2
C3~u!E expF2w2

3

2
F~w!G

a1w1ew
dw, ~22!

whereD(u) is an arbitrary integration function. In the fol
lowing we shall also denote:

K~w!5E expF2w2
3

2
F~w!G

a1w1ew
dw. ~23!

The density and the pressure of the collapsing null Ha
dorn fluid are given by
5-4
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r~w!5r0 exp~w!, p~w!5p01r0w. ~24!

The energy densitym of the radiation moving along the
u5const null hypersurfaces is given by

m~u,r !5
Ḋ~u!

C2~u!
eF(w)2

2q~u!q̇~u!

C3~u!
e(3/2)F(w)

2
3r0

2
Ċ~u!eF(w)K~w!1

r0

2
Ċ~u!

e2w2F(w)

a1w1ew

dH

dh
,

~25!

where a dot denotes the derivative with respect tou.
The functionr /C(u) can be represented as a power ser

of the parameterw in the form

r

C~u!
'12

2w

5
1

w2

5
2

w3

5
1

13w4

60
2

367w5

1500
1O6@w#,

~26!

while the functionK(w) has the power series representati

K~w!'
4w

5
2

8w2

25
1

52w3

25
2

59w4

125
1

351w5

625
1O6@w#.

~27!

In the limit of large densitiesr→`, which also implies
w→`, Eq. ~19! becomes

r
]w

]r
'22, ~28!

with the general solution given by

w~u,r !' ln
C~u!

r 2
. ~29!

Therefore in the asymptotic limit of very high densitie
corresponding tor→0, the gravitational collapse of th
Hagedorn null fluid is described by the equations

2m~u,r !'D~u!1r0C~u!r 2
q2~u!

r
, ~30!

r~u,r !'r0

C~u!

r 2
, p~u,r !'p01r0 ln

C~u!

r 2
, ~31!

m~u,r !'
Ḋ

r 2
1r0

Ċ

r
2

2qq̇

r 3
. ~32!

In order to find the behavior of the solution in the opp
site limit of large, but finiter, we note first that the boundar
of the Hagedorn type matter distribution is defined by
equationp50, corresponding to a value of the parame
w5ws52p0 /r0'21/4. Values ofw,ws lead to the un-
physical situation of negative pressure matter distributi
p,0 for w,ws . In order to find the behavior of the solutio
near ws , we representw(u,r ) in the form w(u,r )5ws
06400
s

e
r

,

1w1(u,r), with w1(u,r ) a small perturbation satisfying th
conditionuw1(u,r )u!uwsu, ; u,r . Substituting into Eq.~19!
gives

r
]w1

]r
'22

w11ewsew1

ewsew1
'22

~11s!w11s

s~11w1!
, ~33!

where we denoteds5exp(ws)'exp(21/4)'0.778. Hence
for large r the solution of Eq.~33! is given by

s

11s
w11

s ln s

~11s!2
1

s

~11s!2
lnF11

11s

s
w1G522 ln r

1C8~u!, ~34!

whereC8(u) is an arbitrary integration function. Since w
have assumed thatw1(u,r ) is small, we can neglect in Eq
~34! the term containing the logarithmic function. Henc
near the vacuum boundary of the high density Haged
fluid distribution we obtain

w'w01 ln
C~u!

r 2k
, ~35!

where w05wss/(11s)'20.10, k5(11s)/s52.284, and
C(u) is an arbitrary,u-dependent integration function.

Therefore in the limitr→` the general solution of the
gravitational field equations can be approximated by

2m~u,r !'D~u!2
q2~u!

r
1

r0ew0

322k
C~u!r 322k

'D~u!2
q2~u!

r
20.6r0

C~u!

r 1.56
, ~36!

r~u,r !'r0ew0
C~u!

r 2k
'0.9r0

C~u!

r 4.56
, ~37!

p~u,r !'p01r0w01r0 ln
C~u!

r 2k
'r0S 0.151 ln

C~u!

r 4.56 D ,

~38!

m~u,r !'2
Ḋ~u!

r 2
2

2q~u!q̇~u!

