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Spin-polarized parametric pumping: Theory and numerical results
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We have extended the previous parametric electron pumping theory to include the spin-polarized pumping
effect. Specifically, we consider a parametric pump consisting of a nonmagnetic system with two ferromagnetic
leads whose magnetic moments orient at an angleu with respect to each other. In our theory, the leads can be
maintained at different chemical potentials. As a result, the current is driven due to both the external bias and
the pumping potentials. When bothu and the external bias are zero, our theory recovers the known theory. In
particular, two cases are considered:~i! in the adiabatic regime, we have derived the pumped current for an
arbitrary pumping amplitude and external bias and~ii ! at finite frequency, the system is away from equilibrium,
and we have derived the pumped current up to quadratic order in pumping amplitude. From our numerical
results we found that the pumped current can be modulated by the angleu, showing interesting spin-valve
effects.
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I. INTRODUCTION

Recently, there has been considerable interest in para
ric pumping.1–29The parametric pump is facilitated by cycl
variations of pumping potentials inside the scattering sys
and has been realized experimentally by Switkeset al.3 On
the theoretical side, much progress has been made tow
understanding various features related to the param
pump. This includes quantization of the pump
charge,2,9,20,25 the influence of discrete spatial symmetri
and magnetic field,5,7 the rectification of displacemen
current,10 as well as inelastic scattering11 to the pumped cur-
rent. The concept of an optimal pump has been propo
with the lower bound for the dissipation derived.12 Within
the formalism of time-dependent scattering matrix theory,
heat current and shot noise in the pumping process17,23,24,27

has also been discussed. Recently, the original adiab
pumping theory has been extended to account for the e
due to finite frequency,14,19 Andreev reflection in the pres
ence of superconducting leads,13,28 and strong electron inter
action in the Kondo regime.26 This gives us more physica
insight into parametric pumping. For instance, the exp
mentally observed anomaly of pumped current atf50 and
f5p can be explained using finite frequency theory19 as
due to the quantum interference of different photon-assis
processes. When a superconducting lead is present, the
ference between the direct reflection and multiple Andre
reflections gives rise to an enhancement of pumped cur
which is four times that of the normal system.13 It will be
interesting to further extend the parametric theory to the c
where the ferromagnetic leads are present. With the the
extended, much different physics is foreseen30 which may
lead to operational paradigms for future spintronic device31

In this paper, we have extended the previous parametric e
tron pumping theory to include the spin-polarized pump
effect. Specifically, we consider a parametric pump cons
ing of a nonmagnetic system with two ferromagnetic lea
whose magnetic moments orient at an angleu with respect to
each other. Our theory is based on a nonequilibrium Gree
0163-1829/2002/66~20!/205327~9!/$20.00 66 2053
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function approach and focused on current perpendicula
plane geometry. The parametric pump generates curren
zero external bias. It would be interesting to see the interp
of the role played by the pumping potential and external b
if the leads are maintained at different chemical potential22

Hence in our theory, the external bias is also included. In
adiabatic regime, the pumped current is proportional
pumping frequency. In this regime, we have derived
parametric pumping theory for finite pumping amplitude.
the finite pumping frequency, the system is away from eq
librium, and we have performed perturbation up to the s
ond order in pumping amplitude and obtained the pump
current at finite frequencies. Our theory allows one to stu
the pumped current for a variety of parameters, such as
pumping amplitude, pumping frequency, phase differen
between two pumping potentials, the angular dependence
tween the magnetization of two leads, as well as the exte
bias. We have applied our theory to a tunneling magneto
sistance ~TMR! junction.32 Due to the reported room
temperature operation of TMR, the fundamental princip
and transport properties of TMR devices have attracted
creasing attention.33 From our numerical results we foun
that the pumped current can be modulated by the angu
showing interesting spin-valve effects. The paper is or
nized as follows. In Sec. II, we derive the general theory o
parametric pump in the presence of ferromagnetic leads.
numerical results and summary are presented in Sec. III

II. THEORY

The system we examine consists of a nonmagnetic sys
connected by two ferromagnetic electrodes to the reserv
The magnetic momentM of the left electrode is pointing in
the z direction, the electric current is flowing in they direc-
tion, while the moment of the right electrode is at an angleu
to the z axis in thex-z plane ~see the inset of Fig. 1 for a
schematic picture!. The Hamiltonian of the system is of th
following form:

H5HL1HR1H01Vp1HT , ~1!
©2002 The American Physical Society27-1
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whereHL andHR describe the left and right electrodes,

HL5(
ks

~ekL1sM !ckLs
† ckLs , ~2!

