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Bianchi type I cosmology inNÄ2, DÄ5 supergravity
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The dynamics and evolution of Bianchi type I space-times are considered in the framework of the four-
dimensional truncation of a reduced theory obtained fromN52, D55 supergravity. The general solution of
the gravitational field equations can be represented in an exact parametric form. All solutions have a singular
behavior at the initial or final moment, except when the space-time geometry reduces to the isotropic flat case.
Generically the obtained cosmological models describe an anisotropic, expanding or collapsing, singular uni-
verse with a noninflationary evolution for all times.

PACS number~s!: 04.20.Jb, 04.65.1e, 98.80.2k
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I. INTRODUCTION

The similarity between theD55 simple supergravity
~SUGRA! and D511 SUGRA has been recognized for
long time @1,2#. D511 SUGRA is supposed to play a fun
damental role as the low-energy limit of M theory@3# — an
expected unified speculation for the well-known five cons
tent superstring theories. The field content of theD511
SUGRA theory consists of the metric, a single Majora
spin-32 fermion, along with a~singlet! three-form gauge po
tential, with neither ‘‘N.1’’ extensions nor matter coupling
permitted@4#. SimpleD55 SUGRA, in addition to the met
ric ĝAB , contains a spin-32 field ĈA

a (a51,2 is an internal

index! and U~1! gauge field~one-form B̂A) which replaces
the three-form gauge field in theD511 SUGRA. The ‘‘pri-
meval’’ likeness comes directly from the fact that th
Lagrangians of both SUGRAs are exactly of the same fo
except for the numbering of the gauge field indices. In ad
tion, their dimensional reduction toD54 can be carried ou
in a similar way@5#. Furthermore, theD55 simple SUGRA
can be realized as a Calabi-Yau compactification of theD
511 SUGRA together with the truncation of the scalar m
tiplets, which is always necessary since there arises at
one scalar multiplet for any Calabi-Yau compactificati
@6,7#. Further resemblances between the two SUGRAs
related to the duality groups upon dimensional reduction
the world sheet structure of the solitonic string of theD55
SUGRA @8#.

Thus the four-dimensional reduced effective action of
N52, D55 SUGRA contains an additional Maxwell-lik
U(1) field and a scalar field regarded as external fields
five dimensions which are contributed byB̂, in addition to
the ones coming from the metricĝAB as in the traditional
scheme for the Kaluza-Klein theory@9–12#. Cosmological
solutions to this model have been previously considered
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Balbinot, Fabris, and Kerner@11,12#. For the case of spatia
homogeneity and isotropy the general solution is nonsing
in the scale factor, but unstable due to the collapse to zer
the size of the fifth dimension@11,12#. Biaxial ~with two
equal scale factors! anisotropic solutions with a cylindrica
homogeneous five-dimensional metric lead to singular so
tions with positive gravitational coupling@12#. Recently, an
explicit example of a manifestlyU-duality covariant
M-theory cosmology in five dimensions resulting from com
pactification on a Calabi-Yau threefold has been obtained
Ref. @13#. Exact static solutions inN52, D55 SUGRA
have been found by Pimentel@14#, in a metric with cylindri-
cal symmetry, with a particular case corresponding to
exterior of a cosmic string.

The purpose of the present paper is to construct the g
eral solution to the gravitational field equations of theN
52, D55 SUGRA as formulated in Refs.@11,12# for an
anisotropic triaxial~all directions have unequal scale factor!
Bianchi type I space-time. In this case the general solution
the field equations can be expressed in an exact param
form. For all cosmological solutions, the singularity at t
starting and ending time of the evolution cannot be avoid
except in the isotropic limit considered in Refs.@11,12#.
Nevertheless, in the models analyzed in this paper, the
isotropic Universe has non-inflationary evolution for a
times and for all values of parameters.

The present paper is organized as follows. The field eq
tions of our model are written down in Sec. II. In Sec. III th
general solution of the field equations is obtained. We d
cuss our results and conclusions in Sec. IV.

