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Spin-polarized parametric pumping: Theory and numerical results
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We have extended the previous parametric electron pumping theory to include the spin-polarized pumping
effect. Specifically, we consider a parametric pump consisting of a nonmagnetic system with two ferromagnetic
leads whose magnetic moments orient at an afigléth respect to each other. In our theory, the leads can be
maintained at different chemical potentials. As a result, the current is driven due to both the external bias and
the pumping potentials. When bothand the external bias are zero, our theory recovers the known theory. In
particular, two cases are consider€d:in the adiabatic regime, we have derived the pumped current for an
arbitrary pumping amplitude and external bias &ndat finite frequency, the system is away from equilibrium,
and we have derived the pumped current up to quadratic order in pumping amplitude. From our numerical
results we found that the pumped current can be modulated by the éngleowing interesting spin-valve
effects.
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I. INTRODUCTION function approach and focused on current perpendicular to
plane geometry. The parametric pump generates current at
Recently, there has been considerable interest in parametero external bias. It would be interesting to see the interplay
ric pumping:~?°The parametric pump is facilitated by cyclic of the role played by the pumping potential and external bias
variations of pumping potentials inside the scattering systenif the leads are maintained at different chemical potentfals.
and has been realized experimentally by Switkeal®> On ~ Hence in our theory, the external bias is also included. In the
the theoretical side, much progress has been made towar@giabatic regime, the pumped current is proportional to
understanding various features related to the parametrigumping frequency. In this regime, we have derived the
pump. This includes quantization of the pumpedparametric pumping theory for finite pumping amplitude. At
charge?®?*?5 the influence of discrete spatial symmetriesthe finite pumping frequency, the system is away from equi-
and magnetic field, the rectification of displacement librium, and we have performed perturbation up to the sec-
current’® as well as inelastic scatterifigo the pumped cur- ond order in pumping amplitude and obtained the pumped
rent. The concept of an optima| pump has been propose@.,ll'rent at finite frequencies. Our theory allows one to StUdy
with the lower bound for the dissipation derivdWithin ~ the pumped current for a variety of parameters, such as the
the formalism of time-dependent scattering matrix theory, théumping amplitude, pumping frequency, phase difference
heat current and shot noise in the pumping prodegsg+?’  between two pumping potentials, the angular dependence be-
has also been discussed. Recently, the original adiabath®een the magnetization of two leads, as well as the external
pumping theory has been extended to account for the effedias. We have applied our theory to a tunneling magnetore-
due to finite frequency#® Andreev reflection in the pres- Sistance (TMR) junction® Due to the reported room-
ence of superconducting leatf& and strong electron inter- temperature operation of TMR, the fundamental principle
action in the Kondo regim& This gives us more physical and transport properties of TMR devices have attracted in-
insight into parametric pumping. For instance, the expericreasing attentiof® From our numerical results we found
mentally observed anomaly of pumped currentpat0 and  that the pumped current can be modulated by the angle
é=m can be explained using finite frequency thé8rgs  showing interesting spin-valve effects. The paper is orga-
due to the quantum interference of different photon-assistefiized as follows. In Sec. Il, we derive the general theory of a
processes. When a superconducting lead is present, the int@@rametric pump in the presence of ferromagnetic leads. The
ference between the direct reflection and multiple Andree\lumerical results and summary are presented in Sec. IIl.
reflections gives rise to an enhancement of pumped current
which is four times that of the normal systéthlt will be Il. THEORY

interesting to further ext_end the parametric theo.ry to the case The system we examine consists of a nonmagnetic system
where the ferromagnetic leads are present. With the theony,nnected by two ferromagnetic electrodes to the reservoir.
extended, much different physics is foresBewhich may gy, magnetic momeri of the left electrode is pointing in
lead to operational paradigms for future spintronic devices. the z direction, the electric current is flowing in thedirec-

