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Magnetocapacitance of a three-probe mesoscopic capacitor
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We report a numerical calculation of the magnetocapacitance for a three-probe capacitor and investigate the
asymmetry property of the electrochemical capacitance under a magnetic-field reversal. At low magnetic fields
the quantum magnetocapacitance shows a large asymmetry under a field reversal. At higher fields the capaci-
tance is dominated by Aharonov-Bohm type oscillations and the fluctuations of the asymmetry is reduced.
[S0163-18297)00139-3

The physics associated with quantum conduction in varisecond plate of the capacitor is assumed to be a large metal
ous very small and low-dimensional systems has been a magate on top of the mesoscopic plate, and the third probe
focus in recent years. Due to spatial quantization, the physiresides on the metal gate. Between the plates there is an
cal behavior of these nanostructures is very different froninsulating layer with a thickness 1000 A. The whole system,
their classical counterpart. In particular, it has been underincluding the leads, is inside a uniform magnetic field and we
stood that in mesoscopic length scales, the classical notion ghall focus on investigating the magnetic-field dependence of
electrostatic capacitanc€,=dQ/dU, may not be useful. the capacitance. The system studied here has more than a
Instead one introduces the concept of electrochemical cdnere academic interest. Indeed, in quantum devices fabri-
pacitanceC,=edQdg, which is a quantity depending on cated via the split gate technology, the devices are near vari-
the properties of the conductbiThe reason these two ca- OuUs metal gates. Hence it is necessary to understand the ca-
pacitances can differ significantly at mesoscopic length scalacitive coupling of the devices to the metal gates. Since the
is because the electrostatic potential drdp)} at the capaci- System has two terminalgl and 2 that are not coupled
tor plates can be very different from the voltage drdp.(e) ~ Purely capacitively, we expect that the capacita@ggto be
in the electron reservoirs. The electrochemical capacitanc@Symmetric with respect to a magnetic-field reverdaln-
has played a relevant role in several experiments, especialfeed, we found that the capacitance shows an asymmetry
those using Capacitance Spectrosc%)py_ a recent experi_ under field reversal for the whole range of field Strengths we
ment, Cheret al? have measured the magnetic-field symme-have studied. At the higher fields range the magnetocapaci-
try properties of the capacitance tensor for several multifance is dominated by Aharonov-Bohm type oscillations,
probe two-dimensional2D) systems, and found large and which are less sensitive to the field reversal and the asym-
almost complete asymmetry under field reversal. This propmetric fluctuations of the capacitance are reduced.
erty has been anticipated from the point of view of a current sersessenmmmnrnre e e anaannnnaa .
conserving and gauge invariant ac-transport theory proposed :
by Bittiker and co-worker$* Despite this systematic
formulation! which provided the general understanding of
the symmetry properties of electrochemical capacitértoe, i
the best of our knowledge we are not aware of practical 1 : 3
calculations of the mesoscopic capacitance in 3D using this
formalism. It is clear that practical calculations of various B grovrrmmmne——
mesoscopic capacitance and investigating their behavior are : :
very important problems that warrant detailed effort. The
purpose of this paper is to report our work in this direction.

In particular, we have numerically calculated the mesos-
copic capacitance of a three-probe device, shown in Fig. 1,
using the current conserving formalism of Ref. 1. The system
consists of a two-probe mesoscopic semiconductor plate with £ 1. Sketch of the three-probe system. Probes 1 and 2 are
a size 3300 A3300 A. It connects to reservoirs 1 and 2 connected to the middle of the 3383300 A semiconductor plate
through two quantum wires with the same widlt= 1650 A, (solid lines, with width w= 1650 A. The dotted line is a very large
The potentialU(r) inside the plate is zero except at the classical metal plate on top of the seconductor plate. The distance
boundary of the plate, where it is assumed to be infinite. Thé@etween the two parallel plates is kept at 1000 A.
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Generally, a change of electrochemical potential in ong2). This can be done in two ways. In the first method, we
reservoir leads to very complicated effect$he semicon- solve the free-electron scattering problem for electrons com-
ductor plate may be charged, or may remain neutral but pong from contactg = 1,2 with the model confinement poten-
larized due to compensating responses of other reservoirgal U(r) described above. The solution gives the scattering
However, for very small sizes of the semiconductor plate thavave function ¢;,(r) by which we obtain the injectivity
plate will be charged. In this case it is reasonable to assumigom Eq. (2). Then through Eq(1) we obtain the injected
that an increment of the electrochemical potendal; (j charge densitydp;(r), which in turn determinesdQ;
=1,2) at reservoirj injects an additional carrier density = fdr[dp;(r)]. In the second method, which is a slightly
dp;(r) into the semiconductor plate, more refined procedure, we can include the changes of the
scattering potentidl (r) due to the scattering electron wave
functions. For this purpose we notice that the injected charge
dp;(r) and its image charge on the metal gate give rise to an
. : L ) extra potentiadU(r), which modifies the scattering poten-
wheredn(r,j)/dE is theinjectivity of contactj. By the free- 5 from the original U(r) to U(r)+dU(r). This in turn
electron scattering approdtthe injectivity is related to the  attacts the injectivity: thus we have a self-consistent problem
scattering wave function, that we can solve numerically to account for the effects of