r 3
1

2r0ew0

322k
Ċ~u!r 122k

'2
Ḋ~u!

r 2
2

2q~u!q̇~u!

r 3
20.58r0

Ċ~u!

r 3.56
, ~39!

whereD(u) is an arbitrary integration function.
The variation of the ratior /C(u) as a function ofw is

represented, by using Eq.~20!, in Fig. 1.
As one can see from the figure, in the limitw→ws5

20.25, the ratior /C(u) tends to 1, while for largew, w
→`, that is, in the limit of very high densities,r /C(u) tends
to zero. Values ofw,ws520.25 lead to the violation of the
5-5
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dominant energy conditionp>0. The functionK(w) is rep-
resented, as a function ofr /C(u), in Fig. 2.

For the sake of comparison we shall also present the
lution of the gravitational field equations corresponding
the collapse of the charged null Zeldovich fluid withr5p.
In this case Eqs.~11! and ~12! give immediately

2

r 2

]m~u,r !

]r
1

1

r

]2m~u,r !

]r 2
50, ~40!

with the general solution given by

m~u,r !5B~u!2
A2~u!

r
, ~41!

whereA(u) andB(u) are arbitrary integration functions.
The other physical quantities characterizing the collaps

Zeldovich fluid are given by

r~u,r !5p~u,r !5
2A2~u!2q2~u!

r 4
, ~42!

m~u,r !5
2

r 2 S dB

du
2

2

r
A~u!

dA

duD . ~43!

In all these cases the electromagnetic current follows fr
the Maxwell equation~7! and can be generally represented

j m5
1

4pr 2

dq~u!

du
l m. ~44!

0 1 2 3 4 5 6 7
w

0

0.2

0.4

0.6

0.8

1

r/C
(u

)

FIG. 1. Variation of the ratior /C(u) as a function of the param
eterw.

FIG. 2. Variation ofK(w) as a function ofr /C(u).
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The energy-momentum tensor of the mixture of fluids u
der consideration belongs to the type-II fluids@21#. The en-
ergy conditions are the weak, strong, and dominant ene
conditionsm>0, r>0, p>0, r>p>0 and can be satisfied
for both Hagedorn and Zeldovich fluids by appropriate
choosing the arbitrary functionsA(u), B(u), C(u), and
D(u) that characterize the injection and initial distribution
the mass andq(u) that describes the variation of the charg
For the Hagedorn fluid the conditionsr>0 and p>0 are
trivially satisfied for the values of the parameterw in the
rangewP(ws ,`), corresponding to the range of densities
rP(rs ,`), with ws520.25 and rs50.7831014 g/cm3.
Due to the choice of the parameters in the equation of s
the dominant energy conditionr>p is also satisfied. The
condition m>0 is equivalent todm/du>0, and in the ap-
proximation of high densities leads to

dD~u!

du
1r0

dC~u!

du
r>2q~u!

dq~u!

du

1

r
, ~45!

imposing a simultaneous constraint on all three functio
C(u), D(u), and q(u). For small values ofr and for a
charged collapsing high density fluid, the right-hand side
Eq. ~45! dominates and this energy condition could not ho
One possibility to satisfy Eq.~45! for all r is to assume tha
the functionq(u) behaves so thatdq2(u)/du→0 for r→0.
This means that the charge in the singular pointr 50 is
constant for all times. Alternatively, we may suppose tha
extremely small radii matter is generated so as to satisfy
energy condition. For neutralq[0 matter Eq.~45! is easily
satisfied by choosingdC(u)/du.0 and dD(u)/du.0. In
the case of the Zeldovich fluid the energy conditions
satisfied by choosing the functionsA, B, and q so that
A2(u)>q2(u)/2 andḂ(u)>2A(u)Ȧ(u)/r .

