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Transport theory in metallic films: Crossover from the classical to the quantum
regime
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Using the quantum-statistical approach, we have developed a unified transport theory of metallic
films. A general description for the conductivity in metallic films has been rigorously formulated in
the presence of both impurity scattering and surface roughness. An explicit connection between the
quasiclassical and present quantum approaches is also presented. We show that the quasiclassical
theory by Fuchs [Proc. Cambridge Philos. Soc. 34, 100 (1938)] and Sondheimer [Adv. Phys. 1,
1 (1952)] can be reformed to be applicable to ultrathin metallic films by introducing a treatment
of the surface via angle-dependent specularity parameters and including the quantum size effect.
Moreover, to the lowest order approximation in the theory, the previous quantum-approach results

and discussions have naturally been recovered.

Following advances in microfabrication of nanostruc-
tures such as metallic multilayers! there has been a re-
vival of research activities on transport properties of
metallic films. Since a thin film is a basic unit of a metal-
lic multilayer, theoretical approaches to the transport
in metallic films?™® have been widely applied to metal-
lic multilayers.” 1° Besides, investigations in connection
with the metallic films themselves have also been inter-
esting and important. There have been two conceptually
different approaches to the transport in metallic films:
quasiclassical and quantum. The quasiclassical theory
developed by Fuchs and Sondheimer? is based on the
Boltzmann equation in the presence of a diffusely reflect-
ing boundary. The surface scattering is characterized
by a specularity parameter R according to the surface
roughness, with R lying between 0 (for completely dif-
fusive scattering) and 1 (for completely specular reflec-
tion). It is well known that the quasiclassical approach is
inadequate for very thin, high-purity samples where the
film thickness d is much smaller than the impurity mean
free path A, although it works well for thick, relatively
dirty systems. In particular, in the limit when A goes to
infinity the conductivity diverges as In(A/d). This non-
physical result arises from a complete omission of quan-
tum size effects from the quasiclassical theory. In order
to overcome these shortcomings and study the quantum
effects in metallic films, several quantum surface scatter-
ing treatments have been proposed by TeSanovi¢ et al.,*
Trivedi and Ashcroft (TA),® and Fishman and Calecki
(FC).® These quantum-mechanism approaches are based
on the Kubo linear response theory in which the surface
roughness is incorporated into the Hamiltonian. They
focus attention on the quantum size effects describing
the increase in resistivity of a film as d becomes shorter
than A and make a success of accounting for experimen-
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tal data on thin metallic films of CoSi;. There have
been some discussions and arguments*® on a crossover
from a surface-scattering-dominated regime to a thick-
film regime by adding an impurity-induced contribution
to scattering rates. However, so far, it has not been quite
clear what the explicit connection between the quasiclas-
sical and quantum approaches is and whether or not the
quasiclassical theory can be reformed to be applicable to
the ultrathin metallic films where the surface scattering
dominates. Obviously, a rigorous, transparent, and uni-
fied treatment on such an issue is greatly desirable.

In this paper, we will make such an effort and address
the above fundamental questions. Starting from a model
Hamiltonian including the scattering potentials due to
impurities and both two surfaces, we apply the Green’s
function approach and the Kubo formula in real space
to give a microscopic quantum-mechanism description of
the in-plane conductivity o in metallic films. The ob-
tained result for o is found to be very similar in form
to the Fuchs-Sondheimer formula so as to provide a di-
rect comparison between the quasiclassical and quantum
approaches. It then follows that the quantum result of
o could be obtained from an improved quasiclassical ap-
proach by taking into account a quantized nature of parti-
cal states and by introducing a novel treatment of the sur-
face via angle-dependent specularity parameters. More-
over, the present result is shown to be applicable over a
rather wide range of film thickness, exhibiting a natural
crossover from a classical thick-film regime (d > ) to
an ultrathin film (d < A) where quantum size effects are
manifestly important. In addition, the additive rule for
the conductivity is briefly discussed.

Let us consider an ideal metallic film of thickness d
with perfect surfaces perpendicular to the z axis and de-
fined by the equations z = 0 and 2z = d. The Hamil-
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tonian of a charge carrier confined in the film may be
written as Ho = p?/2m + V[O(—2z) + O(z — d)], where
V is the confining potental height and ©(z) is the unit
step function. Eigenenergies of Hy are given by Eyx , =
(kﬁ +4¢2)/(2m), where the in-plane momentum kj is con-
tinuous and the out-of-plane momentum ¢, = nw/d is
discrete with the subband index n taken to be 1,2,.... If
assuming that the carrier wave functions are almost en-
tirely confined inside the film, we can take V as infinite
and then ¥, (z) = (2/d)'/?sin(g,z). The unperturbed
one-particle Green’s function is given by Go(k|,n) =
(kj,n|Glky,n) = 2m/(k* — g2) with k = (k} — k2)1/2
(where, in consideration of transport properties at low
temperatures, the electron’s energy has been taken to be
the Fermi energy ¢ = er = k%Z/2m). The scattering
Hamiltonian giving rise to resistivity is