II. FIELD EQUATIONS, GEOMETRY
AND CONSEQUENCES

The bosonic sector ofN52, D55 SUGRA contains the
five-dimensional metricĝAB and U~1! gauge fieldB̂A de-
scribed by a Lagrangian which possesses a nonvanis
Chern-Simons term@1#

L̂5A2ĝH R̂2
1

4
F̂ABF̂ABJ 2

1

12A3
eABCDEF̂ABF̂CDB̂E ,

~1!
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where F̂AB52] [AB̂B] . In this paper we use the following
conventions and notations. The variables with hats are fi
dimensional objects all other variables are four dimensio
Upper case indicesA,B, . . . , areused for five-dimensiona
space-time, greek indicesm,n, . . . , and lowcase indices
i , j , . . . , are for four-dimensional space-time and thre
dimensional space, respectively. The signature is (2,1,1,
1,1).

Assuming that the five dimensional space-time has loc
the structure ofM43S1 with a four-dimensional space-tim
M4 whose spatial sections are homogeneous and asymp
flat, then the five-dimensional metric can be decompo
along the standard Kaluza-Klein pattern

dŝ25f2~dx41Amdxm!21gmndxmdxn, ~2!

where the scale factorf and Kaluza-Klein vectorAm are
functions depending onxm only.

Looking for a ‘‘ground state’’ configuration we set, fo
lowing Refs. @11,12#, the Kaluza-Klein vectorAm equal to
zero and take the one-form potentialB̂A to be B̂m50 and
B̂45A3c(xm). Under this ansatz, the five-dimensional gra
tational field equations for Eq.~1! reduce to a set of four
dimensional equations

Rmn2f21DmDnf2
1

2
f22@3]mc]nc2gmn~]c!2#50,

~3!

D2f1f21~]c!250, ~4!

D2c2f21]mf]mc50, ~5!

where D denotes the four-dimensional covariant derivat
with respect to the metricgmn . Equivalently, the field equa
tions can be rederived, in the string frame, from the fo
dimensional Lagrangian@11,12#

L5A2gfH R2
3

2
f22~]c!2J , ~6!

via variation with respect to the fieldsgmn , f andc. In the
Lagrangian~6!, the scale factorf is an analogue of the
Brans-Dicke field whereas the origin ofc is purely super-
symmetric.

The line element of an anisotropic homogeneous flat
anchi type I space-time is given by

ds252dt21a1
2~ t !dx21a2

2~ t !dy21a3
2~ t !dz2. ~7!

Defining the ‘‘volume scale factor’’Vª) iai , ‘‘directional
Hubble factors’’Hiªȧi /ai , and ‘‘average Hubble factor’’
Hª

1
3 ( iHi , one can promptly find the relation 3H5V̇/V,

where dot means the derivative with respect to timet. In
terms of those variables, the field equations~3! and the equa-
tions of motion forf andc ~4!,~5! coupling with the aniso-
tropic Bianchi type I geometry take the concise forms
10401
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3Ḣ1(
i

Hi
21f21f̈1f22ċ250, ~8!

V21
d

dt
~VHi !1Hif

21ḟ2
1

2
f22ċ250, i 51,2,3,

~9!

V21
d

dt
~Vḟ !1f21ċ250, ~10!

V21
d

dt
~Vċ !2f21ḟċ50. ~11!

The physical quantities of interest in cosmology are
expansion scalaru, the mean anisotropy parameterA, the
shear scalars2, and the deceleration parameterq defined as
@15#

uª3H, Aª
1

3 (
i

S H2Hi

H D 2

,

s2
ª

1

2 S (
i

Hi
223H2D , qª

d

dt
H2121.

~12!

The sign of the deceleration parameter indicates whe
the cosmological model inflates. A positive sign correspon
to standard decelerating models whereas a negative sig
dicates inflationary behavior.