The radii of the apparent horizon of the metric~1! are
given by the solution of the equation 2m5r . If
limu→`C(u)5C05const, limu→`D(u)5D05const and
limu→`q(u)5q05const, then the algebraic equation det
mining the radii of the apparent horizons in the case of
Hagedorn fluid is

C0e2(1/2)F(w)1
r0

2
C0

3K~w!1
q0

2

C0
e(1/2)F(w)5D0 , ~46!

which in general may have multiple solutions.
In the case of the collapse of the Zeldovich fluid the ra

of the apparent horizon are given by the solutions of
equation

2B022
A0

2

r
5r , ~47!

where A05 limu→`C(u)5const and B05 limu→`D(u)
5const. The radii of the apparent horizon are

r 1,25B06AB0
222A0

2. ~48!

The singularities of the matter filled Vaidya space-tim
can be recognized from the behavior of the energy den
5-6
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and curvature scalars like, e.g.,RabRab andRabgdRabgd, given in the high density limit for the collapsing Hagedorn fluid

RabRab5
2

r 8
@r 4r0

2C2~u!12r 2r0C~u!q2~u!12q4~u!#, ~49!

RabgdRabgd54
r 4r0

2C2~u!22r 3r0C~u!D~u!13r 2D2~u!22r 2r0C~u!q2~u!112rD ~u!q2~u!114q4~u!

r 8
, ~50!

and which diverge forr→0.
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IV. OUTGOING RADIAL NULL GEODESICS EQUATION

The central shell-focussing singularity~i.e., that occurring
at r 50) is naked if the radial null-geodesic equation adm
one or more positive real rootsX0 @2#. In the case of the pure
Vaidya space-time it has been shown that for a linear m
function 2m(u)5lu the singularity atr 50, u50 is naked
for l< 1

8 @42#. Hence it is important to investigate wheth
the gravitational collapse of high density matter described
the Hagedorn and Zeldovich equations of state could re
in the formation of naked singularities.

We consider first the case of the gravitational collapse
the Hagedorn fluid. In order to simplify the calculations w
chose some simple particular expressions for the funct
C(u), D(u), andq(u), e.g.,C(u)5a0u, D(u)5b0u, and
q(u)5q0u, with a0.0, b0.0 andq0>0 const. With this
choice the equation of the radially outgoing, future-direc
null geodesic originating at the singularity can be written

du

dr
5

2

12b0S u

r D1q0
2S u

r D 2

1
r0a0

3

2
u2S u

r DK~w!

. ~51!

For the geodesic tangent to be uniquely defined and
exist at the singular pointr 50,u50 of Eq. ~51! the follow-
ing condition must hold@2#:

lim
u,r→0

u

r
5 lim

u,r→0

du

dr
5X0 . ~52!

When the limit exists andX0 is real and positive, there i
a future directed, non-space-like geodesic originating fr
r 50,u50. In this case the singularity will be, at least, l
cally naked.

Since the functionK(w) is finite for all w5H(r /C(u)),
and we assume that limu,r→0u/r is also finite, it follows that
limu,r→0u2(u/r )K(w)50. Therefore it follows that for the
null geodesic Eq.~51! condition ~52! leads to the following
third order algebraic equation:

q0
2X0

32b0X0
21X02250. ~53!

In the case of a neutral Hagedorn fluid withq(u)[0, Eq.
~53! reduces to a second order algebraic equation with
roots, X01,25(16A128b0)/2b0. Therefore the condition
06400
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for the formation of a naked singularity isb0,1/8. Forb0
.1/8, as a result of the collapse of the Hagedorn type flu
a black hole is formed.

For q(u)Þ0 the condition of the existence of at least o
real solution of Eq.~53! is

108q0
414q0

218b0
3>b0

2136b0q0
2 . ~54!

Therefore, by appropriately choosing the constantsq0 and
b0, it is always possible to construct a positive solution
Eq. ~53!.

In the case of the collapse of the Zeldovich fluid and
assuming for the arbitraryu-dependent integration function
the form A(u)5a0u and B(u)5b0u, with a0 ,b0 non-
negative constants, the equation of the radially outgoi
future-directed null geodesic originating at the singularity

du

dr
5

2

12b0S u

r D1a0
2S u

r D 2 . ~55!

The algebraic condition for the formation of a naked sing
larity is given by the requirement that the equation,

a0
2X0

32b0X0
21X02250, ~56!

has at least one positive rootX0.0. The condition that the
above equation has at least one real root can be written

a0
2

b0
2
>

128b0

108a0
2236b014

. ~57!

