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Heat current in a parametric quantum pump
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We investigate the heat flow in the parametric quantum pump. Using the time dependent scattering matrix
theory, we have developed a general theory for the pumped heat current at finite pumping amplitude and
frequency. We have applied our theory to a double barrier structure and studied pumped heat current in both the
weak and strong pumping regimes as different system parameters vary. By comparing the pumped heat current
and the power of Joule heat generated in the system, we found that the double barrier structure can function as
an optimal pump in the strong pumping regime.

DOI: 10.1103/PhysRevB.66.125310 PACS nuniber73.23.Ad, 73.40.Gk, 72.10.Bg, 74.5.

The physics of adiabatic quantum pump has attracted We start with the general definition for the heat current in
great attention recently:*® The quantum pump is realized by scattering matrix theors’
varying the geometric parameters of the quantum dot, by At
which the current is generated. At the same time, heat current lg.a= JiM 1 dt(fq ah )
is also produced and accompanied with the dissipation. A=At '
Avron et al!® have given a lower bound for the dissipation in where the heat current operatorIA'@a:TE,a— EFTe,a and
a quantum channel which is defined as the difference bq- . ) denotes the guantum average. HA&E%{ is the energy
tween the heat current and the power of Joule heat. Theyrrent operator given by '
pump is optimal if the heat current equals the power of Joule
heat!® As a result, the optimal pump is noiseless and charge Te.=—i[ab ()b, (1) —dal(t)a,(t)] 2
transported is quantized. In a recent paper, Moskalets and . )
Buttiker?® have also considered the dissipation in an adia@"dle,« is the electric current operator,
batic quantum pump. The heat current and the noise have A A A A -
been formulated in terms of a parametric emissivity matrix. Ieva:bz(t)ba(t)_al(t)aa(t)' )
The theory of Moskalets and Buttiker is in the weak pump-yhere the operatorfs, anda, are annihilation operators for

ing regime(quadratic order in pumping amplitudand can e outgoing and incoming carriers in the lead They are
go to the finite frequency if one goes beyond the hypothesigg|ated by the scattering matrix,

of instant scattering. In this paper, we develop a general

theory for the heat current which is valid for finite pumping - _ , S

amplitude and finite frequency. This allows us to study the ba(t)_§ dt’s,g(t,t)ag(t’), )

heat current in both weak and strong pumping regimes. Our . . o

theory is based on the time dependent scattering matri¥here the time dependence of the scattering matrix is due to
theon?®® and goes beyond the instant scattering hypothesigh€ slowly time-varying pumping potenti(t). The distri-

We have applied our theory to a double barrier structure angution ;%”Ct'on can be obtained by taking the quantum
studied pumped heat current as different system paramete"f‘%’erag '
such as Fermi energy, pumping amplitude, and phase differ- X PINCOR o
ence vary. In the weak pumping regime, the pumped heat (au(B)ag(E"))=0,p8(E—E")fo(E), ®)
current increases quadratically as pumping amplitude inyherea, (E) is the Fourier transform od,(t) and f(E) is
creases. The dependence becomes linear in the strong pumiRe Fermi distribution function. For the purpose of presenta-
ing regime. In the strong pumping regime, the pumped heajon, we calculate the energy current first and the electric
current shows strong nonlineality as a function of phase diftyrrent can be calculated in a similar fashion. From E2ps.

ference between two pumping potentials. The heat currens) and(s), the energy current is given by
for single pump has also been studied. We found that the

amplitude of the pumped heat current for the single pump is T At

of the same order as that of two pumping potentials. Re- o= AltlmocAt 0 dt dtldt2zﬁ Sap(tila)

cently there has been a concern regarding the existence of a

genuine optimal pump with nonvanishing transmission xf(tl—tz)&tslﬁ(t,tz)— f g—EEf(E), (6)

coefficient?! In this paper, we give a nontrivial example of

optimal pump. By comparing the pumped heat current andvheref(t)= [ (dE/2m)exp(—iEt)f(E). Now we will focus on
the power of Joule heat generated in the system, we founie first term(denoted ast,(gly)a) in Eq. (6). After changing of
that the double barrier structure is an optimal pump in thethe variablety=(t;+1t,)/2 andr=t;—t, and using the fol-
strong pumping regime. lowing Wigner transform for the scattering matfix:
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de . t+t’

s(tt)= | 5_e s e, - (7

Eq. (6) becomes,
) _ ([
IE'L:Alt@MWZAth dtf dtpdrdederf(7)

x g~ iei(t—to=712)giex(t—to+7/2)
t+to t t+io

X% Saﬁ(el*T+ZT &tsaﬁ(fz' 2 _i

. t+t

Changing the variables again te;=t—t, and t'=(t
+15)/2 and integrating over;, we obtain

. At
1) — i —i / /
1), dm s _mdt dee% Saplet' +TI8)f(7)
X[(12)dpshp(et’ — i) +ieshz(et’ — /4)]e'".

