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Charge pumping in a quantum wire driven by a series of local time-periodic potentials
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We develop a method to calculate electronic transport properties through a mesoscopic scattering region in
the presence of a series of time-periodic potentials. Using the method, the quantum charge pumping driven by
time-periodic potentials is studied. Jumps in the pumped current are observed at the peak positions of the
Wigner delay time. Our main results in both the weak pumping and strong pumping regimes are consistent with
experimental results. More interestingly, we also observed the nonzero pumping at the phase ditference
=0 and addressed its relevance to the experimental result.
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A parametric electron pump has attracted considerable atum interference effects. Another general expression for the
tention in recent years:*? It is a device that generates a dc average transmitted charge current was derived by Brouwer
current at zero bias by cyclic deformations of systemunder the adiabatic condition and based on the time-
parameterd=3 The quantum pumping mechanism was origi- dependen-matrix method, which appears to be quite suc-
nally proposed by Thoulessyho studied the integrated par- cessful for (adiabati¢ weak pumping. Adiabaticity here
ticle current produced by a slow periodic variation of themeans that the oscillating period of the system is much
potential, and showed that in a finite torus the integral of thdarger than the Wigner delay tims, .>® Note that the adia-
current over a period can vary continuously, but it must havédatic condition does not simply imply that the pumping
an integer value in an infinite periodic system with full strengthV should be very small. In fact, the adiabatic condi-
bands. Such quantized charge transport was proposed to Hén requires thatr must be larger a¥ increases. On the
come an electric current standdrd. other hand, the pumping was not weak in the experinents.

Quite recently, the charge pumping was observedlhe main purpose of the paper is to develop a theory, which
experimentally. For technical reasons, instead of measurings also applicable in the case of strong pumping. By using the
charge currents, the pumped dc voltagg, is measured in a Floguet theorem, the photon-assisted transport has been
quantum dot where two gates with oscillating voltages contaken into account: We calculate the pumped current
trol the deformation of the shape of the dot. For weak pumpthrough a mesoscopic region in the presence of time-periodic
ing, the observed charge pumping has a sinusoidal depegpotentials. Our main results in the weak pumping regime, as
dence on the phase differenee between the two shape- well as those in the strong pumping regime are consistent
distorting ac voltages applied to the gates, and igvith the experiment reported in Ref. 5.
proportional to the square of pumping strengthFor strong Consider electrons transmitting through a one-
pumping, the pumped current deviates from the square delimensional scattering region ranging frogto x,+ 6. The
pendence orV and becomes nonsinusoidal, being alwayspotential is given by
antisymmetric abou#= 7. The charge pumping may have a
close relation to the adiabatic Berry's phase since the evolu- 0, Xo<0, X>Xg+ 6,
tion of the system is cyclic and is controlled by several sys- V(x,t)= Vixt), Xo<x<xXo+d (1)
tem parameters, referred to as the parametric pumping.

Baseq on this gnderstanding, the total charge pumpgd P&lith V (x,t)=V,+ V. cos@t+h). The Schrdinger equa-
cycle is proportional to the area encloged by the path in th&on can be written as
parameter space, and nonzero pumping current requires at
least two parameters The pumped charge drived by two
parameters should be zero if two parameters are in phase '
(¢=0) since the area enclosed by the path is zero. However, ot om* Ix>
it is in contradiction with the observed currdifip=0)+#0.°
One of possible mechanisms of nonzero currentgpfer0 is  with m* as the electron effective mass. Equation 2 can be
photovoltaic effects introduced in Ref. 2, where a surprisingsolved by using the Floquet theorémBy settingW ¢ (x,t)
result, nonzero dc current generated by a single pumping-e 'Erit'"y(x,t), whereEg, is the Floquet eigenenergy and
gate voltage, is also reported. The general physics of a quamy(x,t) is a periodic functiony(x,t) = (x,t+ 7) with period
tum pump has been the subject of several theoretica}=27/w, the Schidinger equation takes the form
analyse$ Zhou et al. demonstrated that at low tempera-
tures both the magnitude and the sign of the pumped charges 52 g2

s ” . S FPY(x,t)  dp(x,t)
are sample specific quantities, and the typical value in disorg_ y(x,t)= — —ih TV (X,1).
dered(chaotig systems turns out to be determined by quan- 2m*  9x? ot