III. GENERAL SOLUTION OF THE FIELD EQUATIONS

Equation~11! can immediately be integrated to give

Vċ5vf, ~13!

with v — a constant of integration. From Eqs.~10! and~11!
one can find that the expressions of the fieldsf(t) andc(t)
have the following form:

f~ t !5f0cosS vE dt

V
1v0D , ~14!

c~ t !5c01f0sinS vE dt

V
1v0D , ~15!

wheref0 , c0 andv0 are constants of integration.
By summing equations~9! one gets

V21
d

dt
~VH!1Hf21ḟ2

1

2
f22ċ250, ~16!

which can be transformed, by using Eqs.~13! and ~14!, into
the following differential-integral equation describing th
dynamics and evolution of a triaxial Bianchi type I spac
time in N52, D55 SUGRA:

V̈5v
V̇

V
tanS vE dt

V
1v0D1

3

2

v2

V
. ~17!
7-2



g

l

r

ch

le
ti-

n

or-

y’’

ith
op-
ngly

will

n
, an

BIANCHI TYPE I COSMOLOGY IN N52, D55 SUPERGRAVITY PHYSICAL REVIEW D 61 104017
Furthermore, by subtracting Eq.~16! from Eqs.~9!, one can
solve for theHi as

Hi5H1
Ki

fV
, i 51,2,3, ~18!

whereKi are constants of integration satisfying the followin
consistency condition:

(
i

Ki50. ~19!

Therefore the physical quantities of interest~12! reduce to

A5
K2

3f2V2H2
, s25

3

2
AH2, ~20!

whereK25( iKi
2 .

By introducing a new variableh related to the physica
time t by means of the transformationdhªdt/V and by
denotinguªV̇5dV/(Vdh), Eq. ~17! reduces to a first orde
linear differential equation for the unknown functionu:

du

dh
5v tan~vh1v0!u1

3

2
v2, ~21!

whose general solution is given by

u5C cos21~vh1v0!1
3

2
v tan~vh1v0!, ~22!

whereC is an arbitrary constant of integration.
Defining a new parameterz(h)ªvh1v0, we can repre-

sent the general solution of the field equations for a Bian
type I space-time in theN52, D55 SUGRA in the follow-
ing exact parametric form:

t5t01
V0

v E ~11sinz!b

~12sinz!g
dz, ~23!

V5V0

~11sinz!b

~12sinz!g
, ~24!

H5
v

2V0
~a1sinz!

~12sinz!g21/2

~11sinz!b11/2
, ~25!

ai5ai0

~11sinz!b/31Ki /2vf0

~12sinz!g/31Ki /2vf0
, i 51,2,3, ~26!

where we have denoteda52C/3v, b5 3
4 (a21), g5 3

4 (a
11) and theai0 are arbitrary constants of integration whi
V05P iai0. The observationally important physical quan
ties are given by

A5
4K2

3f0
2v2

~a1sinz!22, ~27!
10401
i

s25
K2

2f0
2V0

2

~12sinz!2g21

~11sinz!2b11
, ~28!

q52H 12
11a sinz

~a1sinz!2J . ~29!

Finally, the field equation~8! gives a consistency conditio
relating the constantsK2, v, a, andf0:

K25
3

2
f0

2v2~a221!, ~30!

leading to

a>1 or a<21. ~31!

It is worth noting that these two classes of solutions c
responding to positive or negative values ofa andv are not
independent. Indeed, they can be related via a ‘‘dualit
transformation by changing the signs ofv, a, andz so that
t(v,a,z)5t(2v,2a,2z), ai(v,a,z)5ai(2v,2a,
2z), i 51,2,3, V(a,z)5V(2a,2z), etc. This duality re-
lation can be obtained by a simple inspection of Eqs.~23!–
~26! and, therefore, all physical quantities are invariant w
respect to this transformation. Moreover, the physical pr
erties of the cosmological models presented here are stro
dependent on the signs of the parametersa and v. Never-
theless, due to the duality transformation, hereafter we
consider, without loss of generality, the cases with positivea
only.

For some particular values ofa, the general solutions ca
be expressed in an exact nonparametric form, for instance
exact class solutions can be obtained fora56 5

3 . By intro-
ducing a new time variabletª3A2v/V0t, and choosingt0

57V0/3A2v, the exact solution inN52,D55 SUGRA for
the Bianchi type I space-time is given by

t56Fcos23S z

2
6

p

4 D21G , ~32!

V5
V0

2A2
~16t!@~16t!2/321#1/2, ~33!

H5
A2v

V0

4
3 ~16t!2/321

~16t!@~16t!2/321#
, ~34!

ai5
ai0

A2
~16t!1/3@~16t!2/321#1/66Ki /2vf0,

~35!

