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By using the Bethe-Yang ansatz within the framework of the tight-binding model, the ground
state energy and the persistent current in one-dimensional Hubbard rings are calculated in the
presence of an Aharonov-Bohm flux accompanied by a local magnetic field whose direction varies in
space. Analytical results are obtained for large-U limit. It is indicated that there usually exists no
short periodicity for the ground state energy and persistent current due to the effect of the geometric
Berry phase even for the case of infinite U. In a special case, the short periodicity retained in the
zero-order approximation is broken down by taking into account the first-order energy correction
for large but not infinite U. Moreover, it is found that in the strong-coupling limit, the electron-
electron interaction suppresses the persistent current, which is in agreement with other numerical

calculations.

Since the discovery of the Berry phase! in 1983, there
has been much interest in the study of topological ef-
fects in the fields of quantum mechanics? and mesoscopic
physics.>™® The typical example to illustrate the Berry
phase is the Aharonov-Bohm (AB) effect® where, even
though classical forces are absent, relative phases would
accumulate on the wave function of a charged particle
passing around opposite sides of a long solenoid due
to the presence of a vector potential. Similarly, when
a quantum spin follows adiabatically a magnetic field
that rotates slowly in time, the spin wave function ac-
quires an additional phase (geometric Berry phase) be-
sides the standard phase (electromagnetic Berry phase)
in the static magnetic field. It was shown by Stern”
that the geometric Berry phase accumulated on the spin
wave function affects the conductance of the ring in a
way similar to the AB effect. Also the Berry phase can
be demonstrated in the Aharonov-Casher (AC) effect,®
which is an electromagnetic dual of the AB effect—a
neutral particle with a magnetic moment may exhibit
a topological force-free interference effect, as a result of
an interaction with a charged wire. Using a nonpertur-
bative method, Meir, Gefen, and Entin-Wohlman® found
that the spin-orbit (SO) interaction induces an additional
effective spin-dependent magnetic flux in a mesoscopic
ring threaded by a magnetic flux. Aronov and Lyanda-
Geller!® demonstrated that the SO interaction results in
an SO Berry phase in the adiabatic limit. In the pres-
ence of SO interaction, there is a momentum-dependent
effective magnetic field coupling to the spin because the
Hamiltonian includes a term that is linear in momen-
tum. Therefore, in the adiabatic limit, a geometric Berry
phase is acquired by the wave function of the particle
under the traversal of the momentum from some initial
state through a set of intermediate states in the Hilbert
space back to its original configuration. Notice that those
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studies on effects of geometric Berry phase on persistent
currents in mesoscopic rings do not take into account
the electron-electron interaction in spite of its impor-
tance in some realistic cases. In this paper, by using the
Bethe-Yang ansatz within the framework of tight-binding
model, which was generalized to the solution of the Hub-
bard model with twisted boundary conditions by Shastry
and Sutherland,!! the ground-state energy and the per-
sistent current in one-dimensional (1D) Hubbard rings
are calculated in the presence of an AB flux accompanied
by a local magnetic field whose direction varies in space.
Analytical results are obtained for large-U limit. It is
shown that there usually exists no short periodicity of the
ground-state energy and persistent current by introduc-
ing the geometric Berry phase even for the case of infinite
U. As will be seen below, in a special case of cosx = 1,
the short periodicity that is retained in the zero-order ap-
proximation is broken down by taking into account the
first-order energy correction for large but not infinite U.
Moreover, it is found that in the strong-coupling limit,
the electron-electron interaction suppresses the persistent
current, which is in agreement with other numerical cal-
culations.

Let us consider a gas of interacting electrons, confined
to a one-dimensional ring of radius R. The ring lies in
the z-y plane with its center at the origin. A uniform
magnetic field B, parallel to the z axis is applied on the
arm of the ring while an in-plane magnetic field tangent
to the ring B,, is induced by a current-carrying wire lying
along the z axis.” The tilt angle between two components
of the magnetic field is denoted by x = arctan(B,/B.).