. JW(x,t)  h? P(xt)

+V(x,H)Ww(x,t), (2
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Substitutingy(x,t) =g(x) f(t), we have two separated equa- A° Al
tions with an introduced constaBt RO =S Bi |
_ h* 9 where theS matrix can be derived by the matching condi-

tions for the wave functionW(x,t) and its derivative

Iy (X,1) atx=Xq andx=Xqy+ . After eliminatinga,,, and
bm, we havé?

()

|ﬁ7—vscos(wt+qbs)f(t):(E—EF,)f(t). (4)

Py EQ(XHVOQ(X):EQ(X). ()

R, T_
Integrating Eq(4) gives S:(TH RH)’ (8)
. o S VAR whereT_=L,TLr*, R_=Lz'RLz!, T_=LRz'TL,, and
f(t)=g'Vssinds/hoi(E EFI)MV:ZI, e ”‘bSJV(%)e e, R_=L,RL, . Here the left(right) arrow indicates incoming

(5) waves from rightleft), the matriced, andLy are defined as
(L) mn=eX KXol Omn and Lr)mn=expikn(Xo
whereJ, (x) is the Bessel function of the first kind of order +68)]6,,,.- T andR are given by
v. Sincef(t) is periodic in time with periodr, it follows
from Eq. (5) that E— E=mw with m as an integer. The T=(C;'D;+C;,'Dy)/2, 9
equation forg(x) has a solution

. R=(C;'D,—C,'D,)/2, (10)
g(x)=e kX (k$)2=2m* (Eq+mhw—Vo)/h2. (6)
where
Thus #(x,t) becomes
Ci=(Le—NKF = (Ls+TFK,
wm(x,t):ei(VS/hw)sind)siikfnxz Fo e net (7)
n Dy=—(Le—NKFT—(Ls+T)F'K,
with F,,_n=exgd —i(n—m)¢e]dn_m(Vs/fw). _ _
We consider an incoming wave from the left with the Co=(Le+ DKFT=(Ls—DF'K,
energyE0=ﬁ2k§/2m*, then the outgoing waves should be
divided into different mode<,,, which satisfiesE,=E, D,=(Ls+T)KFT+(Le—T)F'K,

+nhiw with n=0,£1,=2,... . The propagating modes
mean thatE,>0, while the evanescent modes mean thawith the matrices I(¢)mn=exdikyd10mn, (Ks)mn=k;Smn,
E,=<0. The latter exists only in the neighborhood of the 0s-K,,=k,5,,, 1 as the unit matrix andF™ as the Hermitian
cillating barrier and do not propagate. Denote, conjugate ofF. The electronic transport properties of the
=\/2m* E, /1, the solutions of the Schdinger equation can scattering region may be obtained straightforward from Eq.
be written as (8).

The above method may be generalized tone-periodic
barriers described by

v, = 2 (Aineiknx+Age—iknx)e—iEnt/ﬁ,
n=—ow
0, x<0, x>a,

(X<Xo), Vi(x,t), 0<x<ay,
V(x,t)= V,(x.t) e (11
_ IEpt ik x —ikSx —inwt Z(X’ e A
Ys=e Tm ng—oc (ame™m*+bne "m)F,_ne ) Vi(x,t), a_1=<x=aq,
(Xg=X=Xo+ 8, where Vl(x,t):V2+Vlcos@1t+¢1),0 Vo(x,t) =V
+V,oCcosot+ ), ..., and V,(x,t)=V|+V,cos@t+¢).
o This potential may be more a realistic model for experi-
o= > (B! e~ kn*4 BOgikn¥) @ ~iEnt/A ments. Obviously the transport properties for each barrier
n=—o can be characterized by &matrix given by
(X>Xo+9), R T®
where A, and B, are the probability amplitudes of the in- S*= T* R/’
coming waves from the left and right, respectively, whig -
andB? are those of the outgoing waves. We can characterizesherea=1,2, .../, T* , T¢ , R? , andR® can be derived
the barrier by a scattering matr& which is a matrix con- by the same method presented above. Now the propagating
necting the incoming and outgoing channels modeE,, should be replaced by
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FIG. 1. The pumped currenty¢=m/2) versus the barrier FIG. 2. The pumped currents versus the phase differenfer
heightV for different pumping frequencies. Dotted lines fit the re- {yree differentv and o= 3.0.