A5
8

9
~16t!4/3F4

3
~16t!2/321G22

, ~36!

s25
8v2

3V0
2 ~16t!22/3@~16t!2/321#22, ~37!
7-3
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q52H 12
~16t!2/3@4~16t!2/325#

6@ 4
3 ~16t!2/321#2 J . ~38!

The isotropic limit can be achieved by takinga561 and,
consequently,Ki50, i 51,2,3. It is worth noting that our
solutions reduce to two different types of homogeneo
space-times whena561.

For a51, we obtain~by denotinga15a25a35a)

t5t01
V0

2A2v
F sinu

cos2u
1 ln~ tanu1secu!G , ~39!

a5
a0

2A2
cos23u, ~40!

where uªz/21p/4. Equations~39! and ~40!, describing a
homogeneous flat isotropic space-time interacting with t
scalar fields~Kaluza-Klein and supersymmetric!, have been
previously obtained by Balbinot, Fabris, and Kerner@11# ~for
an extra choice of the parameterv05p/2), who extensively
studied their physical properties. This isotropic solution a
provides a positive gravitational coupling at the present tim

In the isotropic limit corresponding toa521, one can
obtain another class of isotropic homogeneous flat sp
times represented in the following parametric form by

t5t02
V0

2A2v
F cosu

sin2u
2 ln~cscu2cotu!G , ~41!

a5
a0

2A2
sin23u. ~42!

This type of flat space-time has not been previously con
ered.

IV. DISCUSSIONS AND FINAL REMARKS

In order to study the physical properties of the Bianc
type I universe described by the Eqs.~24!–~26! we need to
fix first the range of variation of the parameterz. There are

FIG. 1. Behavior of the volume scale factor of the Bianchi ty
I space-time for different values ofa.1 (V051 and v51): a
53/2 ~solid curve!, a52 ~dotted curve!, and a55/2 ~dashed
curve!.
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no a priori limitations in choosing the admissible range
values, thus both positive and negative values are perm
since the variableh5*dt/V can also be negative. But from
a physical point of view it is natural to impose the conditio
such that the gravitational couplingf is always positive dur-
ing the evolution of the Bianchi type I space-time inN
52, D55 SUGRA. Consequently, we shall considerzP
(2p/2,p/2). With this choice, the universe fora,21 starts
its evolution in the infinite past (t→2`) and ends at a finite
momentt5t0. Fora.1 the universe starts att5t0 and ends
in an infinite future with t→`. ~All discussion here and
hereafter are with respect to positivev.!

As can be easily seen from Eq.~22!, if a,21 we have
V̇,0 for all t. For these values of the parameters the Bian
type I anisotropic universe collapses from an initial sta
characterized by infinite values of the volume scale fac
and of the scale factorsai , i 51,2,3, to a singular state with
all factors vanishing. But ifa.1, the universe expands an
V̇.0 for all t. The expanding Bianchi type I universe star
its evolution at the initial moment,t0, from a singular state
with zero values of the scale factors,ai(t0)50, i 51,2,3.

Another possible way to investigate the singularity beh
ior at the initial moment is to consider the sign of the qua
tity Rmnumun, whereum is the vector tangent to the geod
sics; um5(21,0,0,0) for the present model. From th
gravitational field equations we easily obtain

Rmnumun53H2~q2A!. ~43!

By using Eqs.~27!, ~29!, and~30! we can express Eq.~43! as

Rmnumun56H2
sinz

a1sinz
. ~44!

For z→2p/2 the sign ofRmnumun is determined by the sign
of 12a. Therefore we obtain

Rmnumun,0 for a.1. ~45!

Hence, the energy condition of Hawking-Penrose singula
theorems@16# is not satisfied for the solutions correspondi
to Bianchi type I Universes in the four-dimensional reduc
two scalar fields theory ofN52, D55 SUGRA with a
.1. Nevertheless, for those solutions an initial singular st
is unavoidableat the initial momentt0.

Since fora.1 the Bianchi type I Universe starts its evo
lution at the initial momentt5t0 (z→2p/2) from a singu-
lar state, therefore, the presence of a variable gravitatio
couplingf and of a supersymmetric fieldc in an anisotropic
geometrycannotremove the initial singularity that mars th
big-bang cosmology. At the initial moment the degree of t
anisotropy of the space-time is maximal, with the initi
value of the anisotropy parameterA(t0)52(a11)/(a21).
For t.t0 the Universe expands and the anisotropy param
decreases.