9

To get the heat current up 0?, it is enough to expane, s
up to the second order in We obtain

P fT”dde Eaf
E'a__87TTp 0 t [_ aE]

1
:
X —
% IiSap(E.1) ISk 4(E 1) 2T,

.
xf ”dtf dEESEf >, IM[aS!4(E,D)Sap(E D],
0 B

(10

where the zeroth order term inin Eq. (9) has been canceled

by the second term in Ed6) and T, is the period of the
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Iq'“:8wTJo thB ; Ox Sapdx SupdiXidiX; . (12)
It is straightforward to obtain the heat current at higher order
in frequency. To do that, we have to keep the higher-order
term in the expansion of in Eq. (9) and include the contri-
bution of higher-order derivativé€ such asx. For instance,
expanding Eq(9) to the third order inr and including the
contribution from the electric current, we obtaimp to w®),

1 T
3) _ 2 2 T
I‘(*'Z’_4877ijo dtf dEs2f Eﬁ IM[ 97,3051
(13

There are also third order corrections from Efjl) where
the termay Sa should be kept. We now consider the limiting

case of Eq(12) when the pumping amplitude is small. For
two probe pumpingX;(t) = X;sin(wt) and X,(t) = X,sin(wt
+¢), we see that the lowest order pumping amplitude in Eq.
(12) is quadratic by neglectini dependence i@xS,s. In
this case, it is straightforward to show that EG2) is re-
duced to

2
_Y |y 2 w2 2
lq'a_16ﬂ7 Xl% |&Xlsaﬁl +X2% |5X25aﬁ|

+2 COSpX1Xp >, Re(dx Sapdx,Sig) |, (14)
B

which agree¥ with the result of Ref. 20.

We now apply our formula Eq12) to a one-dimensional
quantum structure which is modeled by a double barrier po-
tential U (x) =X, 8(x+a) + X,8(x—a) where 2a is the well
width. For this system the Green’s functi@{x,x’) can be
calculated exactl§? With G(x,x’) we can calculate scatter-
ing matrix from the Fisher-Lee relatith Sep="0up
+ifivG(X,,Xg), with v the electron velocity in the lead.
The adiabatic pump that we consider is operated by changing

pumping cycle. Including the electric current, the heat curParrier heights adiabatically and periodicall);=V g

rent is given by

I, = 1pr0|de E—Ep)o2f
q’a__8’7TTp 0 t [_( - F)aE]

T —
X ZB ISep BN IS p(E.0) ~ 5

Tp
0

X > Im[9s] 4(E,1)S,4(E,D]. (11)
B

Note that the second term in E(L1) vanishes at zero tem-

perature. In the adiabatic regime, we H%lv@tsaﬁ
=3[ SapdiXi + I SapdiXi+ - - -] Where X=dX/dt. Up

to the orderw?, we can neglect the contribution from

dx.Sap - At zero temperature, E¢11) becomes,

+Vpsin(et) and X;=Vyot+Vysin(wt+¢). This can be
achieved by microfabricating metallic gates at the barrier re-
gion and applying a time dependent gate potential. Since the
pumped current is proportional ®?, we will setw=1 for
convenience. Finally the unit is set y=2m=1.2°

We first study the pumped heat current with two pumping
potentials. Figure 1 depicts the pumped heat current exiting
from left lead versus Fermi energy for the symmetric barriers
at small pumping amplitude. We have also plotted the trans-
mission coefficientsolid line) versus Fermi energy for com-
parison. The physical picture of heat flow suggested by
Moskalets and Buittikéf is the following: as an electron is
scattered by the oscillating barriers or scatterers, the absorp-
tion of energy quantumi w creates an electron-hole pair. The
flow of electron-hole pair leads to the heat transfer. In the
symmetric case, we havg  =14r. We see that the heat
current is peaked at the resonant levels and is clearly propor-
tional to the density of states of the scattering region. At
phase differenceb=37/4 (short-dashed linethe line shape
of I, is approximately Lorentzian similar to that of transmis-
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FIG. 1. The transmission coefficief#olid line) and heat current FIG. 2. The heat current as a function of phase differerdes