The strength of the total magnetic field B = ,/BZ + B2

is chosen such that the adiabatic approximation is valid
but the direct Zeeman contribution to the energy can
still be neglected. (This means that the Zeeman energy
upB should be much smaller than the Fermi energy er,
but much larger than Avg/R with vp the Fermi velocity,
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which could be simply satisfied.”) In addition, a solenoid
carrying an AB flux ®,5 pierces the hole of the ring. In
the context of a tight-binding model, we can treat the
system as a closed chain of N sites separated by a dis-
tance a = 2rR/N. The second quantization Hamiltonian
of the chain is written as

_ t
H = E €1C;, Clo
lo

+ Z tri4 (ei(91,1+1 +)‘;”'+1)CI+1UCIU + H.C.)

lo

+UZC.{T01TCLC“ s (1)
l

where c}a (cio) are creation (annihilation) operators for
an electron of spin o at the lth site, ¢ is the on-site
energy, t;;+1 a “bare” nearest-neighbor hopping matrix
element, and U the on-site Hubbard repulsion. When
electrons hop successively from the lth site to the ({+1)th
site, the usual electromagnetic contribution to the phase
acquired by electrons is 6 ;41, which satisfies > ;01141 =
27®,5/®o with & = hc/e the flux quantum. In the
adiabatic approximation, the spin-dependent geometric
contribution due to Zeeman coupling, denoted by A7,
is given by?!

1+1
iy = /, (1, (¢)18/8%|TL, () i,

where |II,(¢)) is an instantaneous eigenstate of the
Hamiltonian H(p) = fi(p) - o with n = (—sinxsinp,
sin x cos @, cos ) the unit vector along the total magnetic
field. We obtain the instantaneous eigenstate

men = [ o]

T (¢)) = [ZSIS(SQC(Q/);)_¢ } ’

|

|¥) =
1<{@;}<N 1<{jr}<N. P

imposed by the twisted boundary condition, Eq. (2).
Here P is a permutation of the numbers (1,2,...,N.)
and A({jn}/P) the amplitude. The requirement that
Eq. (3) should be a solution of the eigenvalue equation
H|T) = E|¥) leads to

N,

E=-2t Zcos(kna) , (4)

n=1
where k,, connected with charge waves are determined by
the following transcendental equation!!

kn(Na) = 27K, +2nf + mcosx
M
+2 Z arctan{4t[l'; — sin(k,a)]/U}, (5)

j=1
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corresponding to the spin being parallel (antiparallel) to
the magnetic field, and find that A{;,; = (pi+1— 1) (1 +
ocosx)/2and Y, Af;,, = 7(1 +ocosx).

We now attempt to find the eigenvalues of the Hamil-
tonian given by Eq. (1). By introducing a unitary trans-
formation

N-1 N-1

A : Cot

U= H exp | —i (01,141 + Al 141)C500Cio | 5
=1

o =

<.

we can simplify the Thopping terms that
tprexp(Ei(n + A7)l 2 taa( =
1,2,...,N — 1) while tyiexp[+i(fn1 + A%y)]

— —tn1exp[+i(27P,p/Po + wo cosx)]. This transfor-
mation demonstrates the fact that the flux felt by elec-
trons exhibits a global effect. Because of this, the effect
of electromagnetic and geometric phases can be taken
into account via the twisted boundary conditions for the
wave function

[U(N +1)) = —expli(@nf + mocos)]TM),  (2)

where f = @,5/®¢. It is quite clear from Eq. (2) that the
energy eigenvalue is a periodic function of the magnetic
flux with the period ®q. It is thus sufficient to consider
only the range of one ®; because the flux can always
be reduced by subtracting an integer times ®q so that it
lies in the specified range. In the following we assume
t11+1 and € to be site independent, and set ;41 = —t
and ¢, = 0. As is well known, if we denote by N, and
M the number of electrons and down-spin electrons, the

energy eigenfunction is given by the Bethe ansatz in the
form 112

> > Z[exp (ikan) A({jn}|7>)]ml--w,-l--wm---m> 3)

[
with the rapidites I'; of spin waves satisfying

N.
23" arctan{4¢[T'; — sin(kna)]/U}

n=1

M
= 2nJ; — 2mcos x + 2 z arctan[2t(T'; — I';) /U] .
i=1
(6)
Here the constant part of the spin-dependent geometric
phase 7 has been absorbed into the first term on the
right-hand side of Eq. (5), K, are thus integers (or half-
odd integers) for M odd (or even) and J; are integers (or
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half-odd integers) for N. — M odd (or even). In the ther-
modynamic limit, £ and I' are distributed continuously;
Egs. (5) and (6) then lead to the coupled integral equa-
tions for distributions, which can be solved more easily.2
However, for mesoscopic rings, the finite-size effects must
be taken into account carefully, which makes it very dif-
ficult to solve the above-mentioned transcendental equa-
tions even using numerical methods. Fortunately, when
the on-site repulsion U is very strong compared with the
hopping amplitude ¢t (i.e., t/U < 1), the ground-state
energy and persistent current can be calculated analyt-
ically. In the limit of U/t = oo, we are able to arrive
at