In this paper, we have extended the previous parametric eleﬁ'on while the’ moment of the right electrode is at an argjle
tron pumping theory o include the spin-polarized pumpingto tk,1ez axis in thex-z plane(see the inset of Fig. 1 for a

gffect. Specifically, we consider a parametric pump .ConSiStéchematic picture The Hamiltonian of the system is of the
ing of a nonmagnetic system with two ferromagnetic Ieadsrollowing form:

whose magnetic moments orient at an arglgith respect to
each other. Our theory is based on a nonequilibrium Green'’s- H=H_+Hg+Ho+Vy+Hr, 1)
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not in the Coulomb blockade regime. In addition, for the
] nonmagnetic regions in which we are interested, the Kondo
i effect can be neglected.

To proceed, we first apply the following Bogoliubov
transformatiof to diagonalize the Hamiltonian of the right
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02 from which we obtain the effective Hamiltonian
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FIG. 1. The transmission coefficient as a function of Fermi en-
ergy at different angleg between the magnetizations of two leads: 0
0=0 (dashed ling 6= /2 (solid line), and 6= (dotted ling. Hi=>, [TkanlL(,dm,Jr TkRn( COSECERU
Inset: schematic picture of the system. no

(%
whereH, andHg describe the left and right electrodes, —crsinEClR; d,,tc.c.|. 9
. In the following subsections, we will consider two casg@s:
HL:% (ekL+oM)Ch oCkio 2 parametric pumping in the low-frequency limit with finite

pumping amplitude andii) pumping in the weak pumping
limit with finite pumping frequency.
Hr=2> | (€xrt oM €OSO)Clg,Chry
ko A. Pumping in the low-frequency limit
In this subsection, we examine the pumping current at the
+ 2, M sin6[clr,Curol- (3 low-frequency limit while maintaining the pumping ampli-
ko tude finite. In this limit, the system is nearly in equilibrium
and we will use the equilibrium Green’s functf§n®® to
characterize the pumping process. Using the distribution
function, the total charge in the system during the pumping is
given by

In Eqg. (1), Hy describes the nonmagnetiblM) scattering
region,

Ho=2, €ntln g (4)
Q0= —ia [ (AERM[G*(ENVOD T, (10

V,, is the time-dependent pumping potential aHd de- _ o

scribes the coupling between electrodes and the NM scattewhere G is the lesser Green's function in real spage,

ing region with hopping matriq,,,. To simplify the analy- labels the position, an@lV(t)} describes a set of external

sis, we assume the hopping matrix to be independent of spiparameters which facilitates the pumping process. Within a
index, hence Hartree approximatiorG = is related to the retarded and ad-
vanced Green’s function8" and G2,

Hr= 2 [TeanChano+c-C1. © G=(EV) =G (EV)i S Tt (E)G(E.{V}),

In these expressiong, = €. +qV, with a=L,R; ¢/, (with (1)
o=1,] or =1, ando= — o) is the creation operator of elec- Wheref,(E)=f(E—qV,). In the low-frequency limit, the
trons with spin index inside thea electrode. Similarlyd!, ~ retarded Green's function in real space is given by

is the creation operator of electrons with spinat energy

level n for the NM scattering region. In writing Eq&2) and G'(E,{X})=
(3), we have made a simplification that the value of the mo- '
lecular fieldM is the same for the two electrodes, thus the , . fo
spin-valve effect is obtain@@lby varying the angle. Essen- WhereX'=2 .3 is the self-energy, anli, = —2Im[X,] is
tially, M mimics the difference of the density of states be-the linewidth function. In the above equatiorB;®~ de-
tween spin-up and -down electrdfi the electrodes. In this notes a 22 matrix with matrix eIementﬁgff, and o
paper, we only consider the single electron behavior. The=T,T. V=Vl wherel is a 2xX2 unit matrix in the spin
charge quantization is not considered so that our system space. In a real-space representatignis a diagonal matrix