lation I (o V2,

- The= — T L o(E) 2= [T, o(Eo)[2I.
E(nj)=E0+ 2 njhwj, (] =1,... ,|). (12) net E(%>O m* [| ﬂ,njo( 0)| | H,njo( O)| ]
nj:*OC

The average net current per periedfor Ey) through those
barriers is j(Eg) =Tne(Eog). If the system is connected
through two ideal leads to two electron reservoirs with the
same chemical potential, the average pumped current per
X ( (Te) t —(T*) 'R, period 7 is given by>*

RE(TE) ™ T —RU(TE) R

The associated transfer matik® for the ath barrier may be
derived directly from theS* matrix

| o (w=e| dEUBIE-WTE)L (13
The total transfer-matrisM* for all those barriers is deter- 0
mined by whereg(E) = y2m*/E/h is the density of electrons contrib-
¢ ¢ uting to the current in one direction, arfdE— ) is the
M= M1 My, MM Mt Fermi-Dirac distribution. At zero temperature, it becomes
My M, ’
_2e(m [/m*
whereMj; (i,j=1,2) are the partitioned matrices with the H(w)= hJo dE ET”el(E)' (14
same size a3, . The total scattering matri$' can be de-
rived fromM! as Another important quantity is the Wigner delay time
which gives the time delay of the scattered electron due to its
— (M%) "M} (Mi)~1t interaction with the scattering fielthere the oscillating po-
- 11 12 11 ) - 5
=\ ¢ t reat N—Lnat N E tentia). It relates to theS matrix by*
Moo= Mp(M31) "M, M3(Myy)
(E) | Ti {(st)ng % d In(detS'), (15)
T =——Tr —|=— — ==In(detS),
In each cycle a net charge current may pass through the w N, dE N, dE

scattering region in the direction determined from the de-
tailed form of S' matrix. We define a net transmission coef- where N, is the number of open channels. Physically, the
ficient (for an incoming wave in modgy,=E) by Wigner time represents the time spent by a wave packet
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FIG. 3. The pumped current and the Wigner delay time versus FIG. 4. The pumped currents versus the phase differentar
the insert energ¥, for V=7.0 andw==6.0. »=23.0 for differentV,; andVs,.

passing through the scattering region. The charge pumping i§—|(¢,V) for all amplitude strengths, ané($,V)| is maxi-
supposed to be adiabatic whenis much greater than the ,,m atd=ml2 or ¢=3m/2 for weak pumping. Remark-

Wign_er de'?‘y timer,, , _ably, these results fdr(¢,V) are in agreement with the ex-
It is obvious that the net charge transfer in one cycle ISyerimental observation in Ref. 3.
zero for a single time-periodic barrier sine, =T._ . Then Figure 3 shows that sharp peaks in the Wigner time occur

the simplest system which may induce the nontrivial charge; ihe resonance insert energis=n# . In addition, jumps
pumpmg_should include atlleast two ba_rrlers. A; an examp_lq:n the pumped current as a function®f appear at the peak
we consider a mesoscopic system with two t|me—per|od|cg

, i ositions of the Wigner time. The direction of the current
barriers connected through ideal leads to two electron rese

