<table>
<thead>
<tr>
<th>Title</th>
<th>Effectiveness of lipid lowering drugs in general practice: study had two major flaws.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Cheung, BM; Kumana, CR</td>
</tr>
<tr>
<td>Citation</td>
<td>Bmj (Clinical Research Ed.), 2003, v. 327 n. 7405, p. 51; author reply 51</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2003</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/43108</td>
</tr>
<tr>
<td>Rights</td>
<td>B M J. Copyright © B M J Publishing Group.; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Outcomes of screening to prevent cancer

Think of screening as insurance

Editor—Raffle et al provide interesting new data on the outcome of cervical screening.1 It is particularly useful to be able to tell women that over 20 years of five yearly screening, around 16% will have an abnormal smear test result, 8% will have a biopsy, and 4% will be treated for high grade disease. The authors also estimate the number of cancers and deaths that might be prevented over 30 years in such a cohort. How they obtained their estimates is unclear, but numbers are surprisingly low. When estimating the number of premature deaths avoided in screened women, they apply the factor 60%, obtained from a population in which approximately one in five eligible women are not screened regularly. In screened women the figure should be closer to 75%, which is more in keeping with the results from case-control studies.2

Fitting an age cohort model to mortality data from England and Wales for 1950-87 and extrapolating to 2011, we estimate the number of cervical cancers and deaths that might be prevented over 30 years in such a cohort. How they obtained their estimates is unclear, but numbers are surprisingly low. When estimating the number of premature deaths avoided in screened women, they apply the factor 60%, obtained from a population in which approximately one in five eligible women are not screened regularly. In screened women the figure should be closer to 75%, which is more in keeping with the results from case-control studies.

Describing the benefits of screening in terms of the number needed to be screened to prevent one death equates screening with treatment. Screening is not treatment. It is perhaps better to think of it as insurance. The issue is not how many need to be insured for one person to avoid bankruptcy; it is not even simply a question of whether the cost of an insurance premium is more or less than the expected pay out (it will always be more).

Insurance is put in place to avoid catastrophic consequences of an unlikely event. Women need to be aware of the common negative consequences of regular screening, but they should perhaps think of it as a costly and imperfect insurance policy that may save them from the horrors of invasive cervical cancer.

Peter D Sasieni professor of biostatistics and cancer epidemiology
Wellcome Institute of Preventive Medicine, London EC1M 6BQ
peter.sasieni@cancer.org.uk

Competing interests: PDS is funded by Cancer Research UK with additional funding from the NHS cervical screening programme.

Authors’ reply

Editor—We agree that screening can be thought of like insurance. It is not the likelihood of a house fire that makes you pay your premiums, it is the seriousness.

We believe numbers screened are valuable. Policy about screening is unsatisfactory and explanations in plain English, far better than probabilities, percentages, or sensitivity and specificity.

Sasieni questions our estimates of cases and deaths. Our adjustment for “without screening” is as shown in figures 6.6 and 6.8 of page 51 of the reference we gave. We are happy to share our calculations, and without access to the age breakdown of our cohort we are unsure how alternative estimates can be derived.

We tested varying assumptions for mortality reduction after 1996. Even if 75% of deaths in our study population are prevented after 1996, our conclusion is still that screening is very labour intensive, with 790 cancers and deaths. Misguided media campaigns are already causing a repetition of this situation with prostate cancer screening. Invasive investigations and treatments for 2000, in the hope of possibly helping one, will seriously damage men’s health.

A E Raffle consultant in public health medicine angela.raffle@bristolnorth-pct.nhs.uk

B Alden systems analyst
Bristol North Primary Care Trust, King Square House, Bristol BS2 8EE

M Quinn director National Cancer Intelligence Office for National Statistics, London SW1V 3QK

M T Brett consultant pathologist Department of Cellular Pathology, Cytopathology Section, Southmead Hospital, Bristol BS10 5NB

Competing interests: None declared.

4 Raffle AE. Case-control studies of screening should carry a health warning. Br J Epidemiol (in press).

Effectiveness of lipid lowering drugs in general practice

Article illustrates major problem

Editor—The article by Hippisley-Cox et al illustrates a major problem of describing a recommended cholesterol concentration as a target value—scatter around a bullseye will always ensure at least 50% of values above the target. What was most interesting about their data was the dispersion of last recorded serum cholesterol concentrations about the means. This was small for simvastatin and atorvastatin, indicating that cholesterol values were close to recommended values even for those > 5 mmol/l, and as Marshall has implied,2 many of these patients may have concentrations ≤ 5 mmol/l on remeasurement.

Although only one trial has compared five statins in a single study, several paired comparisons of the efficacy of the statins and of statins versus fibrates have been undertaken. The data of Hippisley-Cox et al are consistent with these.

However, the statement “Statins reduce lipid levels better than fibrates” is at best misleading. Fibrates are often used in diabetic patients and other patients with an atherogenic lipoprotein phenotype (raised triglyceride, low high density lipoprotein, and mildly raised low density lipoprotein cholesterol concentrations), in whom chol-
Under these circumstances, failure to reveal and discuss the dosages of the various drugs in the study seriously under-
imines the conclusions drawn. A blanket endorsement of atorvastatin and simvasta-
tin as the more effective statins over-
simplifies an important subject and might inadvertently provide a pseudoscientific basis for misleading advertisements.