1

T E——— (12)
E—Ho—V,—3'
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describing the variation of the potential landscape due to the dNg
e;gernal pumping paramet&t. The self-energies are given de(t)=CIf dE% (ﬁEfﬁ); av. Vi, (18)
by*® i
where we have used the injectivity
L [T 0
2;(E)=Ra( - )RL (13 ANy 1 »
al @, " 2x MG TG Aj]. (19
and Using the partial density of statesN,s/dV; defined ad
re, 0 dN,; 1
S(B)=if R R! 14 9~ THGT.GA,
3 (BE)=if R, ro, | Re (14) av, 1 TMGT,G'Aj+c.clo,,
- i e i 1
with the rotational matrixkR, for electrodex defined as i ETr[iGrFaGaFﬁGrAjJrc.c.] (20)
qo| COSUI2  sindal2) (15  With £,dN,/dV;=dN4/dV;, we obtain
—sind,/2 cosh,/2
dN,g
Here angled,, is defined asd, =0 and g=6,3",, is given dQpu(t)= —QJ dE% (—defp) 2 av. Vil
i i
by (21)
E I If we include the charge passing through contaatiue the
3 =D —— 16)  external bias, then
"M X E-&, i (19
dN,z dVi(t)
andT% =-21Im(3',) is the linewidth function whery an(t):—CIf dE% (—0efp) 2 dv_ﬁ dlt
=0. ] i

In order for a parametric electron pump to function at low
frequency, we need simultaneous variation of two or more —QJ dED, THI,GT,G(f,—fpdt. (22)
system parameters controlled by gate voltaggsét) =Vig P
+Vj,coswt+¢;). Hence, in our case, the potential due to theFurthermore, the total current flowing through contaaue
gates can be written a#,= 2;V;A;, whereA; is the poten-  to both the variation of parametev§ and external bias, in
tial profile due to each pumping potential. For simplicity we one period, is given by
assume a constant gate potential such tAg} |, is one forx
in the first gate region and zero otherwise. If the time varia-
tion of these parameters is slow, i.e., forf(t)=V,
+ 6V cos(t), then the charge of the system coming from all i ) ) o
contacts due to the infinitesimal change of the system paran{Vhére7= 27/ is the period of cyclic variation. If there are

1 (7
JE,:—J dtdQ, /dt, 23)
TJo

eter (3V—0) is two pumping parameters, ER3) can be written as when
a=1,
dQp(1)=2 v, TITQ(X,1)]8V;(1). (17) w_ 9 f f - dNy; dVj(t)
. IP=o-| dt| dE de(f1—f5)> av, dt
It is easily seen that the total charge in the system in a period ANy, dV;(t)
is zero which is required for the charge conservation. To 127 }
calculate the pumped current, we have to find the charge dv; dt
dQp. passing through contaet due to the change of the q
system parameters. Using the Dyson equationG' — —J dtJ dETI TG’ T,G*(f1—f5) (24
=G"A,G', the above equation becomes 7
and
dQ,(t)=q>, fd—EE T G'A;G'T,G? q dNy; dVi(t)
P ™ ] 2m ) ()= 1 —
i 7 3§ 27J dtdeaE(fﬁ—fz); {dvj T
+G'TsG*A;G?]f 4(E) 6V(1)
dNj, dVj(t)
= dE > > LT3[ GT 4G A1) 6V dv; dt |7 29
=-a) 5- = 2 Tp r(e GG Aj]) 6V(1), i

whereJd;=J{V+ 3 In Ref. 22,3(Y) has been identified as
where the wideband limit has been taken. Integrating by parthe current due to the external bias add as pumping
we obtain current. Ford=0,m, all of the 2Xx2 matrix is diagonal. In
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this case, it is easy to show that E@3) agrees with the

1
result of Ref. 22. If the external bias is zero, E23) reduces GY(E)= — (349
to the familiar formuld when there are two pumping poten- E-Ho—X
tials,

and G°< is related to the retarded and advanced Green's

qo (= [dN, dX; dN, dX, functionsG® and G% by
Jw‘ﬂfo ax, at Tax, dat %
G<(E)=G"(E)X~(E)G%(E). (35
B. Finite frequency pumping in the weak pumping limit Now we make use of the time-dependent pumping potentials

