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Lack of quenching for the resonant transmission through an inhomogeneously oscillating
quantum well
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The spectral weights of the wave-function sidebands for a quantum well in the presence of an inhomoge-
neous electromagneti&M) field are studied by introducing a wave function with the form of a Floquet state
and then solving the time-dependent Sclinger equation approximately. The two cases of radiation direction
of the EM field parallel and perpendicular to the well axis are considered. We find that the inhomogeneity of
the EM field may eliminate the sideband quenching. Based on the spectral weight, the transmission probability
through the well is investigated. The energy-level splitting for a special case, the averaged vector potential
equal to zero, is also studief50163-182¢08)04128-9

The electron tunneling through nanostructures in the presand Blick et al,? no sideband quenching is observed. It is
ence of a time-dependent electromagnefid) field has  important to notice that almost all the theoretical works that
been a subject of increasing interest in the past few years. /d to sideband quenching always considered the regionally
number of new effects have been observed, such as tH®mogeneous field@ither in the quantum-well region or in
photon-assisted tunneliflg® the splitting of the Coulomb the lead region On the other hand, in experiments by Drex-
oscillation peaks;? the photon-electron pumpirfg, etc. ler et al! and Blick et al, the broadband bowtie antenna is

Since the pioneering work of Tien and Gordbit,has  used to couple the microwave fields to the system, which
been well known that an oscillating potential with frequency™ay Produce an inhomogeneous field in the quantum-well
o can change the energy of an electron steto a set of '€9ion. We expect that the inhomogeneity may play an es-
energiesE+nfiw (n=0,1,2,...), the so-called sideband en_sennal role in eI|m|nat|r_19 _S|deband q“eT‘Ch'”g-
ergies. All phenomena mentioned above are related to the In. order to.check this |dea,_ we consider a quantum well

applied by a time-dependent field, propagating head-to-head

spectral weights of the sidebands. Theoretically, there are . : L
dlong thez axis, and forming a spatial inhomogeneously

two main approaches to study the sideband effects: one is t&anding wave in the quantum-well region. Two special

take .the ad'a.bat'(i approximation a_md use the Gfee” Stases, the radiation direction parallel and perpendicular to
function techniqué;*? and the other is to solve the time- the well axis, have been investigatete Fig. 1 Taking the
dependent Schdinger equation directly>**In the adiabatic  5u10mb ga,uge, the electric fiell= — (1/c)(JA/4t). By
approximation approach, one assumes that the external PRolving the time-dependent Scldinger equation, the spec-
tential, say,eV coswt, only causes the single-electron en- yr5| weight of sidebands; and the transmission probability
ergy e a rigid shift [e,— e (t) = e+ eV coswt], but N0 T(¢) are obtained. It turns out that lack of sideband quench-
transition between different electronic states takesng is found for these inhomogeneous field cases where both
place’1°~2 Then the obtained spectral weight of th¢h
sidebands,,, which is proportional toJﬁ(a) (where « (a) (b)
=eV/hw is a dimensionless variable for the effective field
strength,” will vanish at certain values o, corresponding E,x E X [
to the zeros of the Bessel functidp. This result is usually [ ] M
called sideband quenchirigBy using the Schmdinger equa- W S
tion approach, sideband quenching has also been z :,\ﬁ y
obtained/ 1314 y
Since the spectral weights are related to the transmission
probabilities, one can check the sideband effect by examin- FiG. 1. Schematic description of the model systerf. is the
ing the strengths of the side peak around the central res@xternal electric field(a) and (b) correspond to the cases of the
nance, or by measuring the heights of the side step df-¥ie radiation direction parallel and perpendicular to the well axis, re-
curves. Surprisingly, in the experiments by Drextrall  spectively.
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E(r,t) and A(r,t) depend on the coordinates Besides, a Substituting the expression og(r,t) into the time-
slight asymmetry of the spectral weights of the sidebands isependent Schdinger equation oH; Eq. (3), only keeping
also found, the same as the result by Wadfier. the terms with the first order ok,(q,), and by comparing
the coefficient of the terms with the same &kpt}, one eas-
1. The case with the radiation direction parallel to well axis ily finds
In order to calculate the spectral weights of the sidebands, (1=0)  Houg(r)=euy(r), 7
we consider that the system is completely confined inzthe
direction by assuming that the heights of the barriers are ize o
infinite, i.e., the confining potential is (1=1) Houy(r) — =— >, A (qn)€' 9 — ug(r)
2mc i=o dx
+o, |z|>al2
V=g, |z=<ar. @ =(e—hw)uy(r), ®
For the realistic system with finite barrier height, the tunnel- ite o d
ing effect can be described by introducing the phenomenod=—1) Hou_4(r)— 2me &, A.(Q,)e'n? dx Uo(r)

logical parametef’, which measures the decay width of the
resonant state. To characterize the inhomogeneity of the ex-
ternal field in the well region, we assume that the electric
field E is parallel to thex axis and choosé=(A,,0,0)
where A, has the form ofA,=(E,c/w)[g(z)]coswt. Ex- (I#0,£1)  Hou(r) = (e~ lhw)uy(r). (10

panding A, into Fourier components, one hah.(z)  Notice that the boundary condition(r,t)|,- + an=0 corre-