HR5(
ks

F ~ekR1sM cosu!ckRs
† ckRs

1(
ks

M sinu@ckRs
† ckRs̄#. ~3!

In Eq. ~1!, H0 describes the nonmagnetic~NM! scattering
region,

H05(
ns

endns
† dns . ~4!

Vp is the time-dependent pumping potential andHT de-
scribes the coupling between electrodes and the NM sca
ing region with hopping matrixTkan . To simplify the analy-
sis, we assume the hopping matrix to be independent of
index, hence

HT5 (
kans

@Tkanckas
† dns1c.c.#. ~5!

In these expressionseka5ek
01qVa with a5L,R; ckas

† ~with

s5↑,↓ or 61, ands̄52s) is the creation operator of elec
trons with spin indexs inside thea electrode. Similarlydns

†

is the creation operator of electrons with spins at energy
level n for the NM scattering region. In writing Eqs.~2! and
~3!, we have made a simplification that the value of the m
lecular fieldM is the same for the two electrodes, thus t
spin-valve effect is obtained32 by varying the angleu. Essen-
tially, M mimics the difference of the density of states b
tween spin-up and -down electrons32 in the electrodes. In this
paper, we only consider the single electron behavior. T
charge quantization is not considered so that our syste

FIG. 1. The transmission coefficient as a function of Fermi
ergy at different anglesu between the magnetizations of two lead
u50 ~dashed line!, u5p/2 ~solid line!, and u5p ~dotted line!.
Inset: schematic picture of the system.
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not in the Coulomb blockade regime. In addition, for t
nonmagnetic regions in which we are interested, the Kon
effect can be neglected.

To proceed, we first apply the following Bogoliubo
transformation34 to diagonalize the Hamiltonian of the righ
electrode,35

ckRs→cos~u/2!CkRs2s sin~u/2!CkRs̄ , ~6!

ckRs
1 →cos~u/2!CkRs

1 2s sin~u/2!CkRs̄
1 , ~7!

from which we obtain the effective Hamiltonian

HR5(
ks

@~ekR1sM !CkRs
† CkRs#, ~8!

HT5(
kns

FTkLnckLs
† dns1TkRnS cos

u

2
CkRs

†

2s sin
u

2
CkRs̄

† Ddns1c.c.G . ~9!

In the following subsections, we will consider two cases:~i!
parametric pumping in the low-frequency limit with finit
pumping amplitude and~ii ! pumping in the weak pumping
limit with finite pumping frequency.

A. Pumping in the low-frequency limit

In this subsection, we examine the pumping current at
low-frequency limit while maintaining the pumping ampl
tude finite. In this limit, the system is nearly in equilibrium
and we will use the equilibrium Green’s function36–38 to
characterize the pumping process. Using the distribut
function, the total charge in the system during the pumpin
given by

Q~x,t !52 iqE ~dE/2p!@G,~E,$V~ t !%!#xx , ~10!

where G, is the lesser Green’s function in real space,x
labels the position, and$V(t)% describes a set of externa
parameters which facilitates the pumping process. Withi
Hartree approximation,G, is related to the retarded and a
vanced Green’s functionsGr andGa,

G,~E,$V%!5Gr~E,$V%!i(
a

Ga f a~E!Ga~E,$V%!,

~11!

where f a(E)5 f (E2qVa). In the low-frequency limit, the
retarded Green’s function in real space is given by

Gr~E,$X%!5
1

E2H02Vp2Sr
, ~12!

whereSr[(aSa
r is the self-energy, andGa522 Im@Sa

r # is
the linewidth function. In the above equations,Gr ,a,, de-
notes a 232 matrix with matrix elementsGs,s8

r ,a, and s
5↑,↑. Vp5VpI where I is a 232 unit matrix in the spin
space. In a real-space representation,Vp is a diagonal matrix

-

7-2
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describing the variation of the potential landscape due to
external pumping parameterV. The self-energies are give
by35

Sa
r ~E!5R̂aS Sa↑

r 0

0 Sa↓
r D R̂a

† ~13!

and

Sa
,~E!5 i f aR̂aS Ga↑

0 0

0 Ga↓
0 D R̂a

† ~14!

with the rotational matrixR̂a for electrodea defined as

R̂5S cosua/2 sinua/2

2sinua/2 cosua/2D . ~15!