In this subsection, we will calculate the pumping currentVj(t) as the perturbations to calculate all kinds of Green’s
at finite frequency. The Keldysh nonequilibrium Green’s-functions up to the second order, and corresponding average
function approach used here is in the standard tight-bindingurrent.
representatiof® We could not use the momentum space ver- First, we calculate the current corresponding to the term
sion because the time-dependent perturbafarmping po-  Gi4(t,t;) 2 (t1,t) in Eqg. (33). The Dyson equation for
tentia) inside the scattering region is position dependentG’(t,t;) gives the second-order contribution
Hence it is most suitable to use a tight-binding real-space
technique. In contrast, in previous investigatinon
photon-assisted processes the time-dependent potential is Gi7" (t, 'fl)— j dedyG [(t=X)V;(X) G (x—y)
uniform throughout the dot and therefore a momentum space
method i; easier to apply. . XVk(Y)Gki(y—tl)

Assuming the time-dependent perturbations located at the
different sitesj =ig, jo, andkg, etc. with Ezk G?EVJG?{VkGEE- (36
Vj(t)=V,cog wt+ ¢)). (27) .

When there is no interaction between electrons in the ideal Substituting Eq.(36) into Eqg. (33) and completing the
leadsL andR, the standard nonequilibrium Green’s-function integration over timex,y,t,,t, it is not difficult to calculate
theory gives the following expression for the time-dependenthe average current], ;) due to the first term in Eq(33)
current?’ (see the Appendix for detajls

t
Ja(t):_qf_mdtlTr[Gr(tvtl)Ea(tl!t)+G (t,tl)Ea(tl,t) <JL1(I)>— 2 q f_.l_ {2<G ]-Okr(E,)eiAkj

+c.c.
el 29 G,-k’<E+>e-'Akj]Gﬁ’5 , @)
and a transmission coefficient
whereA ;= ¢ — ¢; is the phase differenc&.=E* o, and
T(E)=Ti{I{(E)G'(E)TR(E)G*E)], (29 Ggrac=Gras(E).

where the scattering Green’s functions and self-energy are Now we calculate the second ter@iy(t,t;) 2{(ty,t) in

defined in the usual manner: g. (33). Using the Keldysh equatiorG==G'3%~G?, we
have
Gijop(t,t) = Fio(=t Ft)({d; o(t1).d . (12)}), et aea
(30 Gjk=Gj12( Gl + Gjn2r Gl (38)
G;,,,,r(tl,tz)=i<dj+,,r(tz)di,o,(t1)>a (31  where3; =il,f,. ExpandingG"® up to the second order

in pumping parameters, we obtain the second-order contribu-

H <
sra _E . ra . tion from Gy,
aij (t1,tp)= - TakiTakiGa " (t1,t2). (32

G(2)< Gr12<Ga1+ GrN2<GN1
The average currerd (t) from the left lead can be writ-
ten as g nIL( ) (2)r2L G (1)r2L G(l)a EL G(Z)a
+ OGN + oz ol ozl
(JL(t))=— —f dtf Aty T G 4(t,t) 2 (t,1)

—2 [GIV +GYV, GV Gre
+Gr(tt) 2ty ) +ecl. (33
i . G V G v, Goa
In the absence of pumping, the retarded Green’s function
is defined in terms of the Hamiltoniad,, =0,+03+04, (39
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where we have used E¢38) to simplify the expression.
Plugging Eq.(39) into Eq. (33) and after some algebra, we

PHYSICAL REVIEW B6, 205327 (2002

ViV, [ dE
JL=i_Ek = kf > TrN G {(f-~HGR(E.)

have the following three expressions corresponding to each

term in Eq.(39),

(J,»)=the term correspondingdg in Eq. (39)
= 2

+e ' MGH(EL)1GRy (40

qV;Vi

dE
J—T{EaG(l’J’[G (E_)e'%

qV,V, [ dE o
<JL3>=—Zk 1 J%Tr{EfGEE[G(’f(E,)e'AkJ

+e MGHT(EL)]IGIE (41)

qV,V, [ dE o
<JL4>=—JEk i f 5, THEIGY [GRI(E e
e "MGR(EL) ]G (42

The final pumped current is the sum of E37), (40)—(42),

and their complex conjugates, in addition to the current di- =

rectly due to the external bidsee second term of ER4)].