=(ethw)u_y(r), €)

=2, Ax(an)explidzt, where sponds tau;(r)| = «a»=0.
Ec (a2 Ec From Eq.(7), which is an eigenequation, one easily ob-
A(qy)= —> g(z)e tdz=—"g, (2) tains up(r)=e“*e*Ycoskz and e=ﬁ2(I§§+ kS + ki)/Zr_n
aw J-ap ® =€ With k,=(2n+ 1)=/a. It should be pointed out thatis

independent withA,(q,) in the first-order approximation.
Then we solve Eq(8). Substitutingug(r) andu,(r), Eq.
(6), into Eg.(8), and noticing thaug(r)zo, one easily ob-

and g,=2wmn/a (n=0,=1,%£2,...). Neglecting the higher-
order terms ofA,(q,) as in Refs. 6 and 15, the Hamiltonian
of the system under consideration can be expressed as

tains
H=H’——IﬁeA (qO)COSwti, 1 hkee il ik
O mc" ¥ dx 3 Houig ()+ mc g'In?cosk,zd ekyy
ihe . d (. _ (1)
H('): HO— - 2 Ax(qn)e'qnzcoswt —_—, (60 ﬁw)ul,qn(r)' (11)
mc %o dx

Then letuf®) (r)=ufy (z)e'**e'*y; one has
whereH, is the Hamiltonian without the external field, and " "

the wave function oH is 72 g2 " ke -
A A — 5— 752 Uyg (2) + 5— €e'In"cosk,z
f(r,t)=e ke+kY)cosk,ze €t/ (4) 2mdz n 2mc
212 2
with €y= +k{+ m, andk,=(2n+1)=/a. - x Ty (1)
th eo=7(k; k32’ )12 dk,=(2n+ 1)/ —(6 —ﬁ ok )—ﬁw)u (2). (12
Next, we need to find the solution of the Hamiltonidg. 0 2m L

The point here is to find a solution with a special form, the
form of the Floquet state. The Floquet state is the analog to
Bloch state when replacing a spatially periodic potential with
a time periodic potentidf* Therefore, the wave function of
the HamiltonianH ), ¢(r,t), should be expressed as

Noticing that the above differential equation is not an
gigenequation, and the general solution is

(1) — ik.z —iklz
ulvqn(z)—ane z+ane z

ﬁkxe ei(qn+kz)z ei(qn_kz)z

gD(r,t):efie’(/fiu(r,t):e*ie’[/ﬁzl U|(r)ei|wt. (5) - Amoc

+
€q,+k, etho €q,—k, etho
uy(r) can be expanded into the seriesf{q;): Eane”‘;ZJr anefikéerfqn(Z), (13

@ Where K=ViG-2molh,  eq i =K KGH(an
+k;)%)/2m, andf, (2) is a compact notation of the last term

i i (1)
Notice thate(r,t) should return tof(r,t) if A(q,)=0; so ©°n the right-hand side a1 (z), andC, andD, are ar-
only one term in the set O{ful(o)(r)} is not zero, which is bitrary constant that should be determined by the boundary

nonzero term does not affect the result. one has the following equations:

() =u?(n)+ 3 uig (NA(G) +--- .
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Cq €%+ Dy e ¥+ 1 (a/2)=0,

(14
Cq e K42+ D, e :¥24 (—a/2)=0.

Then the coefficient€, andD,_are determined, ana(r)
is obtained immediately. Notice thagn(—a/2)=fq7n(a/2)
= —fqn(a/2), one easily findqu_n+ Cq,=0 and Dy,
+qun:0' If one only considers the case &,(q,)
=A(q_p) [i.e., Al(2)=A(—2)], ui(r) will reduce to

uy(n=>2

nz0 2MC €q ik~

—hk,e cogk,+q,)z
etho

eikxxeikyyAX(qn)_
(15
By using the same procedure, we can solve Egsand

(10 as

u_q(r) =E

AZo0 2mc €q,—k,~

—fk.e cogk,—q,)z
Eo+ ﬁw

ei kxxeikyyAX( qn) ,
(16)
(17)

u(r)=0 (1#0,x1).

