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Magnetocapacitance of a three-probe mesoscopic capacitor
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We report a numerical calculation of the magnetocapacitance for a three-probe capacitor and investigate the
asymmetry property of the electrochemical capacitance under a magnetic-field reversal. At low magnetic fields
the quantum magnetocapacitance shows a large asymmetry under a field reversal. At higher fields the capaci-
tance is dominated by Aharonov-Bohm type oscillations and the fluctuations of the asymmetry is reduced.
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The physics associated with quantum conduction in v
ous very small and low-dimensional systems has been a m
focus in recent years. Due to spatial quantization, the ph
cal behavior of these nanostructures is very different fr
their classical counterpart. In particular, it has been und
stood that in mesoscopic length scales, the classical notio
electrostatic capacitance,Ce[dQ/dU, may not be useful.1

Instead one introduces the concept of electrochemical
pacitance,Cm[edQ/dm, which is a quantity depending o
the properties of the conductor.1 The reason these two ca
pacitances can differ significantly at mesoscopic length s
is because the electrostatic potential drop (dU) at the capaci-
tor plates can be very different from the voltage drop (dm/e)
in the electron reservoirs. The electrochemical capacita
has played a relevant role in several experiments, espec
those using capacitance spectroscopy.2 In a recent experi-
ment, Chenet al.3 have measured the magnetic-field symm
try properties of the capacitance tensor for several mu
probe two-dimensional~2D! systems, and found large an
almost complete asymmetry under field reversal. This pr
erty has been anticipated from the point of view of a curr
conserving and gauge invariant ac-transport theory propo
by Büttiker and co-workers.1,4 Despite this systematic
formulation,1 which provided the general understanding
the symmetry properties of electrochemical capacitance4 to
the best of our knowledge we are not aware of pract
calculations of the mesoscopic capacitance in 3D using
formalism. It is clear that practical calculations of vario
mesoscopic capacitance and investigating their behavior
very important problems that warrant detailed effort. T
purpose of this paper is to report our work in this directio

In particular, we have numerically calculated the mes
copic capacitance of a three-probe device, shown in Fig
using the current conserving formalism of Ref. 1. The syst
consists of a two-probe mesoscopic semiconductor plate
a size 3300 Å33300 Å. It connects to reservoirs 1 and
through two quantum wires with the same widthw51650 Å.
The potentialU(r ) inside the plate is zero except at th
boundary of the plate, where it is assumed to be infinite. T
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second plate of the capacitor is assumed to be a large m
gate on top of the mesoscopic plate, and the third pr
resides on the metal gate. Between the plates there i
insulating layer with a thickness 1000 Å. The whole syste
including the leads, is inside a uniform magnetic field and
shall focus on investigating the magnetic-field dependenc
the capacitance. The system studied here has more th
mere academic interest. Indeed, in quantum devices fa
cated via the split gate technology, the devices are near v
ous metal gates. Hence it is necessary to understand th
pacitive coupling of the devices to the metal gates. Since
system has two terminals~1 and 2! that are not coupled
purely capacitively, we expect that the capacitanceC31 to be
asymmetric with respect to a magnetic-field reversal.3,4 In-
deed, we found that the capacitance shows an asymm
under field reversal for the whole range of field strengths
have studied. At the higher fields range the magnetocap
tance is dominated by Aharonov-Bohm type oscillation
which are less sensitive to the field reversal and the as
metric fluctuations of the capacitance are reduced.

FIG. 1. Sketch of the three-probe system. Probes 1 and 2
connected to the middle of the 330033300 Å semiconductor plate
~solid lines!, with width w51650 Å. The dotted line is a very larg
classical metal plate on top of the seconductor plate. The dista
between the two parallel plates is kept at 1000 Å.
9657 © 1997 The American Physical Society
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Generally, a change of electrochemical potential in o
reservoir leads to very complicated effects.5 The semicon-
ductor plate may be charged, or may remain neutral but
larized due to compensating responses of other reserv
However, for very small sizes of the semiconductor plate
plate will be charged. In this case it is reasonable to ass
that an increment of the electrochemical potentialdm j ( j
51,2) at reservoirj injects an additional carrier densit
dr j (r ) into the semiconductor plate,

dr j~r !5Fdn~r , j !

dE Gdm j , ~1!

wheredn(r , j )/dE is theinjectivity of contactj . By the free-
electron scattering approach6 the injectivity is related to the
scattering wave function,

dn~r , j !

dE
5(

n

uC jn~r !u2

hv jn
. ~2!