Here angleua is defined asuL50 anduR5u,Sas
r is given

by

Sasmn
r 5(

k

Tkam* Tkan

E2ekas
0 1 id

, ~16!

and Gas
0 522 Im(Sas

r ) is the linewidth function whenu
50.

In order for a parametric electron pump to function at lo
frequency, we need simultaneous variation of two or m
system parameters controlled by gate voltages:Vi(t)5Vi0
1Vipcos(vt1fi). Hence, in our case, the potential due to t
gates can be written asVp5( iViDi , whereDi is the poten-
tial profile due to each pumping potential. For simplicity w
assume a constant gate potential such that (D1)xx is one forx
in the first gate region and zero otherwise. If the time var
tion of these parameters is slow, i.e., forV(t)5V0
1dV cos(vt), then the charge of the system coming from
contacts due to the infinitesimal change of the system par
eter (dV→0) is

dQp~ t !5(
i

]Vi
Tr@Q~x,t !#dVi~ t !. ~17!

It is easily seen that the total charge in the system in a pe
is zero which is required for the charge conservation.
calculate the pumped current, we have to find the cha
dQpa passing through contacta due to the change of th
system parameters. Using the Dyson equation]Vi

Gr

5GrD iG
r , the above equation becomes

dQp~ t !5q(
j
E dE

2p (
b

Tr@GrDjG
rGbGa

1GrGbGaDjG
a# f b~E!dVj~ t !

52qE dE

2p (
j

(
b

f bTr~]E@GaGbGrDj # !dVj~ t !,

where the wideband limit has been taken. Integrating by p
we obtain
20532
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dQp~ t !5qE dE(
b

~]Ef b!(
j

dNb

dVj
dVj~ t !, ~18!

where we have used the injectivity40

dNb

dVj
5

1

2p
Tr@GaGbGrDj #. ~19!

Using the partial density of statesdNab /dVj defined as41

dNab

dVj
5

1

4p
Tr@GrGaGrD j1c.c.#dab

1
1

4p
Tr@ iGrGaGaGbGrD j1c.c.# ~20!

with (adNab /dVj5dNb /dVj , we obtain

dQpa~ t !52qE dE(
b

~2]Ef b!(
j

dNab

dVj
dVj~ t !.

~21!

If we include the charge passing through contacta due the
external bias, then

dQa~ t !52qE dE(
b

~2]Ef b!(
j

dNab

dVj

dVj~ t !

dt
dt

2qE dE(
b

Tr@GaGrGbGa#~ f a2 f b!dt. ~22!

Furthermore, the total current flowing through contacta due
to both the variation of parametersVj and external bias, in
one period, is given by

Ja5
1

tE0

t

dtdQa /dt, ~23!

wheret52p/v is the period of cyclic variation. If there ar
two pumping parameters, Eq.~23! can be written as when
a51,

J1
(1)5

q

2tE dtE dE ]E~ f 12 f 2!(
j

FdN11

dVj

dVj~ t !

dt

2
dN12

dVj

dVj~ t !

dt Gdt

2
q

tE dtE dE Tr@G1GrG2Ga#~ f 12 f 2! ~24!

and

J1
(2)5

q

2tE dtE dE]E~ f 11 f 2!(
j

FdN11

dVj

dVj~ t !

dt

1
dN12

dVj

dVj~ t !

dt Gdt, ~25!

whereJ15J1
(1)1J2

(2) . In Ref. 22,J1
(1) has been identified a

the current due to the external bias andJ(2) as pumping
current. Foru50,p, all of the 232 matrix is diagonal. In
7-3
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this case, it is easy to show that Eq.~23! agrees with the
result of Ref. 22. If the external bias is zero, Eq.~23! reduces
to the familiar formula1 when there are two pumping poten
tials,

Ja5
qv

2pE0

t

dtFdNa

dX1

dX1

dt
1

dNa

dX2

dX2

dt G . ~26!

