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Generalized valence bond state and solvable models for spin-1
2 systems with orbital degeneracy
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~Received 6 May 2001; published 12 September 2001!

A spin-1
2 system with double orbital degeneracy may possess SU~4! symmetry. According to the group

theory a global SU~4! singlet state can be expressed as a linear combination of all possible configurations
consisting of four-site SU~4! singlets. Following Andersion’s idea for spin-1

2 system, we propose that the
ground state for the antiferromagnetic SU~4! model is an SU~4!-resonating valence-bond~RVB! state. A
short-range SU~4!-RVB state is a spin and orbital liquid, and its elementary excitations has an energy gap. We
construct a series of solvable models that ground states are short-range SU~4!-RVB states. The results are
generalized to the antiferromagnetic SU~N! models.
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Electron configurations in transition metal oxides usua
have an orbital degeneracy in additional to spin degener
Strong Coulomb interaction in these systems may prod
spin systems with orbital degeneracy~for an overview see
Refs. 1, 2!. Several coupled spin-orbital models arise f
many kinds of relevant materials. At a symmetric point t
models may possess higher symmetry, such as SU~4!.3–5

Systematic study of the symmetric models may help us
understand physical properties for realistic systems. SU~4!
spin-orbital model is a good candidate to investigate coup
spin-orbital system. It can be solved exactly in one dim
sional case by means of Bethe ansatz.6 There are a lot of
numerical and analytical calculations, and most are limited
one dimension or small clusters. Very few rigorous resu
for this system are known. Oppositely we have deep un
standing on spin SU~2! systems. Some rigorous results a
solvable models are established. For instance, it was pro
that the spin-12 antiferromagnetic periodic chain of lengthL
has a low-energy excitation of order 1/L.7 In the case of
SU~2! system, Anderson proposed a resonating valence-b
~RVB! state as the ground state for a spin1

2

antiferromagnet.8 In each configuration all spins form spin
singlet pairs, and the RVB state is composed of all poss
configurations. In fact the state is a completely general
scription for a global singlet state.9 His idea was applied to
explain unconventional properties of spin liquids. Som
solvable models were constructed based on the idea.10 In this
paper we generalize Anderson’s RVB idea to a coupled s
orbital system. We first derive several identities for SU~4!-
symmetric spin-orbital system, and then prove a rigoro
statement on the SU~4! isotropic state. The state consists
SU~4! singlets, which can be regarded as a generali
SU~4!-RVB states. To illustrate the idea, we construct tw
types of solvable models and evaluate the ground-state e
gies. One ground state is a short-range SU~4!-RVB solid, and
another one is highly degenerated.

We start with a Hamiltonian for a spin-1
2 system with

double-fold orbital degeneracy, which was derived by C
tellani et al.3 By neglecting the Hund’s-rule coupling be
tween different on-site orbitals, the system possesses S~4!
symmetry. The symmetric spin-orbital Hamiltonian is e
pressed in terms of two sets of independent spi1

2

operators,4
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H5(
i j

Ji j S 2Si•Sj1
1

2D S 2t i•t j1
1

2D5(
i j

Ji j Pi j . ~1!

The three operators for spinSi
a , three operators for orbita

t i
b , and nine operators for their direct multiplications 2Si

at i
b

(a,b5x,y,z) compose the fifteen generators for a SU~4!
group,

$Ti
m%5$2Si

a,2t i
b,4Si

at i
b% ~m51,2, . . . ,15!, ~2!

with (mTi
mTi

m515 and Pi j 5((mTi
mTj

m11)/4. To explore
the physical meaning ofPi j , we define four-possible state
u im& on each lattice site according to the eigenvalues osz

561/2 andtz561/2, wherem5(sz,tz) or simply 1, 2, 3,
and 4. Define the total SU~4! spin Ttot5( iTi . Due to the
symmetry of the model we have@H,Ttot#50. The total
SU~4! spinTtot is a good quantum number. The operatorPi j
is in fact a permutation operator when it is applied on t
stateu im, j n&

Pi j u im, j n&5u in, j m&, ~3!