Herev jn is the velocity of incident carriers in channeln in
contact j . With the injected charge as determined by t
injectivity, in principle one can solve,1 for our problem, a
three-dimensional self-consistent equation for thecharacter-
istic potential uj (r ), which describes the variation of th
potential landscape due to a change of the electrochem
potential at contactj . The self-consistency comes in becau
one has to determine the induced charge inside the sys
The characteristic potential is determined by the Pois
equation,1

¹2uj~r !524p@r j~r !1r ind~r !#, ~3!

wherer j is the injected charge through contactj . r ind is the
induced charge, which is related to a complicated Lindh
function convoluted with the characteristic potential.7 Thus a
self-consistent solution of this equation solves the indu
charge.1 We shall be interested in the behavior of capa
tanceC3 j as a function of the magnetic fieldB. Hence it is
necessary to determine the induced charge at the metal
when external charges are injected from contactsj 51,2. Be-
cause the electron density of states is very large in the m
gate, the response of the gate can be approximately tre
classically. Thus instead of solving Eq.~3! self-consistently
to determiner ind , we simply assume that there is an ima
charge density in the metal gate. The capacitanceC31 and
C32 are defined asC3 j5edQ3 /dm j , j 51,2, wheredQ3 is
the electric charge~the induced charge! accumulation on the
metal gate due to the increase of the chemical potentialdm j
at contactsj 51,2. Treating the gateclassically means it
merely provides an image charge to the injected charge
the semiconductor plate. We thus obtaindQ352dQ1 for a
change of electrochemical potential at the first contact,dm1.
This allows us to obtain the electrochemical capacita
C31. We caution that this procedure is reasonable only w
the second plate is a large metal. If not, then a direct ca
lation of the chargedQ3 will be needed by solving Eq.~3!.
Since our primary concern is the magnetic-field asymme
property of the eletrochemical capacitance, our model is
equate.

With the classical treatment of the metal gate, quant
mechanics enters in the calculation of the injectivity of E
e
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~2!. This can be done in two ways. In the first method, w
solve the free-electron scattering problem for electrons co
ing from contactsj 51,2 with the model confinement poten
tial U(r ) described above. The solution gives the scatter
wave functionc jn(r ) by which we obtain the injectivity
from Eq. ~2!. Then through Eq.~1! we obtain the injected
charge densitydr j (r ), which in turn determinesdQj
5*dr @dr j (r )#. In the second method, which is a slight
more refined procedure, we can include the changes of
scattering potentialU(r ) due to the scattering electron wav
functions. For this purpose we notice that the injected cha
dr j (r ) and its image charge on the metal gate give rise to
extra potentialdU(r ), which modifies the scattering poten
tial from the originalU(r ) to U(r )1dU(r ). This in turn
affects the injectivity: thus we have a self-consistent probl
that we can solve numerically to account for the effects
dU. At the end of this self-consistency, when the syst
reaches the new equilibrium that corresponds to the pro
characteristic potential, there is a charge densitydnj (r ) in-
side the semiconductor plate. Again, integratingdnj we ob-
tain the chargedQj due to the raise ofdm j . We comment
that dU(r ) should only be a small correction toU(r ) be-
cause for smalldm j , the injected charge that causesdU is
small. This slightly refined calculation gives a small corre
tion to the injectivity. However near a quantum resonan
mediated by a quasibound state, as shown in Ref. 8 the e
of dU can be substantial. Finally, after determiningdQj ,9

for our model we thus obtaindQ352dQj , and find C3 j
5edQ3 /dm j . In order to obtain the injectivity, we solve th
Schrödinger equation for the scattering problem by a fini
element numerical scheme discussed in detail in Ref. 10
gives the wave function inside the scattering region as w
as the transmission coefficients.12

While only a technical point, we briefly outline the dete
mination of dU and of dnj (r ). We start from the injected
charge density from probej , dr j (r ) of Eq. ~1!. Because the
metal gate is assumed to respond classically, it instantly p
vides an image charge of the same amount~differ by a sign!.
As a second step we calculate the induced electric pote
dU(r ) from classical electrodynamics, i.e., Coulomb’s law

dU~r !5E edr~r 8!

eur2r 8u
. ~4!