B. Finite frequency pumping in the weak pumping limit

In this subsection, we will calculate the pumping curre
at finite frequency. The Keldysh nonequilibrium Green
function approach used here is in the standard tight-bind
representation.36 We could not use the momentum space v
sion because the time-dependent perturbation~pumping po-
tential! inside the scattering region is position depende
Hence it is most suitable to use a tight-binding real-sp
technique. In contrast, in previous investigations39 on
photon-assisted processes the time-dependent potenti
uniform throughout the dot and therefore a momentum sp
method is easier to apply.

Assuming the time-dependent perturbations located at
different sites,j 5 i 0 , j 0, andk0, etc. with

Vj~ t !5Vjcos~vt1f j !. ~27!

When there is no interaction between electrons in the id
leadsL andR, the standard nonequilibrium Green’s-functio
theory gives the following expression for the time-depend
current,37

Ja~ t !52qE
2`

t

dt1Tr@Gr~ t,t1!Sa
,~ t1 ,t !1G,~ t,t1!Sa

a~ t1 ,t !

1c.c.# ~28!

and a transmission coefficient

T~E!5Tr@GL
r ~E!Gr~E!GR

r ~E!Ga~E!#, ~29!

where the scattering Green’s functions and self-energy
defined in the usual manner:

Gi j ss8
r ,a

~ t1 ,t2!57 iu~6t17t2!^$di ,s~ t1!,dj ,s8
1

~ t2!%&,
~30!

Gi j ,s,s8
,

~ t1 ,t2!5 i ^dj ,s8
1

~ t2!di ,s,~ t1!&, ~31!

Sa i j
r ,a,,~ t1 ,t2!5(

k
Taki* Tak jga

r ,a,,~ t1 ,t2!. ~32!

The average currentJL(t) from the left lead can be writ-
ten as

^JL~ t !&52
q

tE0

t

dtE
2`

t

dt1Tr@G11
r ~ t,t1!SL

,~ t1 ,t !

1G11
, ~ t,t1!SL

a~ t1 ,t !1c.c.#. ~33!

In the absence of pumping, the retarded Green’s func
is defined in terms of the HamiltonianH0,
20532
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G0r~E!5
1

E2H02Sr
~34!

and G0, is related to the retarded and advanced Gree
functionsG0r andG0a by

G0,~E!5G0r~E!S,~E!G0a~E!. ~35!

Now we make use of the time-dependent pumping potent
Vj (t) as the perturbations to calculate all kinds of Gree
functions up to the second order, and corresponding ave
current.

First, we calculate the current corresponding to the te
G11

r (t,t1)SL
,(t1 ,t) in Eq. ~33!. The Dyson equation for

G11
r (t,t1) gives the second-order contribution

G11
(2)r~ t,t1!5(

jk
E E dxdyG1 j

0r~ t2x!V j~x!Gjk
0r~x2y!

3Vk~y!Gk1
0r ~y2t1!

[(
jk

G1 j
0rV jGjk

0rVkGk1
0r . ~36!

Substituting Eq.~36! into Eq. ~33! and completing the
integration over timex,y,t1 ,t, it is not difficult to calculate
the average current̂JL1& due to the first term in Eq.~33!
~see the Appendix for details!,

^JL1~ t !&52(
jk

qVjVk

4 E dE

2p
Tr$SL

,G1 j
0r@Gjk

0r~E2!eiDk j

1Gjk
0r~E1!e2 iDk j#Gk1

0r %, ~37!

whereDk j5fk2f j is the phase difference,E65E6v, and
Gr ,a,,[Gr ,a,,(E).

Now we calculate the second termG11
, (t,t1)SL

a(t1 ,t) in
Eq. ~33!. Using the Keldysh equation,G,5GrS,Ga, we
have

Gjk
,5Gj 1

r SL
,G1k

a 1GjN
r SR

,GNk
a , ~38!