dn(r.j) W ()2 dU. At the end of this self-consistency, when the system
' :2 n ) 2 reaches the new equilibrium that corresponds to the proper
dE n hvjn characteristic potential, there is a charge dendity(r) in-
side the semiconductor plate. Again, integratihy we ob-
tain the chargelQ; due to the raise ofix;. We comment
that dU(r) should only be a small correction td(r) be-

dn(r,j)

dpj(r)z T d,le, (1)

Herevj, is the velocity of incident carriers in channelin
contactj. With the injected charge as determined by the

|nject|V|.ty, n 'pr|n0|ple one can solvé,fqr our problem, a cause for smalty; , the injected charge that causagd is
three-dimensional self-consistent equation for ¢haracter- T I . .
small. This slightly refined calculation gives a small correc-

istic potential y(r), which describes the variation of the ST
) :ofipn to the injectivity. However near a quantum resonance
potential landscape due to a change of the electrochemica

potential at contacit. The self-consistency comes in becausemedlatecj by a quasibound state, as shown in Ref. 8 the effect

; ; . 9
one has to determine the induced charge inside the syste%rdoircinogg ;L':Stanst'ﬂbtizzzgy;ftgbqetae;g'?i'r? d@Cj'-
The characteristic potential is determined by the Poisson R 3i
equatior’ =eq_%_/d,uj . In or_der to obtain the injectivity, we solve_the
' Schralinger equation for the scattering problem by a finite-
2 _ element numerical scheme discussed in detail in Ref. 10 that
Voui(n) == 4mlpi (1) + pind1)], ® gives the wave function inside the scattering region as well
wherep; is the injected charge through contacpi,q is the  as the transmission coefficiertts.
induced charge, which is related to a complicated Lindhard While only a technical point, we briefly outline the deter-
function convoluted with the characteristic potenfidlhus a  mination ofdU and ofdn;(r). We start from the injected
self-consistent solution of this equation solves the induced¢harge density from probg dp;(r) of Eq. (1). Because the
charge! We shall be interested in the behavior of capaci-metal gate is assumed to respond classically, it instantly pro-
tanceCs; as a function of the magnetic fiell. Hence itis  vides an image charge of the same amddifter by a sign.
necessary to determine the induced charge at the metal gats a second step we calculate the induced electric potential
when external charges are injected from contget&,2. Be- dU(r) from classical electrodynamics, i.e., Coulomb’s law,
cause the electron density of states is very large in the metal
gate, the response of the gate can be approximately treated edp(r’)
classically. Thus instead of solving E() self-consistently dU(r)=J'
to determinep;,q, we simply assume that there is an image
charge density in the metal gate. The capacitaigeand  Heredp(r) represents both the injected charge in the semi-
Cs, are defined a€;;=edQ;/du;, j=1,2, wheredQ; is  conductor and its image charge on the metal gate, isd
the electric chargéhe induced chargeaccumulation on the the dielectric constant. In principle, we should solve a Pois-
metal gate due to the increase of the chemical potedfial son equation to obtaidU by imposing appropriate electro-
at contactsj=1,2. Treating the gatelassically means it static boundary conditions at the three reservoirs. However,
merely provides an image charge to the injected charge oto apply the current conserving theoretical formafiswe
the semiconductor plate. We thus obtaiQ;=—dQ, fora  must set the chemical potential chandg; very small,
change of electrochemical potential at the first contaat,. hence a direct integration of E¢4) is adequate for our pur-
This allows us to obtain the electrochemical capacitancgose. In the third step we put this potential variatebd(r)
C3;1. We caution that this procedure is reasonable only wheimnto the scattering region, and solve the scattering problem
the second plate is a large metal. If not, then a direct calcuagain with the new potentidl (r)+dU(r). This leads to a
lation of the chargel Q5 will be needed by solving Eq3). more refined charge densityp;. Such a procedure is re-
Since our primary concern is the magnetic-field asymmetryeated until convergence. In our calculations we usually ob-
property of the eletrochemical capacitance, our model is adiained convergence in only a few iterations.
equate. It is well known'! that for systems such as our two-probe
With the classical treatment of the metal gate, quantunsemiconductor plate, the resistance is symmetric under
mechanics enters in the calculation of the injectivity of Eq.magnetic-field reversal, i.eR(B)=R(—B). The electro-
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10— tances under magnetic-field reversal. This is clearly seen in
Fig. 2. As mentioned above, such an asymmetry was ob-
8 served in the experiments of Ref. 3. When value8dbe-
§ come larger, e.gB=5000-6900 G, while the asymmetry is
¥ 6 | still clearly observable, the general pattern @f;(B) and
§ Dol e ST N 7 ‘ 4 i C3:(—B) becomes similar. This is especially true for the
g; 4t Magneric Fild (Gauss) ' positions and the shapes of the peaks as shown in Fig. 2.
S Why does the capacitance behave this way? To under-