H' =) Us(r—Ra)+ Y Vfulr))d(z—2). (1)

£=1,2

Here the first term describes the scattering by impuri-
ties or defects within the film,° in which r = (r|,2)
with r) the vector in the z-y plane and R, is the po-
sition of an impurity or defect. The second term stands
for the scattering due to rough surfaces,® in which z,
is the position the fth surface (2; = 0 and z; = d)
and f,(r|) represents the random surface roughness with
fe(r)) < d. H' is usually treated as a perturbated in-
teraction and here assumed to be switched in two steps.
We first switch the impurity scattering within the film.
The imaginary part of the one-particle self-energy for the
impurity-averaged functions is given by ep/(kp) with A
the electron’s mean free path due to impurity scatter-
ing. For a thin film system A differs slightly from the
bulk mean free path Ao by A/Ao = £/(n. + 1/2),° where
n. = Int[x] is the integer part of k = kpd/m. Conse-
quently, the impurity-averaged Green’s function is ob-
tained as G(k),n) = 2m/(k? — ¢2), where k is a complex
wave number or propagation constant, which is given
by k = (k% + ikp/A)}/2.° For ease of perturbated cal-
culation of the surface scattering we transform G(k,n)
into G(k, z, 2') [abbreviated to G(z,2') hereafter] in the
mixed Bloch-Wannier representation, yielding

- n _ mecoslk(d —Z2_)] — cos[k(d — z)]
G(Z,Z ) = i sm(kd) + ) (2)

with 24 = |z £+ 2/|. Here, following Camblong and Levy,®
we have made the approximation k ~ k + ikp/(2k}),
which is reasonable for most of the effective transport
range with kpA > 1. In the limit of an infinite V,
¥, (2¢) at the surfaces vanishes, but Vl/zllln(zg) has a
finite value. It is easy to vertify that V1/2¥,(0) =
(-1)""V12¥, (d) = ¢,/(md)/? so that we have
VG(z¢,2¢') = kcot(kd) for £ = ¢ and —k/ sin(kd) for £ #
¢, and VI/2G(2,2) = VY/2G(24,2) = (2m)/?sin[k(z —
d)]/sin(kd) for z; = 0 and = —(2m)'/?sin(kz)/ sin(kd)
for zp = d.

The next step is to switch on adiabatically surface scat-
tering and to calculate the Green’s function G(z,z’) by
use of the Dyson equation
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G(z,z’) =G(z,2') + /dude_r'(z,u)E"(u,v)G(v,z'), (3)

where ¥?(u,v) stands for the irreducible self-energy due
to the surface scattering. The calculation of the self-
energy is standard. Its real part can be absorbed as a
redefinition of the energy reference level and the imagi-
nary part is given by

2 (ky,2,2) = —iVQE(z —2) Y 6z —z),  (9)
4

d*q

@=-Im [ oo)e

(FIDVG(ay,ze, 2], . (5)

where (|f|2) characterizes the surface roughness® and
the angular brackets indicate an average over all sur-
face profiles. In deriving Eq. (5) we have used a white
noise surface profile for the uncorrelated atomically rough
surface,* %8 i.e., we take (|f¢(k;—qy)|®) = (|f|?), tobea
constant independent of the in-plane momentum. A self-
consistent calculation for @ will be given hereafter. At
this stage we simply replace G(qy|, ¢, z¢) by Go(qy, z¢, 2e)
so that the integral over g is easily done and an approx-
imate result for Q is given by Qo = (w2/2d*)(|f|?)S(n.)
with S(n.) = Y0, n? = n(ne + 1)(2n. + 1)/6. Sub-
stituting Eqgs. (4) and (5) into Eq. (3), taking into ac-
count the expressions for V.G(z¢, z¢), V/2G(z, 2¢), and
V1/2G (24, 2), which have been given above, and after a
lengthy algebra, we finally arrive at

n_ [m I'(z,2')
Gz ) = (E) 1— RT(2d)’ (6)
with
_ (1-kQo\®
= (1 + EQO) @)

and I'(z,2') = T(3-)+RT(2d—3_) —RY?[T (24+)+T(2d—
%,)], where T(z) = explikz — krz/(2k))]. Comparing
Eq. (6) with Eq. (2), one finds that if the surface scatter-
ing is absent, i.e., @ = 0 and R = 1, Eq. (6) is identical
to Eq. (2). It then follows that the effect of the surface
scattering is entirely reflected by an effective reflection
parameter R, which is momentum dependent. Equation
(6) for G(z,2') is suitable for all z and 2’ except for z = z,
or z/ = z;. By use of a similar calculation one can obtain
the result of VG(qy, z¢, 2¢). Insertion into Eq. (5) gives
the following self-consistent equation:

_ I~ _ e
2d 4~ 1+ ¢.Q°

Q (8)

Obviously, Qo used above is the lowest approximation of
Q. It is valid on the condition that krQ < 1, which
corresponds to the small roughness under consideration.