whereSa
,5 i Ga f a . ExpandingGr ,a up to the second orde

in pumping parameters, we obtain the second-order contr
tion from G11

, ,

G11
(2),5G11

r SL
,G11

a 1G1N
r SR

,GN1
a

5G11
(2)rSL

,G11
0a1G11

(1)rSL
,G11

(1)a1G11
0rSL

,G11
(2)a

1G1N
(2)rSR

,GN1
0a 1G1N

(1)rSR
,GN1

(1)a1G1N
0r SR

,GN1
(2)a

5(
jk

@G1 j
0rV jGjk

0rVkGk1
0,1G1 j

0rV jGjk
0,VkGk1

0a

1G1 j
0,V jGjk

0aVkGk1
0a#

5g21g31g4 , ~39!
7-4
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where we have used Eq.~38! to simplify the expression
Plugging Eq.~39! into Eq. ~33! and after some algebra, w
have the following three expressions corresponding to e
term in Eq.~39!,

^JL2&5the term corresponding tog2 in Eq. ~39!

52(
jk

qVjVk

4 E dE

2p
Tr$SL

aG1 j
0r@Gjk

0r~E2!eiDk j

1e2 iDk jGjk
0r~E1!#Gk1

0,%, ~40!

^JL3&52(
jk

qVjVk

4 E dE

2p
Tr$SL

aG1 j
0r@Gjk

0,~E2!eiDk j

1e2 iDk jGjk
0,~E1!#Gk1

0a%, ~41!

^JL4&52(
jk

qVjVk

4 E dE

2p
Tr$SL

aG1 j
0,@Gjk

0a~E2!eiDk j

1e2 iDk jGjk
0a~E1!#Gk1

0a%. ~42!

The final pumped current is the sum of Eqs.~37!, ~40!–~42!,
and their complex conjugates, in addition to the current
rectly due to the external bias@see second term of Eq.~24!#.
If the external bias is zero, the expression of the pum
current can be simplified significantly. Note that in the eq
librium, the lesser Green’s function satisfies the fluctuati
dissipation theorem,

G0,~E!52 f ~E!@G0r~E!2G0a~E!# ~43!

and

G0,~E6!52 f ~E6!@G0r~E6!2G0a~E6!#. ~44!

Eqs.~37!, ~40!, and~42!* lead to

2 i(
jk

qVjVk

4 E dE

2p
Tr$GLG1 j

0r f ~E!@Gjk
0r~E2!eiDk j

1e2 iDk jGk j
0r~E1!#Gk1

0a%, ~45!

while Eqs.~37!, ~40!* , and~42! give

i(
jk

qVjVk

4 E dE

2p
Tr$GLG1 j

0r f ~E!@Gjk
0a~E2!eiDk j

1e2 iDk jGjk
0a~E1!#Gk1

0a%. ~46!

Furthermore, Eq.~41! plus the complex conjugate be
comes

i(
jk

qVjVk

4 E dE

2p
Tr„GLG1 j

0r$ f 2@Gjk
0r~E2!2Gjk

0a~E2!#eiDk j

1e2 iDk j f 1@Gjk
0r~E1!2Gjk

0a~E1!#%Gk1
0a
…, ~47!

where f 65 f (E6).
Combining Eqs.~45!–~47!, we finally obtain
20532
ch
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JL5 i(
jk

qVjVk

4 E dE

2p
Tr„GLG1 j

0r$~ f 22 f !@Gjk
0r~E2!

2Gjk
0a~E2!#eiDk j1e2 iDk j~ f 12 f !@Gjk

0r~E1!

2Gjk
0a~E1!#%Gk1

0a
…. ~48!

In the limit of small frequency, we expand Eq.~48! up to the
first order in frequency and use the fact that

G0r2G0a52 iG0rGG0a ~49!

and the Dyson equation

Gj i
0rGik

0r5
]Gjk

0r

]Vi
. ~50!

We obtain

JL5(
jk

qvVjVksin~Dk j!

2 E dE

2p
]Ef ~E!Tr$GLG1 j

0r~E!

3@Gjk
0r~E!2Gjk

0a~E!#Gk1
0a~E!%

52(
jk

iqvVjVksin~D jk!

2 E dE

2p
]Ef ~E!

3TrFGL

]G11
0r

]V j
GL

]G11
0a

]Vk
1GL

]G12
0r

]V j
GR

]G21
0a

]Vk
G , ~51!

which is the same as Ref. 1 whenu50.