If the external bias is zero, the expression of the pumped
current can be simplified significantly. Note that in the equi-
librium, the lesser Green’s function satisfies the fluctuation-

dissipation theorem,
G~ (E)=—f(E)[G”"(E)—G™(E)] (43)
and
G°“(E-)=—f(EL)[G”(E.)—G*(E.)]. (44
Egs.(37), (40), and(42)* lead to

qV;Vi

_,2

jd—ETrFGfEG E_)e' k]
5 DG f(E)GH(E-)e

e"AkiG%(EJ,)]GEf : (45
while Egs.(37), (40)*, and(42) give

qV;Vi

DY

dE .
fZTr{FLG‘ﬂf(E)[Gﬂf‘(E_)e'AkJ

e ' MGHY(E)]GE (46)

Furthermore, Eq(41) plus the complex conjugate be-

comes

> TR [ S eyt [GH(E )~ GR(E e

+ e HAkf [G (E,)— ?[?(E-F)]}GE?' (47)

wheref.=f(E.).
Combining Eqs(45)—(47), we finally obtain

(E y]e'2ki+ e Aki(f, —f)[G "(EL)

(EDIGRY). (48)

In the limit of small frequency, we expand E@8) up to the
first order in frequency and use the fact that

G —G%=—iGoTG (49)
and the Dyson equation
i
GGl = avj . (50)
We obtain
quJVkSIH(AkJ) dE 0
Jﬁ% ff Z&Ef(E)Tr{FLGlg(E)
X[GH(E)—GJA(E)IG(E)}
|qu VkS|n(A k)
—E —JJ— Jef(E)
9GY, oG oGy, aGHR
SR S VAR R VR b

which is the same as Ref. 1 whér=0.

Ill. RESULTS

We now apply our formula, Eq$24), (25), and(48), to a
TMR junction. For current perpendicular to the plane geom-
etry, the TMR junction can be modeled by a one-dimensional
quantum structure with a double barrier potentid(x)
=X,8(x+a)+ X,8(x—a) where 2 is the well width. For
this system the Green'’s functidd(x,x’) can be calculated
exactly*® The adiabatic pump that we consider is operated
by changing barrier heights adiabatically and periodically:
X1=Vo+Vsin(wt) and X,=V,+V,sin(wt+¢). In the fol-
lowing, we will study zero-temperature behavior of the
pumped current. In the calculation, we have cho$én
=37.0 andV,=79.2. Finally the unit is set bff=2m=1.%

We first study the pumped current with two pumping po-
tentials in the adiabatic regime. Figure 1 depicts the trans-
mission coefficienT versus Fermi energy at several angles
between magnetizations of ferromagnetic leads. In general,
all the transmission coefficients display the resonant feature.
At 6=0 the resonance is much sharper. As expected, among
different anglesT is the largest ab=0 and smallest ap
= with the ratio T,,,{(0)/Tnad™)~4. This gives the
usual spin-valve effect Figure 2 plots the pumped current
versus Fermi energy at different anglésHere we have set
the phase difference of two pumping potentials to7he.
Similar to the transmission coefficient, we obtain the largest
pumped current at=0 and the smallest current &t .