with Pi j
2 51, where we have used the standard relation

spin-12 system.11 The two eigenvalues ofPi j is 61. This
gives an upper and lower bound for energy per bond in
~1!, i.e., 2Ji j <Ji j ^Pi j &<Ji j for any state. For a two-site
problem, there are six eigenstates forPi j with eigenvalue
21, (u im, j n&2u in, j m&)/A2 where mÞn. The total (Ti
1Tj )

2520, which indicates that a SU~4! singlet cannot be
formed at two sites. The minimal number of lattice sites
form SU~4! singlet is four as shown by Liet al.5 An SU~4!
singlet is written as

su4~ i , j ,k,l !5 (
m,n,g,d

Gmngdu im, j n,kg,ld&,

where G is an antisymmetric tensor. Alternatively, deno
spin and orbital SU~2! singlets for sitesi and j by s( i j ) and
t( i j ), respectively. An SU~4! singlet can be expressed i
terms of spin and orbital SU~2! singlets12
©2001 The American Physical Society11-1
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su4~ i , j ,k,l !5A2

3
@s~ i j !s~kl !t~ i l !t~ jk !

2s~ i l !s~ jk !t~ i j !t~kl !#. ~4!

Exchange of the order ofi, j, k, and l gives the same state
For any two sitesi 8 and j 8 amongi , j ,k, and l, we have

Pi 8 j 8su4~ i , j ,k,l !52su4~ i , j ,k,l !. ~5!

The exchange of the positions of four sites in the sing
keeps the singlet unchanged. Since21 is the smallest eigen
values ofPi j , for a four-site problem with allJi j >0, the
lowest energy state issu4(1,2,3,4) with eigenvalues
2( i j Ji j . It is worth noting that the conclusion is indepe
dent of the values of the couplingJi j . Furthermore, by using
Eq. ~5!, it is not hard to check,

~Ti1Tj1Tk1Tl !
2su4~ i , j ,k,l !50. ~6!

This identity indicates that the total SU~4! Ttot5( iTi is zero.
There exists another important identity for two SU~4! sin-
glets in eight sites when indicesi 1 and j 1 in Pi 1 j 1

belong to
different singlets

Pi 1 j 1
su4~ i 1 ,i 2 ,i 3 ,i 4!su4~ j 1 , j 2 , j 3 , j 4!

5su4~ j 1 ,i 2 ,i 3 ,i 4!su4~ i 1 , j 2 , j 3 , j 4!. ~7!

To prove the identity we utilize the permutation properties
P as shown in Eq.~3!. The resulting state is obtained b
exchanging two positions ofi 1 and j 1 in different singlets.

To proceed further we introduce a concept of generali
RVB state. An SU~4!-RVB state is composed of SU~4! sin-
glets, instead of SU~2! singlet. In principle an SU~4!-RVB
state consists of all possible configurations, which cont
either the nearest-neighbor SU~4! singlets or the long-range
SU~4! singlets. Depending on the Hamiltonian and the u
derlying lattice an SU~4!-RVB state as a ground state ma
have a different form. For instance in the example we sh
present later the state is a short-range RVB state. The c
pleteness of the RVB states as a basis for a global sin
state can be shown from the group theory. Take the di
product ofNL(54M ) statesu im& as basis. Young Tableau
is used to represent the irreducible representation. If the
reducible representation is a singlet the Young tableaux m
be of the form of a 43M rectangle. In each column it i
antisymmetrized, and in each row it is symmetrized. In t
way the Young tableaux represents a generalized RVB s
as in the case for SU~2! system.9 Since the irreducible rep
resentation forms a complete set, a linear combination
RVB state is another one. The number of the generali
RVB states are (4M )!/( M !).4 It is over complete and non
orthogonal. The Lanczos method can re-organize the stat
form a complete and orthogonal set of basis. Thus, we h
the following conclusion,

Given that the number of lattice sitesNL54M (M is an
integer!, the SU~4! isotropic state of the symmetric spin
orbital model that can be expressed as a linear combina
of configurations consisting four-site SU~4! singlets, i.e.,
SU~4!-RVB state.
13241
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Several remarks are in order.
~1! Following the Lanczos method we can re-construct

Hamiltonian in a tridiagonal form on a set of complete a
orthogonal basis by utilizing Eqs.~5! and ~7!. Each of the
basis can be expressed in a linear combination of SU~4!-
RVB states.