III. RESULTS

We now apply our formula, Eqs.~24!, ~25!, and~48!, to a
TMR junction. For current perpendicular to the plane geo
etry, the TMR junction can be modeled by a one-dimensio
quantum structure with a double barrier potentialU(x)
5X1d(x1a)1X2d(x2a) where 2a is the well width. For
this system the Green’s functionG(x,x8) can be calculated
exactly.43 The adiabatic pump that we consider is opera
by changing barrier heights adiabatically and periodica
X15V01Vpsin(vt) and X25V01Vpsin(vt1f). In the fol-
lowing, we will study zero-temperature behavior of th
pumped current. In the calculation, we have chosenM
537.0 andV0579.2. Finally the unit is set by\52m51.42

We first study the pumped current with two pumping p
tentials in the adiabatic regime. Figure 1 depicts the tra
mission coefficientT versus Fermi energy at several anglesu
between magnetizations of ferromagnetic leads. In gene
all the transmission coefficients display the resonant feat
At u50 the resonance is much sharper. As expected, am
different angles,T is the largest atu50 and smallest atu
5p with the ratio Tmax(0)/Tmax(p);4. This gives the
usual spin-valve effect.32 Figure 2 plots the pumped curren
versus Fermi energy at different anglesu. Here we have se
the phase difference of two pumping potentials to bep/2.
Similar to the transmission coefficient, we obtain the larg
pumped current atu50 and the smallest current atu5p.
We found that the ratioI max(0)/I max(p) is about the same a
that of the transmission coefficient~see also the left inset o
7-5
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Fig. 2!. This demonstrates the spin-valve effect for t
pumped current. To understand this, we note that in the p
ence of the ferromagnetic leads, the electrons with spin
and down experience different potentials and hence gene
different currents for different spin. Hence, because of
difference in density of states for spin-up and -down el
trons, the pumped current is spin polarized. In addition
one varies the angle between magnetization in the ferrom
netic lead, the pumped current can be modulated by the a
u. As the pumping amplitude doubles, the peak of pump
current is broadened and the maximum pumped curren
nearly doubled~see the left inset of Fig. 2!. This broadening
is understandable since at large pumping amplitude the
stantaneous resonant level oscillates with a large ampli
and hence can generate heat current in a broad range o
ergy. The doubling effect of the pumped current, as pump
amplitude doubles, persists for larger pumping amplitu
The physics may be different from that of Ref. 5. For
adiabatic pump, the pumped current is sensitive to the c
figuration of the system. After the random average over
ferent configurations, Ref. 5 found that the pumped curr
scales as the square root of the pumping amplitude. F
chaotic system, Brouwer10 found similar results. However
our system is not chaotic. It is in the ballistic regime a
does not require the random average over a different c
figuration. However, since our pumping amplitude is n
large enough, we cannot rule out that the range of our pu
ing amplitude is in the intermediate regime. The spin-va
effect of pumped current is illustrated in the right inset
Fig. 2 where the pumped current versus the anglesu is
shown when the system is at resonance. We see tha
pumped current is maximum atu50 and decreases quickl
as one increasesu from 0 to p. For larger pumping ampli-
tude, we have similar behavior~not shown!. In Fig. 3, we
plot the pumped current, as a function of phase differencf
between two pumping potentials. We see that the pum
current is antisymmetric about thef5p. In the weak pump-
ing regime, the dependence of pumped current as a func

FIG. 2. The pumped current as a function of Fermi energy
different u: u50 ~solid line!, u5p/2 ~dot-dashed line!, andu5p
~dotted line!. Other parameters aref5p/2 andVp50.05V0. Left
inset: the same as the main figure exceptVp50.1V0. Right inset:
the pumped current as a function ofu. Heref5p/2, EF537.55,
andVp50.05V0. For the unit for the pumped current, see Ref. 4
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of the phase difference is sinusoidal.1 In Fig. 3, the nonlinear
behavior is clearly seen which deviates from the sinuso
behavior at small pumping amplitude, indicating the onse
the strong pumping regime. We also notice that the peak
the pumped current shifts to the largerf. In Fig. 4, we show
the pumped current in the presence of external bias. In
calculation we assume thatVL52vV/2 andVR5vV/2 so
that the external bias is against the pumped current whenV is
positive. Due to the external bias, the total pumped curr
~dashed line! decreases near resonant energy and reverse
direction at other energies. Now we turn to the case of fin
frequency pumping. We first present our results~Fig. 5–Fig.
7! at small pumping frequencyv50.002. In Fig. 5 we plot
the pumped current as a function of phase differencef near
the resonant energy. Atu50, the magnitude of pumped cu
rent is much larger than that atu5p/2 or p. This again
demonstrates the spin-valve effect for the pumped curren
finite frequency. We notice that atf50 and f5p, the
pumped current is nonzero, similar to the experimen
anomaly observed experimentally for a nonmagne
system.3 The pumped current away from resonant energy

t

.