We found that the ratib,,;,{0)/l ax(7) IS about the same as
that of the transmission coefficie(gee also the left inset of

205327-5



WU, WANG, AND WANG PHYSICAL REVIEW B 66, 205327 (2002

010 . . . . 012 r . . . . .
0.09 | i 010 i
0.08 g , ]
0.08 i
. 007 g omf ]
E 006 E o002/ ]
3]
g 005 2 000 ]
13 = .
g oo g 002
£ o € -004 ]
0.03 N 0.08 ]
0.02 Y -0.08 | 1
0.01 g i 010 1
0.0 T e | | T TS L 1 I 1 ! !
37.2 37.3 37.4 875 376 377 7.8 0 1 2 3 4 5 6 7
Energy 1

FIG. 2. The pumped current as a function of Fermi energy at |G- 3- The pumped current as a function of phase differefice
different 6: 9=0 (solid line), 6= /2 (dot-dashed ling andg= 2 differentd. 6=0 (dashed ling 6=/2 (dotted ling, and 6=
(dotted ling. Other parameters arg=m/2 andV,=0.05V,. Left (solid line). Other parameters ag:=37.55 andv,,=0.05/,.

inset: the same as the main figure except=0.1V,. Right inset: . L . . .
the pumped current as a function 6f Here ¢= /2, E, = 37.55 of the phase difference is sinusoidah Fig. 3, the nonlinear

andV,=0.05V,. For the unit for the pumped current, see Ref. 42. behavior is clearly seen which deviates from the sinusoidal
behavior at small pumping amplitude, indicating the onset of
Fig. 2. This demonstrates the spin-valve effect for thethe strong pumping regime. We also notice that the peak of
pumped current. To understand this, we note that in the pre¢he pumped current shifts to the larggr In Fig. 4, we show
ence of the ferromagnetic leads, the electrons with spin ughe pumped current in the presence of external bias. In the
and down experience different potentials and hence generag&iculation we assume that = — »V/2 andVg=wV/2 so
different currents for different spin. Hence, because of thdhat the external bias is against the pumped current Whisn
difference in density of states for spin-up and -down elecositive. Due to the external bias, the total pumped current
trons, the pumped current is spin polarized. In addition agdashed lingdecreases near resonant energy and reverses the
one varies the angle between magnetization in the ferromaglirection at other energies. Now we turn to the case of finite
netic lead, the pumped current can be modulated by the angfeequency pumping. We first present our resife. 5—Fig.
6. As the pumping amplitude doubles, the peak of pumped) at small pumping frequency=0.002. In Fig. 5 we plot
current is broadened and the maximum pumped current ig1e pumped current as a function of phase differepagear
nearly doubledsee the left inset of Fig.)2This broadening the resonant energy. At=0, the magnitude of pumped cur-
is understandable since at large pumping amplitude the incent is much larger than that &= #/2 or 7. This again
stantaneous resonant level oscillates with a large amplitudéemonstrates the spin-valve effect for the pumped current at
and hence can generate heat current in a broad range of dinite frequency. We notice that ab=0 and ¢=, the
ergy. The doubling effect of the pumped current, as pumpinggumped current is nonzero, similar to the experimental
amplitude doubles, persists for larger pumping amplitudeanomaly observed experimentally for a nonmagnetic
The physics may be different from that of Ref. 5. For ansystent. The pumped current away from resonant energy is
adiabatic pump, the pumped current is sensitive to the con-
figuration of the system. After the random average over dif-
ferent configurations, Ref. 5 found that the pumped current

: ) 0.020
scales as the square root of the pumping amplitude. For ¢
chaotic system, Brouw#t found similar results. However, _ 0.015
our system is not chaotic. It is in the ballistic regime and ¢
does not require the random average over a different cond

figuration. However, since our pumping amplitude is not &
large enough, we cannot rule out that the range of our pump-§ 0,005
ing amplitude is in the intermediate regime. The spin-valve

effect of pumped current is illustrated in the right inset of 09
Fig. 2 where the pumped current versus the angleis
shown when the system is at resonance. We see that th
pumped current is maximum &=0 and decreases quickly
as one increase$ from 0 to 7r. For larger pumping ampli-
tude, we have similar behavignot shown. In Fig. 3, we FIG. 4. The pumped current as a function of Fermi energy with
plot the pumped current, as a function of phase differefice an external bias/, —Vg=—0.02» at 6==. Solid line: pumped
between two pumping potentials. We see that the pumpeglurrent, dotted line: current due to external bias, dashed line: total
current is antisymmetric about tlye= 7. In the weak pump-  current. Herep= /2 andV,=0.05V,. For = /2 andg=0 simi-

ing regime, the dependence of pumped current as a functidar behavior is observed.