2

Ne —2
kflo)a=—§ [Kn+f+ Mcosx—i—ijl ,

2N, N,

n=1,2,...,N.. (7)
where p = Zfil Jj. Obviously, for the case U =
0o, the result is quite similar to that for spinless free-
electron mesoscopic rings. The effective flux, which
consists of spin-independent ®,5, spin-dependent (N, —
2M) cos x/2N, coming from Zeeman interaction, and
p/Ne connected with the rapidites I'; of spin waves, de-
termines the eigenenergy by entering the wave vector
k,(,o), as given by Eq. (7). If M and p are fixed, the sys-
tem energy can be calculated with consecutive integers
(or half-odd integers) of K, that are centered around
the origin. The result is given according to the number
of electrons N, that are even or odd and itemized below:

(i) Ne = 2mq, M = 2my. In this case,

Kp=—(N.—1)/2,...,(N. —1)/2,

and the total energy is found to be

2T

N, —2M
© _ _ an DNe — oM i
E Eocos[ (f—l— 2N, COSX+NE)] , (8)

with f + (N. — 2M)cos x/2N, + p/N. € [-1/2,1/2),
where Ey = 2tsin(Nen/N)/sin(w/N).
(ii) Ne = 2mq, M = 2my + 1. We have

K, =—-N./2,...,N./2,
and the total energy

2 N, —2M 1
E(O) = —EOCOS I:_ﬂ- <f+ TCOSX+ ﬁ‘ - _)] )

N N, 2
(9)
with f + (V. — 2M) cos x/2N, + p/N, € [0,1).
(iii) Ne = 2m; + 1, M = 2m;. In this case,
K,=—(Ne.—2)/2,...,N/2,
and
2w N, —2M P 1
0 — _ 2° e 7 o,
E\Y = Eocos[N (f+ A cosx+Ne+2>],
(10)

with f + (N. — 2M) cos x/2N, + p/N. € [-1,0).
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(iv) Ne = 2mq + 1, M = 2m3 + 1. In this case,
K,=—(Ne—1)/2,...,(Ne—1)/2,

and

(11)

with f + (Ne — 2M) cos x/2N, + p/N. € [-1/2,1/2).

In the absence of the flux, J; are consecutive integers
(or half-odd integers) centered around the origin. When
a flux is introduced, the values of J; are shifted to mini-
mize the total energy. In the infinite-U case, the energy
spectra versus the flux are identical for different numbers
of down-spin electrons, except that there is a relative shift
along the flux axis. From the energy favorable point of
view, when the magnetic flux varies in the whole range,
the number of down-spin electrons is adjusted to arrive
at the real ground state with the lowest energy. In the
absence of geometric Berry phase, Kusmartsev!® found
that the ground-state energy of mesoscopic rings with
infinite repulsion U varies with the magnetic flux with
a surprisingly short period ®7 = ®¢/N, by the spin-flip
process. In the presence of a spin-dependent geometric
phase, there usually exists no short period ®r. Only
in two special cases, cosxy = 0,1, is the short period
&1 = Po/N, still retained. For the case of cosx = 0, if
we choose p = =M for an even number of electrons and
p = 0 for an odd number of electrons, the global energy
spectrum can be overlapped completely with that in the
absence of the geometric Berry phase by shifting ®4/2.
For the case of cosx = 1, we find that the value of p is
taken as 0 for an even number of electrons and M/2 for
an odd number of electrons so that the energy is periodic
in the flux with period ®7 = ®,/N.. We plot in Fig. 1(a)
the total energy spectrum versus the magnetic flux for a
ring of 8 sites and 4 electrons, for various numbers of
down-spin electrons and cos x = 1. The ground-state en-
ergy spectrum consists of the lowest segments of all the
energy spectra for various M. From Fig. 1(a), one can
see clearly that the number of down-spin electrons jumps
by 1 when the magnetic flux varies over one period ®r.
Thus all possible spin magnetization is experienced by
the system when the magnetic flux varies over one flux
quantum. Once we have the ground-state energy as a
function of the magnetic flux, the persistent current can
be obtained straightforwardly by!4

j—__¢ 9F (12)

2nh Of

In Fig. 1(b), we plot the persistent current as a function
of ®,5. It is a piecewise function of the magnetic flux. In
each periodic region, it varies linearly with the flux and
there are discontinuous jumps when one period is over.
For a general value of the tilt angle, the ®7 periodicity
of both the ground-state energy and the corresponding
persistent current is absent. As an example, the energy
spectrum and the corresponding persistent current with
cosy = 0.75 are plotted in Figs. 2(a) and 2(b), which
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shows the absence of ® periodicity. Comparing Fig. 2(a)
with Fig. 1(a), one can also see clearly that as cosx in-
creases, the energy spectra with M = 0,4 become more
close, while the pair with M = 1,3 become more remote.
When cosx = 1, the two energy spectra for M = 0,4
overlap completely and the ®7 periodicity is recovered.