The behavior of the volume scale factor, of the anisotro
parameter and of the deceleration parameter is presente
different values ofa in Figs. 1–3. The evolution of the Uni
verse is noninflationary, withq.0 for all t.t0. Noninfla-
7-4
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tionary behavior is a generic feature of most of the sup
symmetric models. This is due to the general fact that
effective potential for the inflation fields in SUGRA typi-
cally is too curved, growing as exp(cs2/m), with c a param-
eter @typically O(1)# and m the stringy Planck mass@17#.
The typical values ofc make inflation impossible because th
inflation mass becomes of the order of the Hubble const
See also Ref.@17# for a simple realization of hybrid inflation
in SUGRA. In the present model the presence of the su
symmetric fieldc prevents the Bianchi type I Universe from
inflating.

In the far future, forz→p/2 andt→` (a.1), we have
V→`, ai→`, i 51,2,3. In this limit the anisotropy param
eter becomes a non-zero constant and the Universe ends
still anisotropic phase, but with a decrease in the value of
anisotropy parameterA, as compared with the initial one
Therefore during its evolution the Bianchi type I Univer
cannot experience a transition from the anisotropic phas
the isotropic flat geometry. The time evolution of the gra
tational couplingf and of the supersymmetric fieldc is
represented in Fig. 4. Thef field is positive for all values of
time.

In the present paper we have investigated the evolu
and dynamics of a Bianchi type I space-time in a SUGR
toy model, obtained by dimensional reduction of theN
52, D55 SUGRA. The inclusion of the supersymmetr

FIG. 2. Time dependence of the parametera5(3f0
2v2/4K2)A

for different values ofa: a53/2 ~solid curve!, a52 ~dotted curve!,
anda55/2 ~dashed curve!.

FIG. 3. Evolution of the deceleration parameterq of the Bianchi
type I space-time for different values ofa: a53/2 ~solid curve!,
a52 ~dotted curve!, anda55/2 ~dashed curve!.
10401
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term gives some particular features to this cosmolog
model, by preventing the Universe from inflating and atta
ing completely isotropy. But globally there is a decrease
the degree of anisotropy of the geometry. Hence this mo
can be used to describe only a specific, well-determined
riod of the evolution of our Universe.
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APPENDIX A: SOME EXACT FORMS FOR PHYSICAL
TIME

For a large class of values of the parametera the general
solution of the gravitational field equations can be expres
in a closed explicit form: The variation of the physical tim
t is determined by the integral equation~23!. After a trick
manipulation, one can rewrite this equation in the followi
form:

t5t01
V0

A2v
E sing823u cos2g8udu, ~A1!

whereuªz/21p/4 andg8ª2g5(3/2)(a11). In general,
for arbitraryg8, this integral cannot be closed. Fortunate
for integer values ofg8, the physical timet can be expressed
in an explicit form as a function ofz. Some of these exac
forms of the time function are listed in the following.@The
outcomes fora61 are given in Eqs.~39! and ~41!.#

For a,21. ~i! a52 5
3 , (g8521),

t5t02
V0

3A2v

1

sin3u
,

~ii ! a52 7
3 , (g8522),

t5t02
V0

8A2v
Fcosu~cos2u11!

sin4u
1 ln~cscu2cotu!G ,

FIG. 4. Time evolution of the gravitational couplingf ~solid
curve! and of the supersymmetric fieldc ~dashed curve! for a
55/2 (f051, c050).
7-5
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~iii ! a523, (g8523),

t5t02
V0

15A2v
S 5 cos222

sin5u
D .

For a.1. ~i! a5 5
3 , (g854),

t5t01
V0

3A2v

1

cos3u
,

-

ys

10401
~ii ! a5 7
3 , (g855),

t5t01
V0

8A2v
Fsinu~sin2u11!

cos4u
2 ln~ tanu1secu!G ,

~iii ! a53, (g856),

t5t01
V0

15A2v
S 5 sin2u22

cos5u
D .
rav.
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