1 1 1 1 1 1 1 1 1
370 371 372 373 374 375 376 377 378 379 38.0
Energy
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FIG. 7. The pumped current as a function @fat finite fre-
quency. Here dashed lineb=0, dotted line:¢p=#/2, and solid
line: ¢= . Other parameters afe-=37.55 andw=0.002.

FIG. 5. The pumped current as a function @fat finite fre-
quency. Dashed line#=0, dotted line:#==/2, and solid line:f
=1. HereEg=37.55 andw=0.002.

shown in Fig. 6. At4=0, we see that the pumped current is peak position shifts t¢~0.357. Upon further increasing,
sharply peaked at resonant energy. The pumped current i8e curve of pumped current versasdevelops a flat region
positive for ¢=m/2 and negative forp=0 and . At 6 betweend= + 0.357 with positive current, while the magni-
=7/2 or 7, the pumped current at= /2 (dashed lingis  tude of the negative pumped currenttat 0 becomes larger
much larger than that at other anglg®t shown. Figure 7

displays the pumped current as a functiordafear resonant . . . .
energy. Forgp= 7/2 (dotted ling, we see the usual behavior
that large pumped current occursét O and it decreases to
the minimum até= . For =0 or 7, however, we see
completely different behavior. The pumped current is the still §
the largest ab=0 but the direction of the pumped current is
reversed. As one increas@s the pumped current decreases
and reaches a flat region with almost zero pumped currentg
Now we study the effect of frequency to the pumped current®
versus# [see Fig. 8)]. We will fix the phase difference to

be ¢= /2 with energy near resonance. At small frequency
®w=0.002(dashed ling the pumped current vers#sshows

0.0001

0.0000 |

ped Curr

-0.0001

-0.0002

usual behavior. When the frequency is increasedwto 0 1 2 3 4 5 6 7
=0.004(dot-dashed ling two peaks show up symmetrically &
near = = 7r/4 while the minimum is still ath= 7. As fre-
guency is increased further t©=0.006 (dotted ling, the 0.000 ]
pumped current near= 0 reverses the direction and the new
. . . -0.001 .
10 i 8 y
ol it ] s Fa = 0000 AU
i 3 0002 L B oo RN
- [ R I3 (3] \
- ¢ i E i 3 -0002 '*.“
§ 4 / A 5 0003 Y
3 Ll -0.008 |/ Ve
3 i 00056 601 002 008 004 Y
g o . \
E .
& 2t -0.004 ' : ' ] ' '
0 1 2 3 4 5 6 7
-4} 5]
or FIG. 8. The pumped current as a functionéht different fre-
4.2 P 374 375 376 377 a7s  quencies(a) w=0.002(short dashed ling 0.004(dot-dashed ling
Energy 0.006(dotted ling, and 0.008solid line). (b) w=0.01(solid line),

0.02 (dot-dashed ling 0.05 (short dashed line and 0.1(dotted
FIG. 6. The pumped current as a function of Fermi energy atine). Other parameters arEr=37.55 and ¢=m/2. Inset: the
finite frequency at¥¥=0: Dotted line:¢=0, dashed linegp= /2, pumped current as a function of frequency. Hére0, ¢= /2,
and solid line:¢p=m. Herew=0.002. andEg=37.55.
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[see Fig. &)]. Finally, at even larger frequeney=0.1, all 1 ,

the pumped currents are negative. This behavior can be un- F(t)= ﬂf dEe 'F'F(E) (A3)
derstood from the photon-assisted procésshe quantum