Then substitutingu;(r) into Eq. (5), and the wave func-

tion of the HamiltoniarHy, ¢(r,t), can be obtained as

hek,

rt :ei(kxx+kyy)e—ieot/ﬁ cosk.z—
(P( ) z 2mC

coqq,+k,z
Eqn+kz_ €0+ﬁw

X > {ei“’t

n#0

Coi QI"I Z)
an, kz_

+e—iwt

x(qn)J (18)

Referring to the Tien-Gordon theofywe finally find the
wave function of the total HamiltoniaH,

¢<r,t)=¢<r,t>2| J(aye et (19
where
_ ekAx(do)  Eoekio
" mcw  amw?

is a dimensionless variable for the effective field strength

and ¢(r,t) can be expressed in the following form:

W(r,t)= Z > By(ky ekt kyicosk,ze (ot Ihwih
k
(20

where k
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(2n+1)m/a. Since the set of the functions
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FIG. 2. The spectral weights vs « for the case of the radiation
direction parallel to the well axis, where=1, a=0.1, k,=Kk,
=k,=m/a, and in units of e=A=c=m=1. (@ E,
=E, cosgzsinwt with q=m/a; (b) the homogeneous case with
E,=E, sin ot for comparison.

2

2
Si0)= | I(@)+ 5 - (1) _y(a) +h. (13 a(e)]

Jr(fiekX

2mc) n§>: Ihi(MJs1(a)+h_(n+1)J_1(a)

+hy(=n=1)Jj (@) +h_(=n)J_y(a)|?, (21

where

Ax(@n)

h.(nN)=—""—7—
A=

(22

Let s; denote the normalized spectral weight of the side-

bands,s;= S (€o)/Z S (o).
The dimensionless variable obtained in this work is
_ ekxAx(QO) _ EOeKXQO
mco amw? ’

which is scaled as 2, the same as the result obtained by
Wagner** but different from the scaling ob ~* obtained by
the adiabatic approximation approach. Moreover, node-
pends on the transverse momentim From Eq.(21) one
easily sees that whdg =0, s, (I#0) is identically equal to
zero for any amplitude of the external fidlg, which means
that the energy leved, does not split into sidebands.

Now let us consider the more interesting case with
k,# 0. From Eq.(21), the spectral weight of the sidebarsis
is highly nonlinear withE,. Since the vector potential
A(r,t) depends om, the spectral weight of the sidebangls
will be related to the Bessel functiods_(«), J;(«), and
Ji+1(a@). It is impossible to find a nonzero value afmak-
ing all three Bessel functiorid,_,(«), J|(a), andJ, ;1(a)]
be zero. Therefore, with increasing the amplitude of the ex-
ternal fieldg,, the spectral weight of the sidebargjvaries,

cos2) with differentk, is orthonormal, the spectral we|ght but never vanishes, i.e., the sideband quenching is eliminated

of the sidebands can be expressedSasEk |B,(kz)|

under the mhomogenelty of the EM field. This behavior is

only the ground statek(= =/a) of the electron in the WeII is shown in Fig. 2a) for E,=E, cosgzsinwt. One can also

taken into account, the§, is given by

see a slight asymmetry for the sidebarsds. For compari-
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son, Fig. Zb) presents the case of a homogeneous field by 10 =
taking E,=Eg sinwt. In this case one simply has, 08l
=J|2(a), exhibiting the sideband gquenching. o8 S
o 0
£
n
2. The case with the radiation direction perpendicular 04 r 5
to the well axis 02} .
In this case the system is confined in thelirection[see ) P et i
Fig. 1(b)], and the confining potential is sl (b)
S
Vir)— +o, |y|>al2 03 . 06F 0
M=o, lyl=as2. @3 Tl \s
Now the vector potential is set to be=(A,,0,0) with A, 02r
=(Eqc/w)g(z)coswt. Considering the standing wave as a I I A
periodic function, i.e.A,(z+b)=A,(z), and taking the Fou- e v 2 3458

rier expansion, one has,(z) =2 ,A,(d,) exp(q,2) with
E o2 FIG. 3. The spectral weight vs « for the case of the radiation
_ EoC _ig.z4_ E0C direction perpendicular to the well axis, wheie=1, a=b=0.5,
AdQn) = bo f_blzg(z)e ndz= » I @4 nd ky=k,=k,=m/a. (a) E,=E, cosqzsin wt (for |z]<b/2) with
g=1.57/a; (b) the homogeneous case wi=Egsin wt for com-
whereq,=2w7n/b (n=0,%=1,...). By neglecting the higher- parison.
order terms ofA,(qg,) as in case 1, the Hamiltonian can be
written as the same form as in E@). Then one obtains the sidebands are orthonormal, the transmission probafi(ig)