~2! In one-dimensional chain with 4M site the short-range
SU~4!-RVB state composed byM nearest-neighbor four-site
SU~4! singlets has the energy per bond20.75J, which is
very close to the exact energy of Bethe ansatz20.82511J.6

This is a good starting point to calculate the ground-st
energy. The two identities Eqs.~5! and~7! provide a possible
way to evaluate the ground-state energy. In practice it is h
to include all possible SU~4! singlets. It is possible to con
struct the wave function by including some finite-size SU~4!
singlets such that the average energy of the wave functio
closer to the true ground state.

~3! On a SU~2! antiferromagnetic model on a hypercub
lattice, it was shown that the ground state is a spin single13

We postulate that this result is valid for SU~N! systems if the
lattice can be decomposed intoN sublattices. Numerical cal
culations for finite clusters supports this idea.

We now make use of the identities to construct two typ
of solvable models with SU~4! symmetry. The method we
use here is that, if we can write the Hamiltonian in the fo
of the sum of semipositive operators, and find a state that
lowest eigenvalues for each semipositive operator, the s
must be the ground state of the Hamiltonian. The meth
was used for spin-1

2 system by Majumdar and Ghosh.14 The
first type of solvable model is defined on ad-dimensional
hypercubic lattice. Label the lattice site byi PL. Each site
contains four SU~4! spins. The SU~4! operators is denoted b
Tig . (g51,2,3,4). Assume the number of lattice sitesi is N.
The total number of SU~4! spins is 4N. The model Hamil-
tonian is

H5zJ8 (
i ,gÞg8

S 2Sig•Sig81
1

2D S 2t ig•t ig81
1

2D
1J (

^ i , j &,g,g8
S 2Sig•Sj g81

1

2D S 2t ig•t j g81
1

2D , ~8!

where the intrasite coupling is larger than the intersite c
pling J85J(a211/a2)/2>J, a is an arbitrary number, andz
is the coordination number. To find the lowest-energy sta
we rewrite the Hamiltonian in the form

H5
J

16 (
i j

F (
g51

4 S 1

a
Tig1aTj gD G2

2(̂
i j &

~6/a216a224!J,

where @(g51
4 (1/aTig1aTj g)#2 is semipositive definite. Its

eigenvalues are always not less than zero. Thus, the Ha
tonianH is semipositive definite except for a constant. If w
can find a stateuF& such that

F (
g51

4 S 1

a
Tig1aTj gD G2

uF&50,
1-2
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for any nearest-neighbor pairsi and j, this state must be the
ground state of the HamiltonianH. Here we construct an
SU~4!-valence bond~VB! state

uSVB&5su4~ i 11,i 12,i 13,i 14!

3su4~ i 21,i 22,i 23,i 24!

•••su4~ i NL
1,i NL

2,i NL
3,i NL

4!.

It means that at each sitei, four Tig form an SU~4! singlet,

(
g

TiguSVB&50.

We can regard the state as an SU~4! singlet solid or VB solid
at the lattice. Therefore we have

F (
g51

4 S 1

a
Tig1aTj gD G2

uSVB&50

for any pair ofi and j. Alternatively,

F (
gÞg8

S 1

a2
Pig ig81a2Pj g j g8D 1 (

g,g8
Pig j g8G uSVB&

52~6/a216a224!uSVB&.

HenceuSVB& is the ground state of the model@Eq. ~8!#. The
ground-state energy per bond is (6/a216a224)J. In this
state there does not exist long-range correlation. The sh
range RVB state is a typical quantum frustrated spin-orb
liquid. When we break an SU~4! singlet it will cost a finite
energy. Thus the elementary excitation on this state ha
energy gap.