FIG. 3. The pumped current as a function of phase differencf
at differentu. u50 ~dashed line!, u5p/2 ~dotted line!, andu5p
~solid line!. Other parameters areEF537.55 andVp50.05V0.

FIG. 4. The pumped current as a function of Fermi energy w
an external biasVL2VR520.02v at u5p. Solid line: pumped
current, dotted line: current due to external bias, dashed line: t
current. Heref5p/2 andVp50.05V0. For u5p/2 andu50 simi-
lar behavior is observed.
7-6
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shown in Fig. 6. Atu50, we see that the pumped current
sharply peaked at resonant energy. The pumped curre
positive for f5p/2 and negative forf50 and p. At u
5p/2 or p, the pumped current atf5p/2 ~dashed line! is
much larger than that at other angles~not shown!. Figure 7
displays the pumped current as a function ofu near resonan
energy. Forf5p/2 ~dotted line!, we see the usual behavio
that large pumped current occurs atu50 and it decreases t
the minimum atu5p. For f50 or p, however, we see
completely different behavior. The pumped current is the s
the largest atu50 but the direction of the pumped current
reversed. As one increasesu, the pumped current decreas
and reaches a flat region with almost zero pumped curr
Now we study the effect of frequency to the pumped curr
versusu @see Fig. 8~a!#. We will fix the phase difference to
be f5p/2 with energy near resonance. At small frequen
v50.002~dashed line!, the pumped current versusu shows
usual behavior. When the frequency is increased tov
50.004~dot-dashed line!, two peaks show up symmetricall
nearu56p/4 while the minimum is still atu5p. As fre-
quency is increased further tov50.006 ~dotted line!, the
pumped current nearu50 reverses the direction and the ne

FIG. 6. The pumped current as a function of Fermi energy
finite frequency atu50: Dotted line:f50, dashed line:f5p/2,
and solid line:f5p. Herev50.002.

FIG. 5. The pumped current as a function off at finite fre-
quency. Dashed line:u50, dotted line:u5p/2, and solid line:u
5p. HereEF537.55 andv50.002.
20532
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peak position shifts tou;0.35p. Upon further increasingv,
the curve of pumped current versusu develops a flat region
betweenu560.35p with positive current, while the magni
tude of the negative pumped current atu50 becomes larger

t

FIG. 7. The pumped current as a function ofu at finite fre-
quency. Here dashed line:f50, dotted line:f5p/2, and solid
line: f5p. Other parameters areEF537.55 andv50.002.

FIG. 8. The pumped current as a function ofu at different fre-
quencies.~a! v50.002~short dashed line!, 0.004~dot-dashed line!,
0.006~dotted line!, and 0.008~solid line!. ~b! v50.01 ~solid line!,
0.02 ~dot-dashed line!, 0.05 ~short dashed line!, and 0.1~dotted
line!. Other parameters areEF537.55 andf5p/2. Inset: the
pumped current as a function of frequency. Hereu50, f5p/2,
andEF537.55.
7-7
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@see Fig. 8~b!#. Finally, at even larger frequencyv50.1, all
the pumped currents are negative. This behavior can be
derstood from the photon-assisted process.19 The quantum
interference between contributions due to photon emiss
~or absorption! near two pumping potentials is essential
understand the nature of pumped current. In addition to
interference effect, the pumped current is also affected b
competition between the photon emission and absorp
processes which tend to cancel each other. It is the inter
between this competition and interference that gives rise
the interesting spin-valve effect for the pumped current.
the inset of Fig. 8~b!, we show the pumped current vers
pumping frequency atu50. We see that at small frequenc
the current is positive and small, and at large frequency
current is much larger and is negative.