This condition can be satisfied, for example, by choos
b0,1/8 anda0.1/A216. Therefore, as in the case of th
charged Hagedorn fluid, it is always possible to construc
positive solution of Eq.~56!.

V. COLLAPSING HAGEDORN MATTER—A POSSIBLE
SOURCE OF GAMMA-RAY BURSTS

Gamma-ray bursts~GRBs! are cosmic gamma ray emis
sions with typical fluxes of the order of 1025 to 5
31024 erg cm22 with the rise time as low as 1024 s and the
duration of bursts from 1022 to 103 s @43#. The distribution
of the bursts is isotropic and they are believed to hav
cosmological origin, recent observations suggesting t
5-7
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GRBs might originate at extra-galactic distances@43#. The
large inferred distances imply isotropic energy losses as la
as 331053 erg for GRB 971214 and 3.431054 erg for GRB
990123@44#. In the present section we shall use CGS un
The widely accepted interpretation of the phenomenology
g-ray bursts is that the observable effects are due to
dissipation of the kinetic energy of a relativistically expan
ing fireball, whose primal cause is not yet known@43#.

The proposed models for the energy source involve
merger of binary neutron stars@45#, the capture of neutron
stars by black holes@46#, differentially rotating neutron star
@47#, or neutron star-quark star conversion@48#, etc. How-
ever, the most popular model involves the violent format
of an approximately one solar mass black hole, surroun
by a similarly massive debris torus. The formation of t
black hole and debris torus may take place through the c
lescence of a compact binary or the collapse of a quic
rotating massive stellar core@49#. There are still many open
problems concerning GRBs, from which the most import
is the problem of the source of the large energy emiss
during the bursts. On the other hand, naked singularitie
sources ofg-ray bursts have also been proposed@50–52#.
The fact that explosive radiation can be emitted during
gravitational collapse to a naked singularity of a dust ball
also been pointed out recently by@53#.

As an astrophysical application of the Hagedorn fluid c
lapse in the Vaidya geometry we consider the possibility t
gamma-ray bursts could in fact be energy emission du
the collapse of a neutral,q[0, high density matter in the
Hagedorn phase, ending with the formation of a naked
gularity. An estimation of the energy emitted during the c
lapse shows that it is of the same order of magnitude as
one measured duringg-ray bursts. Hence this mechanis
could provide a valuable explanation for this phenomen
also opening the possibility of the observational investigat
of the astrophysical properties of the naked singularities.

The arbitrary integration functionsC(u) and D(u) ap-
pearing in Eq.~22! describe the injection and initial distribu
tion of the mass, respectively. Their exact mathematical fo
cannot be obtained in the framework of the present form
ism. The only requirements that the functional form of the
functions must satisfy are the dominant energy conditi
and the condition that the equation of the radially outgoi
future-directed null geodesics, originating at the singula
r 50, be uniquely defined and exist at the singular poinr
50 and has at least one positive root. A positive root of
geodesic equation leads to the possibility of formation o
naked singularity as a result of the collapse. Some sim
integration functions satisfying the condition on the geode
equation, as well as the dominant energy conditions, are
example,C(u)5a0u,D(u)5b0u, with a0.0,b0.0 con-
stants. With this choice a naked singularity may form dur
the collapse of the Hagedorn fluid if and only if the algebr
equationb0X0

22X01250 has at least one positive rootX0

.0. This condition requiresb0,1/8. Of course many othe
choices are also possible.

Naked singularities are gravitational singularities that
not covered by a horizon. Near the singularity the space-t
curvature and the gravitational tidal forces grow ve
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strongly. During the collapse naked singularities could e
powerful bursts of radiation visible to a distant external o
server situated far away from the sight of the collapse@50#.

As a first physical parameter we need to estimate is
time t f f necessary for a matter element at the surface of
star to reach the centerr 50 of the collapsed object, as
function of the mass at the center. This can be done by ev
ating the time derivative of the mass, given by Eq.~30! with
q50, at the center of the naked singularity:

dm

dt U
r 50

5
c3

2G S dD~u!

du D
r 50

. ~58!