The second type of solvable model is defined on a lat
that is decomposed into two sublattices. The sublatticeA
labeled by$j% has one SU~4! T on each site. A lattice site
belonging to sublatticeB ~labeled by$i%! is located on the
middle of two sitesj. Each site i contains fourTig (g
51,2,3,4). The model Hamiltonian is defined as

H52J (
i ,gÞg8

S 2Sig•Sig81
1

2D S 2t ig•t ig81
1

2D
1Jd (

^ i , j &,g
S 2Sig•Sj1

1

2D S 2t ig•t j1
1

2D , ~9!

with 0,d,1. Similarly, the Hamiltonian can be rewritten a

H5
J

8 (̂
i j &

F (
g51

4

Tig1dTj G2

2
J

2 (̂
i j &

e0

with e051222d115d2/4. We can construct a stateuF&
such that all fourTig at sitei form SU~4! singlets andTj at
site j are in any state. We have

F (
g51

4

Tig1dTj G2

uF&515d2uF&. ~10!

The eigenvalue 15d2 is the lowest energy of the square
operator in Eq.~10! whend,1. The equation holds for an
13241
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pair of i and j. Therefore the state is also the ground state
the second-type of solvable models~9!. Its ground energy per
bond isEg5(62d)J. The state is highly degenerated sin
each sitej has fourfold degeneracy. The total degeneracy
4Nj where Nj is the number of lattice sitesj. Among the
degenerated states some are SU~4! singlets, which can be
expressed as SU~4!-RVB states, and some are not.

For the SU~4! symmetric spin-orbital model, mathemat
cally, we can write the Hamiltonian in terms of the gene
tors of SU~4! groups in the fermion representation. It pr
vides us a routine to generalize the main results in this pa
to the systems with the SU~N! symmetry.15 For a SU~N!
group there areN2 generators Sm

n with a constraint
(m51

N Sm
m51. On each site there areN-possible statesum&

(m51,2, . . . ,N). In the fermion representation, we intro
duceN species of fermionsf im , and the SU~N! generators
can be expressed asSim

n 5 f im
† f in with a constraint

(m51
N f im

† f im51. In this way we generalize the SU~4! model
to the SU~N! one

H5(
i j

Ji j Sm
n ~ i !Sn

m~ j ![(
i j

Ji j Pi j ~N!. ~11!

The operatorPi j (N) is a permutation operator as shown
the case of SU~4!. An SU~N! singlet can be defined as

suN~ i 1 ,i 2 , . . . ,i N!5cN( f j 11
† f j 22

† , . . . ,f j NN
† u0&,

where the sum runs over all of the permutation ofN sites
( j 1 , j 2 , . . . j N)5( i 1 ,i 2 , . . . ,i N). cN51/AN! is a normal-
ized constant. The SU~N! singlet is the eigenstate for th
permutation operator

Pi j ~N!suN~ i 1 ,i 2 , . . . ,i N!52suN~ i 1 ,i 2 , . . . ,i N!,

if i and j belong toi 1 ,i 2 , . . . ,i N , and

Pi 2 j 1
~N!suN~ i 1 ,i 2 , . . . ,i N!suN~ j 1 , j 2 , . . . ,j N!

5suN~ i 1 , j 1 , . . . ,i N!suN~ i 2 , j 2 , . . . ,j N!,

for any two sites in different singlets. Due to the SU~N!
symmetry in the model Hamiltonian, we can generalize
main result to the SU~N! system:

Given that the lattice is connected by the hopping mat
and all Ji j >0 and NL5Nm (m is an integer!, the SU~N!
isotropic state of the SU~N! model ~11! can be expressed a
a linear combination of configurations consistingN-site
SU~N! singlets, SU~N!-RVB state.

When N52, this result is reduced to the usual spin1
2

SU~2! antiferromagnetic Heisenberg model. In this sense
main result can be regarded as a generalization of Anders
RVB idea to SU~N! system. The solvable models are simp
modified in this way: the sitei containsN SU~N! spins. On
the ground state the SU~N! spins at theN site form a SU~N!
singlet. Hence we construct the two types of solvable SU~N!
1-3
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models. The coupling coefficients should be modifi
slightly according to the structures of different lattices.

In summary, we propose a generalized SU~4!-RVB pic-
ture for spin-orbital model. A state with global SU~4! singlet
can be expressed as a SU~4!-RVB state. The idea is also
generalized to systems with SU~N! symmetry. We construc
two types of solvable models, and evaluate the ground-s
d

13241
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energies. One ground state is a SU~4!-RVB solid, and an-
other one is a spin-orbital liquid.
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