In summary, we have extended the previous parame
electron pumping theory to include the spin-polarized pum
ing effect. Our theory is based on the nonequilibriu
Green’s-function method, is valid for multimodes~in two or
three dimensions!, and can be easily extended to the case
multiprobes ~although most of calculations are for tw
probes!. In the parametric pumping, two kinds of drivin
forces are present: multiple pumping potentials inside
scattering system as well as the external bias in the m
probes. Two cases are considered. In the adiabatic reg
the system is near equilibrium. In this case our theory is
general pumping amplitude. At finite frequency, the system
away from equilibrium. Our theory is up the quadratic ord
in pumping amplitude. This theory allows us to examine
pumped current in broader parameter space including pu
ing amplitude, pumping frequency, phase difference betw
two pumping potentials, and the angle between magnet
tion of two leads. From our numerical calculation, the sp
valve effect is clearly seen and the pumped current can
modulated by the angleu.
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APPENDIX

Now we show that

B[
1

tE0

t

dtE
2`

t

dt1Tr@F0~ t1 ,t !G~ t,t1!#

5
VaVb

4 E dE

2p
Tr$F0~E!F1~E!@F2~E1!eiDba

1e2 iDbaF2~E2!#F3~E!%, ~A1!

where

G[F1VaF2VbF3 ~A2!

andFi ’s ( i 50,1,2,3) satisfyFi(t1 ,t2)5Fi(t12t2).
Taking the Fourier transform
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F~ t !5
1

2pE dEe2 iEtF~E! ~A3!

we obtain

B5
1

tE0

t

dtE
2`

t

dt1E dE

2p
F0~E!e2 iE(t12t)E dxdy

3@F1~ t2x!Va~x!F2~x2y!Vb~y!F3~y2t1!#

5
1

tE0

t

dtE )
i 51,5

dEi

2p E dE

2pE2`

t

dt1E dxdy

ÃF0~E!F1~E1!Va~E2!F2~E3!Vb~E4!F3~E5!

3ei (E2E1)tei (E52E)t1ei (E12E22E3)xei (E32E42E5)y,

where

Va~E!5pVa@eifad~E1!1e2 ifad~E2!#. ~A4!

Integrating overx andy yields

B5
1

tE0

t

dtE )
i 51,5

dEi

2p E dE

2pE2`

t

dt1F0~E!

3F1~E1!Va~E2!F2~E3!Vb~E4!F3~E5!

3ei (E2E1)tei (E52E)t1~2p!2d~E12E22E3!

3d~E52E42E5!.

Integrating overt1 ,t and using Eq.~A4!, we have

B5E dE2

2p

dE4

2p

dE5

2p E dE

2p

F0~E!

i @E52E2 id#
F1~E21E4

1E5!Va~E2!F2~E41E5!Vb~E4!F3~E5!d~E21E4!

5
VaVb

4 E dE5

2p

dE

2p

F0~E!

i @E52E2 id#
F1~E5!@F2~E5

1v!eiDba1e2 iDbaF2~E52v!#F3~E5!.

Now we look at Eq.~33!, where there are two cases:~i! F0

5Sa and G5G11
(2), @see Eqs.~A2! and ~36!# and ~ii ! F0

5S, and G5G11
(2)r . In case~i! sinceF0 is analytic in the

lower half plane, we use the theorem of residue to obtain

E dE
F0~E!

i @E52E2 id#
52pF0~E5! ~A5!

and we thus obtain Eq.~A1!. For case~ii ! G is analytic in the
upper half plane, we have

E dE5

G~E5!

i @E52E2 id#
52pG~E!, ~A6!

so Eq.~A1! remains.
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40M. Büttiker, J. Phys.: Condens. Matter5, 9361~1993!.
41T. Gramespacher and M. Bu¨ttiker, Phys. Rev. B56, 13 026

~1997!.
42For the system of Fe/Ge/Fe witha5100A, the energy unit isE

54.64 meV which corresponds to frequencyv51.131012 Hz.
The unit of the pumped current in the adiabatic regime depe
on the pumping frequencyv. If v5100 MHz, then the pumped
current is 1.6310211 A. For pumped current at finite frequenc
the unit of current is 231026 A.

43M.K. Yip, J. Wang, and H. Guo, Z. Phys. B: Condens. Matter104,
463 ~1997!.
7-9