X > ) i ’ epends crucially on the insert energy. It is interesting to
voirs with the same chenycal potentigis The potengals are  note that the adiabatic condition is not necessary in our cal-
described byV,(x,t)=Vi+Vcoswt), V,(x,t)=V;, and

culations. Figure 3 indicates that the maximum value,pfs
V3(x,t) = V§+ Vacos@t+¢). This appears to be a simplified apout 5.5 ns forfw=6.0 mev (corresponding to
model for the Switkest al.eXperiment, nevertheless it turns ~0.7 ps)’ which is much greater than the pump|ng Cyc”c
out that some essential characteristics can be exhibited, as Wee . Then we may say that the method described here is
will address below. In the fOIIOWing numerical CaICUIationS, beyond ad|abat|c|ty Actua”y’ the nonadiabatic effects are
p=75 mev, m* =0.067n, (with m, as the mass of the free only important for the strongly photon-assisted transport
electron, V9= —30 mev, V,=0, andN, is determined by a  sincer,, is greater tham only if the energy of the incoming
natural condition:[T_|?+|R_|?~1.0<c, with ¢, (=1.0 wave is approximately equal to the resonance energy for
X 10" in this papey as a defined error. photon-assisted tunneling. Physically, by emitting or absorb-
The general characteristics of quantum pumping aréng photons, the outgoing waves may be at the quantum
shown in Figs. 1 and 2. The parameters in Figs. 1, 2, and 8tates different from that of the incoming wave. Conse-
are chosen a¥=V3=50 mev, andV,=V;=V. Figure 1  quently, the adiabatic condition, which requires that the
shows that the pumped currdif) is proportional tov? for ~ quantum state is at the same instant state in the whole evo-
small pumping amplitud®/, with the proportional factor de- lution, is not satisfied. Note that the formula derived by
pending on the driving frequencyii1). But it deviates Brouwer may be valid merely under the adiabatic condition,
from V2 dependence for the strong pumping case. On th@nd thus the method developed here may be quite useful.
other hand, the pumped current is sinusoidal dependence on It is quilt intriguing to note from Fig. 4 that(¢=0) is
¢ for weak pumping, and becomes nonsinusoidal depenronzero forV,# V3, while the corresponding areas enclosed
dence on¢ whenV increases, as seen in Fig. 2. Anotherby the path in the parameter spafé,(x,t),Vs(x,t)} are
important characteristic shown in Fig. 2 is tHétr+ ¢,V) zero. Although the pumped currents in the above case were
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predicated to be zero under the adiabatic approximation, theally, it is reasonable to believe that the observed nonzero
deviation from zero is reported experimentally at strongpumping at phaseb=0 for the strong pumping stems from
pumping? just as we observed here in terms of a rigorousthe nonadiabatic correction when the inversion symmetry is
theoretical analysis which is also valid for strong pumping.proken. Practically, the asymmetric spatial potential might be
Moreover, from comparison with thdf{¢=0)=0 for V;  present in the experiment, which may originate from either
=V3, it is now clear that the present nonzero pumped curthe shape-distorting ac voltages, or from the internal poten-
rents stem from the spatial asymmetry of potenti&ls-Vs,  tjal established during transpdrsince the current calculated
which is coincident with the result obtained by V\/agner iNin this approach is conserved singe_|2+|R_|?=1.0, no
Ref. 11: the nonzero currents may be observed in a singlgyermal potential appears explicitly in the present formulism.
osscillating potential but with asymmetric static potentlal.It is worth pointing out that nonzero pumped currents for
Actually, to observe a pump current at zero applied bias, it, 7 are also seen in Fig. 4, which seems to contradict with
seems that the inversion symmetry should be broken, eith%at in Ref. 5. Also note tha{t a nonzel¢p= ) was also

in real or ink space. predicted by another totally different theoretical sttitigo

The fact thatl (¢=0) is nonzero at strong pumping may |, . T . . : i
be understood based on a scenario of the nonadiabatic gettgl-'S contradication is still an interesting open question at
present.

metric phasé® Pumped currents are determined by geomet
ric phase accumulated in the evolutibh® Under the adia- In summary, we developed a method to calculate the
batic approximation] (¢=0)=0 is predicted theoretically PUmMped current and Wigner delay time in a mesoscopic sys-
because the corresponding adiabatic geometric phase is zef8M With a series of time-periodic barriers connected to two
While it is now clear that the nonadiabatic geometric phasélectron reservoirs, which appears to be applicable for strong
may be nonzero even in the case where the area enclosed BymMpINg cases.

the path in the parameter space is z@tus the adiabatic
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