stand we first notice that at largg there are regular and
nearly equal-spaced peaks in baky(B) andC3,(—B). The
spacing between these peaks is ahbBt=400 G, as seen in
the inset of Fig. 2. From the area of the semiconductor plate,
Magnetic Field (Gauss) S~1.0x10 ° cm?, the magnetic flux passing through the
plate is increased b§® =ABS~4x10 ’ G cn? whenB is
increased byAB. The fact that this value af® is essentially

a magnetic-flux quantum strongly indicates that the peaks in

1000 2000 3000 4000 5000 6000

FIG. 2. The capacitandén FF) of the two parallel plates of Fig.
1 as a function of an external magnetic fi@d Solid line, C3:(B);

dashed lineCj,(—B). Both these quantities were computed only . i
using the injected charge. Data poin®;;(B) computed using the the capacitanc€sy, are due to Aharonov-BohrtAB) type

self-consistently determined charge density(r). The two calcu- oscillations. To Confirm_ this picw.e' in the ins.et of Fig. 2 we
lations differ b; about 1% in the 9\]/alues. mge)t: comparison of theaISO plotted th_e re_ﬂeCt'On_ coefﬂme(ﬁia_shed lingr(B) for
first subband contribution t63,(B) (solid line) with the reflection ~ €l€Ctrons coming in the first propagation mode. Clearly the
coefficient(dashed ling The peak positions are well aligned. capacitance undergoes a magnetic oscillation similar to that
of the reflection coefficient. Their peaks are reached at the