wave function as can be obtained by the Breit-Wigner formula as
p(r,t)=e olhelketkad) cogk y > §TLTR
fek, . » L &)= 2 (e The) 2 (T2 @7
X 1__ elan[h+(n)elw +h_(n)e I(u]
2mc nzo

wherel'=T'"+T'R. Figure 4 showd vs e for case 2. In Fig.
» 4(a), we take A,(qp)=Eqc/w, A(q+1)=0.5Eyc/w, and
X|Zw J(awe e, (25 A,(g,)=0 for all otherq,'s. The sideband peaks do not
vanish at anyw (excepta=0) with a slight asymmetrytoo
where k, only takes the values of (2+1)w/a (n=0, small to seg With the increasing o, (or ), more and
+1,..). Different from case 1, there is no restriction of more sideband peaks emerge. These features are in agree-
A(2)=A(—2) [or A(g,) =A.(q_,)]in this case. Thenthe ment with the experiments by Drexlet al! For compari-

+ oo

spectral weight of the sideband obtained is son, Fig. 4b) presents the result of homogeneous field with
A.(9,)=0 (n#0), showing a strong quenching for the main
5 hek\? peak ata=2.4.
Si(€)=B|Ji(a)+| 5= 0 [ (M3Jy 4 1(a) Finally, we study a special case wifk(qgo) =0, i.e., the
average of vector potenti@l(r,t) on the coordinates equal

+h_(n)J,_1(a)|?], (26) 03

(a)

whereB is the normalization factor. ozr

Figure 3a) showss; vs E; (or @). Again, the spectral &
weight of the sidebands, has a lack of quenching at any
values ofE, and exhibits a slight asymmetfypot shown in \AYAYASAYAV,
the figurg. These features originated from the inhomogene- ” (b)
ity of the electric field in the quantum-well region. We also
see from Fig. 8) thats; saturates at large.. Figure 3b)
presents the spectral weight of the sidebands for the case
with homogeneous field for comparison, which clearly
shows the sideband quenching and the symmetric spectral N\ AAY)
Weights. 432 -t 0173

Based on the spectral weighf, one can calculate the elard. units)
electron transmission probability through the quantum well  F|G. 4. T(e) vs € for the case of the radiation direction perpen-
in the presence of the external fiel(e).* Let I'" (') dicular to the well axis, where=1, a=b=1, ke=k,=k,=/a,
denote the half width of the resonant energy level due to thg=2.4, and I''=I'R=0.1. (@ A (do)=Eoclw, A(0+1)
tunneling through the leftright) barrier to the left(right) =0.5E,¢/w, and all otherA,(q,,) are equal to zerd(o) all A(q,)
lead without the external field. Since the states of differentire equal to zero except (qo) =Eqc/w.

0.1

0.2

01F
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04

eA/cP,~eE,/whk,~0.01(all parameters are the same as
in Fig. 5, and in the units of=A=c=1).
In summary, we have studied the sideband effect of the
e 02} electron transmission through a quantum well in the presence
of a time-dependent field. We find that whether the sideband
quenching appears is critically dependent on the homogene-
ool MV . ity of the field in the quantum-well region. Lack of sideband
Tee 32 a1 0173 qguenching is found for the inhomogeneous field case, which
e(arb. units) is in agreement with the experiments by Drexé¢ral! and
FIG. 5. T(e) vs € for the case of the radiation direction perpen- Blick etal? Recently, we have _nOtiCEd that Oosterkamp
dicular to the well axis and with\,(g,)=0, wherew=1, a=b €t al-reported the electron tunneling through a quantum dot
=04, kc=k=k=mla, E=01, T'=IR=01, E, in which one can see a sideband quencﬁu\gg guess it
= E,sinqzsin ot (at|z]<z/2) with q=1.57/a. probably comes from the homogeneity of the field in the dot
region. In addition, two characters are predicted in this work:
no splitting of the resonant energy level fer=0; and
mainly splitted into three sidebands fag(qy) =0.

03¢+

0.1+

to zero, leading toe=0. In this particular case the main
resonant peak will mainly be splitted into three side-
band peakgsee Fig. . From Eq.(21) or Eq. (26), one This work was partially supported by the National Natural
can easily find that onlg, ands..; have significant ampli- Science Foundation of China and the Doctoral Program
tudes; the others are zero in the first-order approximationFoundation of the Institution of Higher Education. J.W. was

If one considers the second-order termﬁ(qn), the side- supported by a CRCG grant from the University of Hong
bandss., will emerge, but the ratics.,/s.; is about Kong.
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