as a function of Fermi energy at different phase differences betweeat different pumping amplitudes;, =1 (solid line), v ,= 20 (dotted
two pumping potentialsgp=0 (dotted ling, ¢=m/2 (dot-dashed line), v,=40 (dot-dashed ling The heat current for a single pump
line), ¢=3m/4 (short-dashed line The heat current for a single (long-dashed ling For illustrating purpose, the heat current has
pump (long-dashed ling For illustrating purpose, the heat current been multiplied by a factor of 200, 20/3, 10/3, respectivelyupr
has been multiplied by 10/3. Other parameterg=v,=80 and =1, 20, 40. Other parametens,;,;= v =80 andEg=2.4069.
vp=4. Inset, the heat current as a function of Fermi energy at
different pumping amplitudes ,=5 (dotted ling, v,=10 (dot-  lower barrier. In general, the electric pumped current is linear
dashed ling v,=20 (dashed ling The transmission coefficient is in frequency for two pumping potentials whereas for single
also shown(solid line). The heat current has been normalized to pumping potential, it must be zero up to the first order in
one. The scaling factors are 8/3 fog=>5, 4/3 forv,=10, and 2/3  frequency>'® The heat current is different. For both single
for v,=20. Other parameters o=v =80, ¢=0. pump and two potential pump, the heat currents are of order
w?. In the weak pumping limit, there is a simple relationship
sion coefficient. Asp decreases, the line shape is broadenedetween the following three heat curreftst, ,=1, +Ig,
and deviates from Lorentzian considerably. For large pumpwherel ., is the heat current of two pumping potentials with
ing amplitude(see inset of Fig. )1 we see that there is sig- phase differencep=n/2, |, is the heat current of single
nificant heat current even in the off resonant casten  pump due to the left oscillating barrier, amd heat is the
Fermi energy is not in line with the resonant level in thecurrent due to the right barrier. In the strong pumping re-
static case when pumping potential is)offhis is because in gime, the scattering matrix depends on bXthand X, in a
the strong pumping regime, the instantaneous resonant levabnlinear fashion, this simple relation is no longer valid.
oscillates with a large amplitude and hence can generate he@tnoting the ratior=1_,/(I_+1g), we found that at small
current in a broad range of energy. Up to the orden®fthe  pumping amplitude,r~1. As one increases the pumping
heat current$,, andlr are all positive and flow from the amplitude the ratia- decreases and quickly saturates around
scatterers to the reservoir. It is no longer true when high-
order frequency contribution is included. Figure 2 shows the g3
heat current as a function of phase difference for different
pumping amplitudes. In general, there are two extreme
points for the heat current ab=0 and ¢=m, where the 06
former corresponds to maximum in heat current and latter tac o5
the minimum. In the weak pumping regime, the sinusoidal _
behavior is seen. In the strong pumping regime, however, we
see significant derivation from the sinusoidal behavior. Asa 93|
result, when increasing from ¢=0 to 7, the heat current 02
drops not as fast as in the weak pumping regime away frorr
¢=m. However, near¢p=m, the heat current decreases
much faster. Figure 3 displays the heat current as a functior
of pumping amplitude. The general behaviors of heat current
at different¢ are similar. We see that initially, the heat cur-

rent increases quadratically with pumping amplitude in the g1 3. The heat current as a function of pumping amplitude at
weak pumping regime and then quickly approaches the lingitferent phase differencep=0 (solid line), ¢= /2 (dotted ling,

ear regime in the strong pumping regime. This behavior pery—3/4 (dotted-dash ling The heat current for a single pump
sists for single pumping potential. In the inset, we present thegashed ling The heat current has been multiplied by a factor of
result for asymmetric barriers. Hengo=4, v,0=6, and  10/3. Other parameters are the same as the inset of Fig. 2.lIpset,
vp=0.5, 14 is about twice as large dg g. This is reason- (solid line) and | (dotted ling vs pumping amplitude for asym-
able because it is easier for heat current to tunnel through theetric barriers. Hergg=0 andEg=1.65. The scaling factor is 1/3.

0.7
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FIG. 4. The pumped charge per cy¢bolid ling), the ratio be-
tween the power of Joule heat and the heat curf@éoited ling as
a function of pumping amplitude. The system parametersvase
=v,,=80, ¢p=37/4, andE=2.4069.

7~0.8. This is understandable since the behaviot gf,
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see that the pumped charge increases dsicreases. In the
largev,, limit, the pumped charge will eventually reach the
maximum valueQ=e.*1"We see from Fig. 4 that the ratio
also approaches to one just like the pumped charge. There-
fore, we conclude that the double barrier pump we studied
can be optimal in very strong pumping limit.

In summary, we have developed a general theory for the
pumped heat current at finite pumping amplitude and fre-
quency which allows us to investigate the pumped heat cur-
rent in both weak and strong pumping regimes as different
system parameters vary. As the pumping amplitude varies,
we observed the crossover of pumped heat current from qua-
dratic dependence in the weak pumping regime to linear de-
pendence in the strong pumping regime. In the strong pump-
ing regime, the pumped heat current shows strong
nonlineality as a function of phase difference between two
pumping potentials. For the single pump, we found that the
amplitude of pumped heat current is of the same order as that
of two pumping potentials. Finally, our numerical results
show that the double barrier structure we examined can be an

[, andl R is similar as one increases_ th_e pumping amplituc_jeoptima| pump in the strong pumping regime. Due to the per-
one obtains the nearly constant ratio in the linear pumpinghative nature of our approach, it is very difficult to calcu-

amplitude dependence regingee Fig. 3.

late the pumped heat current for general frequency in the

_ Finally, we study the dissipation of the pump by compar-giong pumping regime. However, it is possible to solve this
ing the heat current and the power of Joule heat produced bpfroblem using the scattering matrix approach by Wagher.

the electric curremt® We found that the heat current is al-

ways larger than the corresponding power of Joule heat as We gratefully acknowledge support by a RGC grant from
predicted by Ref. 19. In Fig. 4, we plot the pumped chargehe SAR Government of Hong Kong under Grant No. HKU
per cycle and the ratio between the power of Joule heat and091/01P and a CRCG grant from the University of Hong

the heat current as a function of pumping amplituge We
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