Heredr(r ) represents both the injected charge in the se
conductor and its image charge on the metal gate, ande is
the dielectric constant. In principle, we should solve a Po
son equation to obtaindU by imposing appropriate electro
static boundary conditions at the three reservoirs. Howe
to apply the current conserving theoretical formalism1 we
must set the chemical potential changedm j very small,
hence a direct integration of Eq.~4! is adequate for our pur
pose. In the third step we put this potential variationdU(r )
into the scattering region, and solve the scattering prob
again with the new potentialU(r )1dU(r ). This leads to a
more refined charge densitydr j . Such a procedure is re
peated until convergence. In our calculations we usually
tained convergence in only a few iterations.

It is well known11 that for systems such as our two-prob
semiconductor plate, the resistance is symmetric un
magnetic-field reversal, i.e.,R(B)5R(2B). The electro-
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chemical capacitance between the plate and the metal ga~a
three-probe system!, however, is generally asymmetric und
the field reversal.4 This is easy to understand since the sc
tering wave functions are usually sensitive to the direction
the magnetic field, thus from Eq.~2! so is the injectivity that
essentially determines the capacitance. We have fixed
incoming electron energyE[\2/(2m* )k2 by specifying
kw59.5, which is just above the third propagation subba
without B. Here k is the momentum of the incoming elec
tron, \ the Planck constant divided by 2p, m* is the effec-
tive mass of the electron andw is the width of the probe.
With w51650 Å, the energy threshold of the first subband
0.207 meV. Since whenB is increased the third subban
cannot propagate in the probes, we have only included
first two propagating subbands of the probes in our calc
tions throughout the whole magnetic-field range. Our cal
lated magnetocapacitancesC31(B) ~solid line! and C32(B)
~dashed line! are shown in Fig. 2. These were obtained us
Eq. ~1! directly without using thednj , which includes the
small potential correctiondU. The data points in Fig. 2 wer
from thednj as described above. The two curves are con
tent with each other. We have checked that the numer
difference between the data points and the approxim
curves differ by;1%. We emphasize that this small chan
reflects the effect ofdU on the injectivity: a smalldU on top
of the overall potential landscapeU(r ) alters the injectivity
slightly for the set of system parameters used here. On
other hand, the characteristic potential1 uj (r )[edU/dm j
plays a central role in setting up the induced charge and
polarization of the system. In our model such a charge
larization is treated classically for the large metal gate,
discussed above.

To reduce numerical effort, we have fixed the identic
leads 1 and 2 at the middle of the square plate as show
Fig. 1. Because of this geometric symmetry, transport fr
lead 1 to 2 at2B is equivalent to that from lead 2 to 1 atB.
We thus haveC31(2B)5C32(B). In the low-field regime
B50 –5000 G,C31(B), andC31(2B) @C32(B)# are quite dif-
ferent, displaying the remarkable asymmetry in the cap

FIG. 2. The capacitance~in FF! of the two parallel plates of Fig
1 as a function of an external magnetic fieldB. Solid line,C31(B);
dashed line,C31(2B). Both these quantities were computed on
using the injected charge. Data points,C31(B) computed using the
self-consistently determined charge densitydnj (r ). The two calcu-
lations differ by about 1% in the values. Inset: comparison of
first subband contribution toC31(B) ~solid line! with the reflection
coefficient~dashed line!. The peak positions are well aligned.
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tances under magnetic-field reversal. This is clearly see
Fig. 2. As mentioned above, such an asymmetry was
served in the experiments of Ref. 3. When values ofB be-
come larger, e.g.,B55000–6900 G, while the asymmetry
still clearly observable, the general pattern ofC31(B) and
C31(2B) becomes similar. This is especially true for th
positions and the shapes of the peaks as shown in Fig.

Why does the capacitance behave this way? To un
stand we first notice that at largeB there are regular and
nearly equal-spaced peaks in bothC31(B) andC31(2B). The
spacing between these peaks is aboutDB'400 G, as seen in
the inset of Fig. 2. From the area of the semiconductor pl
S'1.031029 cm2, the magnetic flux passing through th
plate is increased bydF5DBS'431027 G cm2 whenB is
increased byDB. The fact that this value ofdF is essentially
a magnetic-flux quantum strongly indicates that the peak
the capacitanceC31 are due to Aharonov-Bohm~AB! type
oscillations. To confirm this picture, in the inset of Fig. 2 w
also plotted the reflection coefficient~dashed line! r (B) for
electrons coming in the first propagation mode. Clearly
capacitance undergoes a magnetic oscillation similar to
of the reflection coefficient. Their peaks are reached at
same field values. At high enough magnetic fields, the e
tron wave functions are ‘‘pressed’’ toward the walls of th
quantum dot. In our case, at these high fields the semic
ductor plate serves as a conducting ‘‘ring’’ that enclose
well-defined area. Consequently the transport coefficie
undergo AB oscillations. The concurrence of the capacita
and the reflection coefficient peaks suggests this picture