interference between contributions due to photon emissiope optain

(or absorptioh near two pumping potentials is essential to

understand the nature of pumped current. In addition to the 107 [t dE

interference effect, the pumped current is also affected by a pB= _f dtJ’ dtlJ —FO(E)e*‘E(‘ft)J dxdy
competition between the photon emission and absorption TJo — 2

processes which tend to cancel each other. It is the interplay

between this competition and interference that gives rise to X IR0V () F(X=y)Vp(Y) Faly ~ty)]

the interesting spin-valve effect for the pumped current. In 1(~ dE; [ dE [t

the inset of Fig. &), we show the pumped current versus = ;fodtf qsﬁf ZJ dtlf dxdy
=1, —0o0

pumping frequency a#=0. We see that at small frequency
the current is positive and ;mall, arjd at large frequency the XFo(E)F1(E1)V o(Ex)Fa(E3)V 5(E4)F(Es)
current is much larger and is negative.

In summary, we have extended the previous parametric
electron pumping theory to include the spin-polarized pump-
ing effect. Our theory is based on the nonequilibriumWhere
Green's-function method, is valid for multimodéa two or ) )
three dimensions and can be easily extended to the case of V (E)=nV [e?%SE,)+e %5(E_)]. (A4)
multiprobes (although most of calculations are for two
probeg. In the parametric pumping, two kinds of driving  Integrating overx andy yields
forces are present: multiple pumping potentials inside the

scattering system as well as the external bias in the multi- 1(r dE; [ dE [t
Joot) M2z 22 ) aveoe)

x el (E~E)tgi (Es~ BNty i (Ey—Ep~Eg)xgi(Eg—E4—Es)y

probes. Two cases are considered. In the adiabatic regime, B= p o
5

the system is near equilibrium. In this case our theory is for

general pumping amplitude. At finite frequency, the system is X F1(E1)V o E2)Fa(E)V 4(E4)Fs(Es)
away from equilibrium. Our theory is up the quadratic order , ,
in pumping amplitude. This theory allows us to examine the X ' (B-Edtel(Bs~B)ty( 2 )2 5(E; — E, — Ej)

pumped current in broader parameter space including pump-
ing amplitude, pumping frequency, phase difference between
two pumping potentials, and the angle between magnetiza- ) .
tion of two leads. From our numerical calculation, the spin-  Integrating ovet, ,t and using Eq(A4), we have
valve effect is clearly seen and the pumped current can be

modulated by the anglé. j dE; dE,4 dEsJ’ dE  Fo(E)

~ ) 27 27 27 ) 27 i[Ee—E—i0]

X 5(E5_ E4_ E5)

Fi(Ex+E,
ACKNOWLEDGMENTS
+Es5)Vo(Eo)Fa(Es+Es)V(E4) F3(Es) S(Ex+ Ey)
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+w)eiABa+ eiiAﬁan(Es_w)]Fg(Es).
APPENDIX Now we look at Eq.(33), where there are two casd$) Fy
Now we show that =32 and G=G{?~ [see Egs(A2) and (36)] and (i) F,
=3< andG=G{". In case(i) sinceF, is analytic in the

1~ t H H
_ ;f dtf At T Fo(t ) G(tty)] lower half plane, we use the theorem of residue to obtain
0 — o0

Fo(E)
Vv,V dE ) f dE——F==27wFy(E A5
== 'Bf 5= TH{Fo(E)FL(E)[Fy(E)e' s i[Es—E—id] o(Es) (AS)
Lo ilg, and we thus obtain E¢AL). For casdii) G is analytic in the
& pFa(E)IFS(E), (A1) upper half plane, we have
where
G(Es)
G=F,V_F,VsF A2 -
1VaFaVgFs (A2) f dE5i[E5_E_i5] 27G(E), (AB)
andF;’s (i=0,1,2,3) satisfyF;(t;,t,)=F;(t;—1t5).
Taking the Fourier transform so Eq.(Al) remains.
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