chemical capacitance between the plate and the metal@ate same field values. At high enough magnetic fields, the elec-
three-probe systemhowever, is generally asymmetric under tron wave functions are “pressed” toward the walls of the
the field reversal. This is easy to understand since the scat-quantum dot. In our case, at these high fields the semicon-
tering wave functions are usually sensitive to the direction oductor plate serves as a conducting “ring” that encloses a
the magnetic field, thus from E) so is the injectivity that well-defined area. Consequently the transport coefficients
essentially determines the capacitance. We have fixed thendergo AB oscillations. The concurrence of the capacitance
incoming electron energiE=7#2%/(2m*)k? by specifying and the reflection coefficient peaks suggests this picture.
kw=9.5, which is just above the third propagation subband To further explore this possibility, we have examined a
without B. Herek is the momentum of the incoming elec- larger plate by doubling the area. For this larger system, in
tron, # the Planck constant divided bys2 m* is the effec- the magnetic-field range of 2640—-3870 G which corresponds
tive mass of the electron and is the width of the probe. to a magnetic flux through the plate similar to that of the
With w=1650 A, the energy threshold of the first subband ishigh-field range of Fig. 2, the capacitance has six large peaks
0.207 meV. Since whem is increased the third subband with the following peak to peak distances: 240, 242, 284,
cannot propagate in the probes, we have only included th200, and 266 G. For a perfect metal ring, doubling the ring
first two propagating subbands of the probes in our calculaarea reduces the AB oscillation period by a factor of 2.
tions throughout the whole magnetic-field range. Our calcufor our case, the oscillation period is reduced by a factor of
lated magnetocapacitanc€sz;(B) (solid line) and C3(B) ~1.6. This can easily be understood since our quantum dot
(dashed lingare shown in Fig. 2. These were obtained usingis not a perfect ring, and the weaker field used for this larger
Eq. (1) directly without using thedn;, which includes the system does not confine the electron wave to the edges of the
small potential correctiodU. The data points in Fig. 2 were quantum dot, thereby the effective area enclosed by a quan-
from thedn; as described above. The two curves are consistum path is less than doubled compared with that of the
tent with each other. We have checked that the numericadmaller quantum dot. Due to the weaker field the oscillation
difference between the data points and the approximatperiod is also less regular in comparison to those of Fig. 2.
curves differ by~1%. We emphasize that this small changeHowever the fact that the period is reduced by a factor of
reflects the effect oiU on the injectivity: a smaliU ontop  close to 2 when the quantum dot area is doubled gives an-
of the overall potential landscapd(r) alters the injectivity =~ other support that the nearly regular oscillation at the high
slightly for the set of system parameters used here. On thield range of Fig. 2 is indeed due to Aharonov-Bohm effect.
other hand, the characteristic poteﬁtiajj(r)zeduld,uj To intuitively show this physical picture, in Fig. 3 we plot
plays a central role in setting up the induced charge and ththe norm of the wave functiopV’(r)|? inside the scattering
polarization of the system. In our model such a charge poregion, up to a constant this is the first subband contribution
larization is treated classically for the large metal gate, a$o the injectivity Eq.(2). At B=5494 G which corresponds
discussed above. to a peak ofC4; in the AB-oscillation region, Fig. &) shows

To reduce numerical effort, we have fixed the identicalthat |¥,(r)|?> has large values inside the semiconductor
leads 1 and 2 at the middle of the square plate as shown iplate, with a pattern mimicking “rings.” On the other hand,
Fig. 1. Because of this geometric symmetry, transport fromfor B=5126 G which is not a peak position, Fighp shows
lead 1 to 2 at- B is equivalent to that from lead 2 to 1Bt  that |W¥,(r)|? is significant only along the direct path from
We thus haveCs(—B)=C3y(B). In the low-field regime probe 1 to probe 2. This confirms the physical picture dis-
B=0-5000 GC3;(B), andC3;(—B) [C3,(B)] are quite dif-  cussed above. Finally, it is easy to understand why the peak
ferent, displaying the remarkable asymmetry in the capacishapes ofC3;(B) and Cz;(—B) become similar in the AB-
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calculate the 3D mesoscopic capacitance of a three-probe
system. Our numerical calculation shows that under a
magnetic-field reversal, the capacitance for this three-probe
capacitor is asymmetric. This is in qualitative agreement
with the experimental result of Ref. 3, and confirms the gen-
eral theoretical discussion of Ref. 4. In particular, the asym-
metry is large at low fields. At high fields, an interesting
result is that the capacitance undergoes Aharonov-Bohm
type oscillations that effectively reduced the asymmetry of
the shape of the oscillation peaks. Finally, for the small
semiconductor quantum-dot system, the mesoscopic capaci-
tance is small, in the fF range. In addition, under the assump-
tion that the large metal gate responds classically, which al-
lows us to approximate the induced charge on the metal gate
using images, we have determined the potential chatge
due to the scattering wave functions. Such a change alters the
overall scattering potential landscape slightly and that modi-
fies the charge injectivity. There are several further investi-
gations to be made concerning the issues of quantum capaci-
tance. The classical approximation used here for the metal
gate drastically simplifies the numerical calculations. A natu-
ral next step is to solve E@3) for the characteristic potential
and the induced charge. This is a difficult problem since a
Lindhard function, which describes the density response to a
potential change, must be found for the scattering process.
For metallic gates, this difficulty can be somewhat reduced
using the Thomas-Fermi linear screening model. We expect
the self-consistently determined characteristic potential to
play an important role for situations where sharp junction
resonances dominate the transport, and, more importantly,
for cases where the two plates of the capacitor are both of
mesoscopic sizes.

FIG. 3. The contour plot of the norm of scattering wave function
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