To further explore this possibility, we have examined
larger plate by doubling the area. For this larger system
the magnetic-field range of 2640–3870 G which correspo
to a magnetic flux through the plate similar to that of t
high-field range of Fig. 2, the capacitance has six large pe
with the following peak to peak distances: 240, 242, 28
200, and 266 G. For a perfect metal ring, doubling the r
area reduces the AB oscillation period by a factor of
For our case, the oscillation period is reduced by a facto
;1.6. This can easily be understood since our quantum
is not a perfect ring, and the weaker field used for this lar
system does not confine the electron wave to the edges o
quantum dot, thereby the effective area enclosed by a qu
tum path is less than doubled compared with that of
smaller quantum dot. Due to the weaker field the oscillat
period is also less regular in comparison to those of Fig
However the fact that the period is reduced by a factor
close to 2 when the quantum dot area is doubled gives
other support that the nearly regular oscillation at the h
field range of Fig. 2 is indeed due to Aharonov-Bohm effe

To intuitively show this physical picture, in Fig. 3 we plo
the norm of the wave functionuC1(r )u2 inside the scattering
region, up to a constant this is the first subband contribut
to the injectivity Eq.~2!. At B55494 G which correspond
to a peak ofC31 in the AB-oscillation region, Fig. 3~a! shows
that uC1(r )u2 has large values inside the semiconduc
plate, with a pattern mimicking ‘‘rings.’’ On the other hand
for B55126 G which is not a peak position, Fig. 3~b! shows
that uC1(r )u2 is significant only along the direct path from
probe 1 to probe 2. This confirms the physical picture d
cussed above. Finally, it is easy to understand why the p
shapes ofC31(B) andC31(2B) become similar in the AB-
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oscillation region: the AB effect~the magnitude of the rela
tive phases! is not sensitive to the direction of the magne
field. The remaining difference in the magnitudes ofC31(B)
andC31(2B) is because of the difference in injectivities fo
the two different directions ofB.

In summary, we have numerically applied the curre
conserving and gauge-invariant AC-transport formalism

FIG. 3. The contour plot of the norm of scattering wave functi
at the first propagating subband inside the semiconductor plate~a!
For B55494 G at which there is a peak in the quantum capacita
as shown in Fig. 2;~b! for B55126 G at which the quantum ca
pacitance takes a small value. Whiter regions indicate higher va
of the norm.
-
o

calculate the 3D mesoscopic capacitance of a three-p
system. Our numerical calculation shows that under
magnetic-field reversal, the capacitance for this three-pr
capacitor is asymmetric. This is in qualitative agreem
with the experimental result of Ref. 3, and confirms the g
eral theoretical discussion of Ref. 4. In particular, the asy
metry is large at low fields. At high fields, an interestin
result is that the capacitance undergoes Aharonov-Bo
type oscillations that effectively reduced the asymmetry
the shape of the oscillation peaks. Finally, for the sm
semiconductor quantum-dot system, the mesoscopic cap
tance is small, in the fF range. In addition, under the assu
tion that the large metal gate responds classically, which
lows us to approximate the induced charge on the metal
using images, we have determined the potential changedU
due to the scattering wave functions. Such a change alter
overall scattering potential landscape slightly and that mo
fies the charge injectivity. There are several further inve
gations to be made concerning the issues of quantum cap
tance. The classical approximation used here for the m
gate drastically simplifies the numerical calculations. A na
ral next step is to solve Eq.~3! for the characteristic potentia
and the induced charge. This is a difficult problem since
Lindhard function, which describes the density response
potential change, must be found for the scattering proc
For metallic gates, this difficulty can be somewhat reduc
using the Thomas-Fermi linear screening model. We exp
the self-consistently determined characteristic potential
play an important role for situations where sharp juncti
resonances dominate the transport, and, more importa
for cases where the two plates of the capacitor are both
mesoscopic sizes.
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