By integrating the above equation fromt50 to t f f we
obtain

MU
r 50

5
c3

2GE
0

t f f S dD~u!

du D
r 50

dt, ~59!

where we assumedm(0)ur 5050 and denotedm(t f f)ur 50
5M ur 5050. In order to find an explicit expression fort f f
we shall approximate the integral in Eq.~59! by using the
first mean value theorem for integrals, which states that
any arbitrary functionf (t), *a

bf (t)dt5(b2a) f (c), where
a,c,b. f (c) is called the average value off. Hence, in the
following we shall approximate the derivatives of the arb
trary the arbitrary integration functions and the functio
themselves by their average values. Therefore from Eq.~59!
we obtain

t f f5
2G

c3b0

MU
r 50

, ~60!

where we denoted byb0>0 the average value of the func
tion @dD(u)/du# r 50 , b05@dD(t)/d(t)# t5u , where 0,u
,te f f .

The initial mass distribution of the Hagedorn fluid can
obtained from the study of the mass distribution at the ini
momentt50:

dm

dr U
t50

5
c2

2G FdD~u!

du U
t50

1r0r
dC~u!

du U
t50

G . ~61!

By integrating this equation, and using again the fi
mean value theorem, it follows that the initial mass profile
the Hagedorn fluid can be represented as

m~r !U
t50

5
c2

2G
a0r , ~62!

wherea0>0 is the average value of ther-dependent func-
tion h(r )5@dD(u)/du1r0r (dC(u)/du)#u t50, with the
functionh(r ) estimated at some pointr 5s, 0,s,R, with
R the radius of the Hagedorn fluid distribution. Hencea0
5h(s). From this equation we can see that our approa
implies a linear profile of the initial mass distribution of th
star. a0, the average value of the spatial derivatives of t
integration functionsD(u) andC(u) at t50, is completely
5-8
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determined by the initial conditions, which is by the tot
initial mass of the starM u t50 and by its initial radiusR via
the relation

a05
2GMu t50

c2R
. ~63!

In order to calculate the energy emitted during the Ha
dorn fluid collapse we shall admit that the luminosity of t
collapsing object should not exceed the rate of collaps
matter energy@52#. The variation of the mass of the hig
density fluid during collapse is given by

D
2Gm~u,r !

c2
5@DD~u!1r0rDC~u!1r0C~u!Dr #

'FdD~u!

du
Du1r0r

dC~u!

du
Du1r0C~u!Dr G .

~64!

The variation of the advanced time coordinateu is given
by the approximate expression

Du5cDt1Dr 5cDtS 11
1

c

Dr

Dt D'cDtS 11
v f

c D ,

where we definedv f5Dr /Dt as being the speed of the co
lapsing fluid as measured by a local observer. Then we
tain

D
2Gm~u,r !

c2
'FdD~u!

du
1r0r

dC~u!

du
1r0C~u!

v f

c S 1

1
v f

c D 21GcS 11
v f

c DDt. ~65!

We assume that the energy emission occurs mainly fro
small region near the center of the naked singularity. He
we shall evaluate Eq.~65! near r very close to zero. Then
from Eq. ~58! we can roughly approximatedD(u)/du
'(2G/c3)(dm/dt)'2G/c3(M /t f f)5b0. Since for a small
r, C(ct1r )'C(ct), we can also neglect in this limit th
term r0r @dC(u)/du#. From the field Eq.~11! and from Eq.
~24! it immediately follows that 2@]m(u,r #/]r )
5(8pG/c2)r 2r'r0C(u). Taking into account Eq.~62! we
immediately findr0C(u)'4pa0'(8pGM/c2R). The ve-
locity v f of the collapsing matter can be obtained fromv f
'R/t f f'(c3Rb0)/(2GMur 50).

With the use of the previous results we obtain for the to
energy emitted per unit time during the collapse of a Ha
dorn fluid to a naked singularity the expression:

DEr

Dt
'

1

2 Fb014pa0

v f

c S 11
v f

c D 21G S 11
v f

c D c5

G
erg s21.