The two-point conductivity® can be calculated from
the Kubo formulal! in real space
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n_ € d2k|| "2
o) =g [ stz ©)

where A(ky,z,2') = i[G(z,2') — G*(z,2)] is the spec-
tral function of the one-particle Green’s function and
the average conductivity is given by o = (0(2,2'))q =
d-t f: dz f: dz'o(z,2'). It can be shown that terms such
as GG and G*G* have no contribution to the conductiv-
ity and so A2 in the integrand can be replaced by 2GG*.

Changing further the integration variable k| — &k and
introducing E4 = exp(—krd/k)), we obtain
e e () res
oc=— = 2 = —— .
a2 [, k 1 —2RE, cos(2kd) + R2E?
(10)

This equation for o has several interesting features. I’
given above contains four terms, so |I'|?> = I'T* in the
integrand may be divided into two parts: the sum of the
modulus square of the individual term and the sum of
all other crossed terms. We have found that the former
contribution to the integral is much greater than the lat-
ter one. As a result, in the present calculation for |T'|?
only the modulus squared terms need to be kept. An-
other crucial feature of Eq. (10) is that the integrand
is an oscillatory function of period 7/d and has minima
at k = g, analogous to the quantization condition of
the wave vectors. It is convenient to divide the integra-
tion range into n. small regions, respectively, between
gn — 7/2d and ¢, + 7/2d so that the integral over k in

Eq. (10) can be replaced by Y < f;‘"j:/;: dk. Since all

the function in the integrand, except cos(2kd), are slowly
varying within each of the small integration regions, the
argument k of these functions can be approximately re-
placed by ¢,. The remainder integration over k is equal
to [1 — R2E2]~1. Finally, we obtain

o _ A nc 2 2n (1= R)(1 - Ey)
o0 1T Snkp N nz tnlkr — @) pE

(11)

where Eq = exp(—krd/q.)), 00 = N.e?A/kp is the
conductivity in the absence of surface scattering, and
N = (2md)~t Y n< | (k% — q2) is the carrier density.
Equation (11) is the major result of this work, which
provides a unified formula for the conductivity in metallic
films. It is interesting to notice that this equation derived
from a quantum method looks very much like the Fuchs-
Sondheimer result,? since both of them seem to have ex-
actly the same form. However, there are several impor-
tant differences between them. In the Fuchs-Sondheimer
treatment the surface scattering is characterized by in-
troducing phenomenologically a reflection coefficient R,
which is assumed to be a constant independent of the
momentum of electrons. In the present work R is de-
rived microscopically and shown to be momentum depen-
dent, as given in Eq. (7). Another important difference
is that the present out-of-plane momentums are discrete
(gn = nm/d), while those in the quasiclassical theory are
continuous, the former exhibiting a quantized nature of

=1
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particle states in a thin film. From the similarity in form
between them, a suggestion follows that Eq. (11) could
also be obtained from a quasiclassical approach in which
the out-of-plane momentum is considered to be quan-
tized and R is assumed to have the form of Eq. (7). The
quasiclassical approach, which overcomes the shortcom-
ing of omitting the quantum effects, is applicable to the
ultrathin films of d < A.

In the thick-film limit the quantum effect can be ne-
glected and Eq. (11) should reduce to the quasiclassical
result. To show this point let u = ¢, /kF give the cosine of
the angle of incidence of the electron on the surface. For
large d, or equivalently for krpd > 1, the discreteness in
the eigenvalues is washed out so that u becomes a contin-
uous variable and the summation over n is approximated
by an integral over u between limits 0 and 1 (kr ~ n.d/w
for n. > 1). It then follows that N, = k3./(3n%), which
is a well-known formula for the bulk electron density, and
Eq. (11) becomes

o =09 (1—3—2/(Jlu(1—u2)g—_—1§_l%————ﬁ), (12)

with Ey = exp(—d/Au). Equation (12) is found to be
the same as the Fuchs-Sondheimer result,?1° except that
the present R has an angle dependence which is given by
R = (1 - ukrQ)/(1 + ukrQ)]2.