Bernard M Y Cheung associate professor
mycheung@hkucc.hku.hk

Cyrus R Kumana professor of clinical pharmacology and
therapeutics
Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong Special
Administrative Region, China

Competing interests: None declared.

Authors' reply

Editor—Wang et al, and Kumana and Cheung are concerned by the omission of data on drug dosage. We included an analy-

sis of drug dosage in the original paper sub-
mitted to the BMJ and removed it at the request of the editorial board. Of the 1116 patients whose serum cholesterol value was above 5 mmol/l, 209 (18.7%) were receiving maximum doses compared with 96 (7.1%) of the 1353 patients who did achieve the target range. In addition, in those patients receiving the maximum dose only 92% (96) achieved the target cholesterol value.

The table shows the number of patients taking each drug who reached target choles-
terol values according to whether the maxi-
mum dose recommended in the British
National Formulary had been prescribed. However, we have not looked at equivalent doses when these are submaximal for one drug, but maximal for another.

We did not write the statement "Statins reduce lipid levels better than fibrates"—this appeared in This week in the BMJ rather than in our paper. The text was different from the version we submitted, and we had no opportunity to comment on it before publication.

Kumana and Cheung raise the issue of differences between patients taking different

statins. As we described in our paper, we took account of potential confounders by including the following variables in the multivariate analysis: sex, age, obesity, smoking status, pretreatment cholesterol values, comorbidity (ischaemic heart disease, diabetes, hypertension, and stroke), and reg-

istered general practices. We discussed the potential effect on the results in our discussion.

We think that the “dispersion” mentioned by Wang et al refers to the 95% confi-
dence intervals (which are not standard deviations), and naturally these are narrower than in our paper. The text was different from the perspective of medicine alone.

We should not, however, be misled into denying that doctors inevitably occupy a special position in this issue, and not just

Assisted suicide and euthanasia in Switzerland

Doctors occupy special position

Editor—I agree with Hurst and Mauron that the Swiss penal code illustrates how important it is to separate the issue of whether assisting death should be allowed in some circumstances from that of whether doctors should do it. Assistance in dying raises questions that cannot be answered from the perspective of medicine alone. We should not, however, be misled into denying that doctors inevitably occupy a special position in this issue, and not just

Table: Achievement of serum cholesterol value of ≤5 mmol/l and use of maximum dose of individual lipid agents

<table>
<thead>
<tr>
<th>Agent</th>
<th>Maximum dosage</th>
<th>No (%) with cholesterol ≤5mmol/l</th>
<th>No (%) with cholesterol < ≤5 mmol/l</th>
<th>Total</th>
<th>P value (χ² or Fisher's exact test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simvastatin</td>
<td>No</td>
<td>362 (40.7)</td>
<td>528 (59.3)</td>
<td>890</td>
<td>0.233</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>2 (33.3)</td>
<td>2 (33.3)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>368 (40.8)</td>
<td>530 (59.2)</td>
<td>896</td>
<td></td>
</tr>
<tr>
<td>Pravastatin</td>
<td>No</td>
<td>58 (51.8)</td>
<td>54 (48.2)</td>
<td>112</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>16 (66.7)</td>
<td>8 (33.3)</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>74 (54.4)</td>
<td>62 (45.6)</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>Cefazolin</td>
<td>No</td>
<td>63 (41.2)</td>
<td>90 (58.8)</td>
<td>153</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>53 (60.2)</td>
<td>35 (39.8)</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>116 (48.1)</td>
<td>125 (51.9)</td>
<td>241</td>
<td></td>
</tr>
<tr>
<td>Rosuvastatin</td>
<td>No</td>
<td>36 (61.3)</td>
<td>23 (38.7)</td>
<td>59</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>8 (100)</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>44 (64.8)</td>
<td>23 (35.4)</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>Atorvastatin</td>
<td>No</td>
<td>377 (40.3)</td>
<td>558 (59.7)</td>
<td>935</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>7 (43.8)</td>
<td>9 (56.2)</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>384 (40.4)</td>
<td>567 (59.6)</td>
<td>951</td>
<td></td>
</tr>
<tr>
<td>Fibrates and others</td>
<td>No</td>
<td>11 (71.4)</td>
<td>4 (28.6)</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>12 (75.0)</td>
<td>4 (25.0)</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>23 (74.1)</td>
<td>8 (25.9)</td>
<td>31</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. The study had two major flaws: Entorax—The paper by Hippsley-Cox et al is a large study of how prescribed drugs are used in the community and gives a useful picture of the lipid lowering drugs used and their effectiveness. It has two major flaws, however.

2. The first is the omission to report the characteristics of patients receiving different drugs. The pretreatment cholesterol concentrations in patients prescribed different statins differed, implying non-random selection of drug. In non-randomised studies differences among treatment groups may be systematic, substantial, and consequential. Extreme differences might require matching of subpopulations for comparisons.

3. The second problem is the omission of drug dosage in the analysis, although the data were collected. The authors probably assumed that the clinician could adjust the dose to achieve target and therefore fail to reach target implied lack of efficacy. Although statins have pertinent differences in potency and efficacy, “recommended dosage” could be another confounding factor. In the British National Formulary, the highest recommended daily dose for prava-