~66!

Hence we have expressed the total energy of the radia
which could be emitted from a naked singularity, in terms
06400
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the average values of the derivatives of the arbitrary integ
tion functions. By assuming an emission time of the order
Dt;1024 s and a velocity of the collapsing matter of th
orderv f563108 cm/s we obtain a value of the emitted e
ergy DEg'1.853$b014pa0(v f /c)@11(v f /c)#21%
31055 erg. Therefore the energy which could be emitt
during the collapse of the Hagedorn fluid to a naked sin
larity could exceed in magnitude the energyDEg'4
31054 erg, observed for GRB990123@44#. Of course the
exact value of the energy depends on the exact nume
values of the constantsa0 and b0. By comparing Eq.~66!
with the observational data it is possible to determine
values ofa0 andb0.

Under the effect of the collapse the compact object w
heat up to a temperature of the order ofT;TH;1013 K,
higher than that occurring in supernova explosions. SinceTH
cannot be exceeded, the gravitational energy of the com
object is converted into new particles, which will be gen
ated during the collapse. Most of the newly created part
will decay via weak interaction processes. As a result a n
trinosphere will form around the naked singularity. Therefo
the main energy loss mechanism of the super-heated
lapsed astrophysical object would be neutrino radiation. T
neutrinos and antineutrinos interact with protons and n
trons via the URCA processesn1ne→p1e2, p1 n̄e→n
1e1. At temperatures higher than the nuclear Fermi te
peraturekTF,N5(6p2/g)2/3(\/2m)(N/V)2/3, which can also
be expressed in the formT11

F,N51.4731023r9
2/3 @49#, the in-

tegrated optical neutrino depth is unity. Hence the deposi
energy can be estimated asE'(12e2t)DEg ergs. The pro-
cessg1g→e11e2 will generate a fireball that will expand
outward. The expanding shell interacts with the interste
medium surrounding the Hagedorn type naked singular
and the kinetic energy is finally radiated through nontherm
processes in shocks@48#.

The energy released during the collapse of the Haged
and radiation fluids into a naked singularity has the sa
order of magnitude as that observed in the case of gam
ray bursts. This strongly suggests the possibility that gam
ray bursts could be massive compact objects, formed fro
Hagedorn fluid, collapsing to a naked singularity in a cosm
logical environment.

VI. CONCLUSIONS

In the present paper we have considered the collapse
Hagedorn type fluid in the Vaidya geometry. The exact so
tion obtained represents the generalization for the Haged
type matter of the collapsing solutions previously obtain
by Vaidya@3#, Bonnor and Vaidya@6#, Lake and Zannias@7#,
and Husain@21#. From a mathematical point of view th
solution is represented in a parametric form. It satisfies
the energy conditions and consequently describes the
lapse to a singular state. The possible occurrence of a ce
naked singularity has also been investigated and it has b
shown that, at least for a particular choice of the paramet
a naked singularity is formed. Depending on the initial d
tribution of density and velocity and on the constitutive n
ture of the collapsing matter, either a black hole or a nak
5-9
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singularity is formed. The values of the parameters in
solution~22! and~24! determine which of these possibilitie
occurs. The solution describing the collapse of both
Hagedorn and Zeldovich matter is asymptotically flat, b
this condition does not play any significant role in the fo
mation of the naked singularity.

The Hagedorn type matter may reside as a perma
component of neutron stars core at high temperatures or
sities and form stable compact stellar objects. In fact, from
physical point of view, it seems that the high density limit f
the equation of state described by the Hagedorn equatio
state is one of the best and more realistic candidates for
y

r
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study of properties of collapsing objects. It also serves
illustrate the much richer interplay that can occur amo
particle physics and general relativity, when more involv
quantum field theoretical models are considered.

As a possible simple astrophysical application of this c
lapsing solution we have considered the possibility t
gamma ray bursts could be energy emission during the
lapse of a high density star, ending in the formation o
naked singularity. The radiated energy during this proc
could be as high as 1055 ergs. Thus the naked singularit
explosion could be a candidate for the central engine o
gamma ray burst.
gy
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