In physically interesting situations, the on-site re-
pulsion U is large but not infinite. Performing the
sin(kna)t/U expansion in the Bethe ansatz equations to
the first order of t/U, we find the correction to the charge
momentum as
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FIG. 1. (a) The total energy and (b) the persistent cur-
rent as a function of the magnetic flux for a ring of 8 sites
and 4 electrons for different number of down-spin electrons,
for the case cosx = 1. Eo = 2tsin(Nenw/N)/sin(w/N) and
Io = Eoe / 27Th
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4t? 1 = (0)
_ = . (0) _ . 0
knpa = NU (sm(kn a) N E sin(k,,, a))

€ ni=1
M1
xS~ . 13
;1/44—1‘? (13)

where «; = 2tT'; /U are determined by

2N, arctan(2z;) = 27J; — 2mcos x
M
+2 Z arctan(z; — x;) . (14)

=1

By substituting Eq. (13) with the solution of Eq. (14)
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FIG. 2. (a) The total energy and (b) the persistent current
as a function of the magnetic flux for the case cosxy = 0.75.

The values of other parameters are the same as those in Fig.
1.
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into Eq. (4), the energy correction is obtained

2 N. N. 2
o = 2 Ne Z sin?(k®a) — Nl_ (Z sin(k,flo)a)>
n=1 € \n=1

NU

(15)

Equations (14) and (15) are quite similar to those for
1D antiferromagnetic Heisenberg problems. It is worth
pointing out that the geometric Berry phase now af-
fects the energy corrections by deforming the solutions

of Eq. (14). Consider a state for N = 4 with M =

-0.9
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FIG. 3. (a) The ground-state energy and (b) the persistent
current as a function of the magnetic flux for cosx = 1 and
t/U = 0.05,0.01. The values of other parameters are the same
as those in Fig. 1.
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2, which has the quantum numbers taking on value
Ji,2 = —1/2,1/2 in the absence of Berry phase. We
find 0F|p=2 = —6J. We now turn on the Berry phase
and, as a limiting case, take cosx = 1. As a result,
the previous solution 0F|p=2 = —6J is now deformed
to 0E|pm=2 = —4J. If we concentrated only on the solu-
tions of the Heisenberg model, the ground-state energy
would still take the value of —6J because one can set
Ji,2 = 1/2,3/2 to minimize the energy. However, 0F is
now merely the first-order correction to the energy for
the U = oo case. It is thus reasonable, especially for suf-
ficiently large U, to consider that the values of J; are
determined in the zero-order calculation. In the case
of cosx = 1, the energy corrections for M = 1,3 are
also found, 0E|pr=1 = 8E|pm=3 = —2J. (For cosx = 0,
0E|pm=1 = 6E|p=3 = —4J.) It is evident that the ampli-
tude of the first-order energy correction depends on the
number of down-spin electrons. This implies that, in the
first-order perturbation, the energy range shared by the
energy spectra for different M shrinks and disappears as
U decreases. Figure 3 gives the ground-state energy and
the corresponding persistent current versus the magnetic
flux for a ring of 8 sites and 4 electrons in the case of
cosx = 1. As shown in Fig. 3, as long as the first-order
perturbation is employed, the ground-state energy and
the persistent current oscillate in the flux with the period
of one flux quantum. When U is very large but still not
infinite, there are many cusps in the ground-state energy
spectrum and correspondingly many jumps in the current
over one flux quantum. The number of both cusps and
jumps becomes fewer as U becomes smaller. Moreover,
this calculation enables us to investigate the influence of
the electron-electron interactions on the amplitude of the
typical persistent current in the strong-coupling limit. As
can be seen in Fig. 3(b), the amplitude becomes smaller
as U increases and approaches the limiting value when U
is infinite. This observation partly lends support to the
numerical calculations by using either the exact diagonal-
ization technique'® or the Hartree-Fock approximation,'®
which show that in the case of a one-dimensional discrete-
lattice ring, the electron-electron interaction suppresses
the persistent current.

In summary, we have calculated the ground-state en-
ergy and the persistent current in 1D Hubbard rings are
calculated in the presence of an AB flux accompanied by
a local magnetic field whose direction varies in space. It
is indicated that there usually exists no short periodicity
for the ground-state energy and persistent current due
to the effect of the geometric Berry phase even for the
case of infinite U. In a special case, the short period-
icity retained in the zero-order approximation is broken
down by taking into account the first-order energy cor-
rection for large but not infinite U. Moreover, it is found
that in the strong-coupling limit, the electron-electron
interaction suppresses the persistent current, which is in
agreement with other numerical calculations.
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