We wish to emphasize that Eq. (11) is a general quan-
tum formula for o in metallic films because it is derived
from a standard Green’s function approach and the Kubo
formula. It implies that Eq. (11) should also correctly de-
scribe the quantum effect of the transport in thin films
discussed previously. To clarify this point, we consider
the surface-scattering-dominated region of d <« A and
rewrite Eq. (11) as

2m dn

n=1

e ~kp—q2 ( 1 (l-R)(l—Ea))
e — LR B ) (g3

o, a2(1— REy)

where a,, = kpd/g, ) can be regarded as small param-
eters for any n as long as the film is sufficiently thin
such that a; < 1. In this case Ey is approximated by
1 — a, + (1/2)a? and so the factor in large parentheses
in Eq. (13) is approximately equal to (1/2)[(1 + R)/(1 —
R + aR)]. On the other hand, for small surface rough-
ness under consideration, Q is also a small parameter so
that R ~ 1 — 4¢,Qo to the lowest order in the surface
roughness. Then, this factor is further approximated by
[4¢,Qo + an]™ 1. As a result, Eq. (13) is reduced to

2 e

e k% — g2
7= Znkpd 2= 2T + 4g2Qo/(krd)’

(14)

We now compare Eq. (14) with the result for o obtained
by FC (Ref. 6) and by TA.5 First, consider the surface-
induced resistivity of ultrathin metallic films by neglect-
ing the impurity scattering, i.e., taking A~! = 0 in the
denominator in Eq. (14). In this case a substitution of
Qo into Eq. (14) gives
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k% — ‘In n. = kpd/m and (6d)? = k%(|f|?). The former is a rea-
o= 45 (| fi ) S nc) Z : (15) sonable approximation suitable for metellic films where

Taking into account that (|f|?) = A2¢2F(0), n? = 12,
and k% — g2 = k2, where the parameters on the right-
hand side of each equality are given by FC,® one finds
that Eq. (15) is identical to Eq. (13) in Ref. 6, except for
an additional prefactor 1/2. The present reduction in o
by a factor of 2 stems from the fact that we consider two
rough surfaces as shown in Eq. (1), while FC assumed
only one nonideal surface to exist.® Since Eq. (15) is the
approximate result for o to the lowest order in the surface
roughness, the scattering effect of two rough surfaces is
simply additive.

Next, we consider the resistivity due to both impu-
rity and surface scattering. It was suggested® that in the
presence of both impurity and roughness the total scat-
tering rate for an electron in the nth subband is given by
a sum of the impurity and surface scattering rates, the
latter depending on the subband index n. For simplicity
of comparison, their result for o, given by Eq. (4.13) of
Ref. 5, is rewritten as

2

7= 2nkpd
k% —aa
% ngl (2nc + 1)/(2X0) +F7rn2(5d/d)2S(nc)/(ngd) )

(16)

It is straightforward to find the equivalence between
Egs. (14) and (16). First, their prefactors and both the
numerators in the summations are exactly same. Sec-
ond, the first term in both denominators are also same,
since A™1 = (n.+1/2)/KA¢ is just the size dependence of
A in a ultrathin film, which has been mentioned above.
The remainder is a comparison between the second terms
in both denominators, which indicate the inverse mean
free path for the nth subband due to the surface rough-
ness. Their equivalence is shown to need two equalities:

ne > 1 and the latter can be regarded as a correspo-
nence of different parameters used to characterize the
surface roughness. With the aid of the two equalities
these two terms in Egs. (14) and (16) are found to co-
incide with each other. The only difference is that the
present surface-induced mean-free-path is one half of that
given by TA,5 where a rough surface alone is considered.

Equation (14) shows that for each subband the scat-
tering rate due to impurity and surface is additive and
the total conductivity is given by a sum of conductivities
of all the subbands. This result is obtained in the lowest
approximation of the surface roughness. In general, ow-
ing to the effect of intersubband scattering by the surface
roughness, the total conductivity cannot be written as a
simple form such as Eq. (14), even though the total self-
energy is given by a sum of the two independent parts
due to the impurities and surfaces. This is a character of
a thin-film system with quantized out-of-plane wave vec-
tors, which is quite different from bulk systems including
multilayers where the plane wave functions can be used.
It is believed that Eq. (11) derived here includes this
effect and can describe correctly the crossover behavior
from the surface-dominated regime to the thick-film limit
where the impurity scattering dominates. The detailed
discussion will be presented elsewhere.

In summary, we have developed a unified transport
theory of metallic films. A general formula for the con-
ductivity has been derived more rigorously in the pres-
ence of both impurity scattering and surface roughness.
It reveals the connection between the quasiclassical and
quantum theories and gives a natural crossover from the
classical to quantum result.
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