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LMI Synthesis ofH2 and MixedH2=H
Controllers for Singular Systems

Liqian Zhang, Biao Huang, Member, IEEE, and James Lam

Abstract—This paper considers the 2 control problems for
continuous-time singular systems with and without an con-
straint. Without the constraint, we derive necessary and sufficient
conditions for the existence of 2 output feedback controllers
using the linear matrix inequality (LMI) approach. With the
constraint, sufficient LMI conditions on the existence of the 2

controller are obtained. In both cases, the desired 2 controller
can be constructed through the feasible solutions of the LMIs.
The proposed synthesis method is illustrated through numerical
examples.

Index Terms— 2 controller, linear matrix inequality (LMI),
mixed 2/ controller, singular systems.

I. INTRODUCTION

T HE SINGULAR system model is a natural representation
of dynamic systems and describes a larger class of systems

than the normal linear system model. The usual state-space
description of linear systems cannot represent the algebraic
constraints between state variables. For example, in chemical
processes, such algebraic constraints are often obtained from
thermodynamic equilibrium relations, empirical corrections,
pseudo-steady-state assumptions, and closure conditions [9].
Moreover, it is illustrated by Kumar and Daoutidis [9] that the
algebraic equations are implicit and singular in nature in a wide
variety of chemical process applications with simultaneous fast
and slow phenomena such as a reactor with fast heat transfer
through a heating jacket, a reactor with fast and slow reactions,
a two-phase reactor with fast mass transfer, a cascade of
reactors with high-pressure gaseous flow, and so on. Impulsive
and hysteretic phenomena, which exhibit in circuit theory, also
cannot be treated properly using linear state-space models [10],
[15]. Fortunately, singular system models offer an effective
way to describe these behaviors. Such models are also widely
encountered in large-scale systems, economics, networks,
power, and neural systems [2], [10].

The norm of the system is one of the most important
control performance measures in control system design. In
optimal control, the quadratic performance of a system can be
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equivalently characterized by the norm of an associated
system. In a white noise attenuation design, the variance of the
output of the system error caused by white noise can also be
represented in the form of the norm [6]. Hence, the
control problem, which aims at finding a controller such that the
closed-loop system is internally stable and thenorm of the
closed-loop system is as small as possible, has drawn consider-
able attention over the last few decades. Under the assumptions
of and (see [16]), an optimal
controller was given by solving two Riccati equations in [3]
for linear state-space systems and, for singular systems, similar
results were given in [14]. A mathematically elegant solution
has been found when and are
satisfied. In the case when such conditions are not satisfied,
Sato and Liu [12] gave the linear matrix inequality (LMI)
solution to the general problems for linear state-space
systems. For linear singular systems, the state feedback
control was considered in [7] based on strict LMIs and, in [13],
a state feedback control problem for uncertain time-varying
singular systems was studied involving nonstrict LMIs (of the
form ) such that an upper bound of the
norm of the closed-loop system is less than a scalar .
However, the dynamic output feedback control problem in
the case when and are not satisfied
is still open for singular systems.

The norm of a system is another popularly used control
performance measure for control system synthesis. For linear
state-space systems, the existence of controllers was tested
by solving two Riccati equations in terms of the state-space
matrices in [3], and all suitable controllers were parameterized
via a linear fractional transformation. Recently, the control
problem has been investigated based on an LMI formulation [5],
[8]. For linear singular systems, the control problem has
been also considered in [11], [15], and [16] using generalized
Riccati equations and matrix inequalities. Due to the importance
of the and norms, the mixed control problem
has received much attention recently. For linear state-space sys-
tems, such works can be seen in [1], [4], [17], [18], and so on,
and for linear singular systems, to our knowledge, it remains an
open problem.

In this paper, we study the dynamic output feedback control
problems of singular systems when and . It is
shown that under a certain condition, the norm of a singular
system is bounded by a given if and only if a set of
LMIs are feasible. Based on this result, we establish necessary
and sufficient conditions in strict LMIs for the existence of a
dynamic output feedback controller such that the closed-loop
system is admissible and the norm of the closed-loop system
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is less than a prescribed . Moreover, explicit expressions
of the state-space matrices of the controller are given in terms
of the solutions of the derived LMIs. A mixed control
problem for singular systems is also considered in this paper.
Sufficient conditions for such a controller are obtained in LMIs.
Numerical examples are used to illustrate the main results.

II. PRELIMINARIES

A continuous-time singular system, which is denoted as
, takes the form of

where is the state vector, is the input
vector, is the output vector, are con-
stant real matrices with appropriate dimensions, and rank

. The pair is regular if is not
identically zero. The zeros of are called thefi-
nite polesof . is said to bestableif all the finite
poles of lie in . is calledimpulse free
if . is admissible, if it is regular,
stable, and impulse free.

Since rank , there exist two orthogonal matrices
and such that has the decomposition as

(1)

where with for .
Partition

(2)

conformably with (1) and let . We then have

(3)

From (1), it can be seen that spans the right null space of
and spans the left null space of, i.e., and

.
Lemma 1: The following items are true.

i) All satisfying

(4)

can be parameterized as

where and are parameter
matrices; furthermore, when is nonsingular, .

ii) All satisfying

(5)

can be parameterized as

where and are parameter
matrices; furthermore, when is nonsingular, .

iii) If is nonsingular with , then
there exist and such that

with .
Proof: i): Let

Equation (4) then gives , which implies
and . With , we have

Let

is then parameterized by and . If is nonsingular,
.

ii): Let

Equation (5) then gives , which implies
and . Therefore, noticing , all

the solutions of (5) are parameterized by

Let , , is then parameterized
by and . If is nonsingular, then .

iii): It can be seen that is a solution of
(4), and is a solution of a solution of (5). From the proof
of i), we may see that and can be expressed as

where

On the other hand, from ii) and its proof, can also be ex-
pressed as
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and

Lemma 2: is admissible if and only if either of the
following items is true.

i) There exist and such that

holds.
ii) There exist and such that

holds.
Proof: The proof can be obtained by Lemma 1 and the

fact that is admissible if and only if there exists (or
) such that [11]

(or , hold.

III. COMPUTATION OF THE NORM

Let denote the transfer function of singular system
, i.e.,

The norm of an admissible singular system
can then be defined as

trace (6)

It can be seen that is finite if and only if
. To ensure to be finite, we

assume that [7], [13]

(7)

where denotes the kernel of a matrix.
In the following theorem, we can see that if the norm of

is finite, the norm of can be
expressed explicitly.

Theorem 1: Assume that is admissible and (7) holds.
The norm of can be expressed as

trace

where and are the solutions of

(8)

Proof: Since is admissible, there exist two nonsin-
gular matrices and such that (see [2])

(9)

with Hurwitz. Let . From (9), it can be seen
that . Hence, we have from (7). Notice
that

and, hence,

trace

where satisfies

(10)

From (1) and (9), we have

which implies has the form of

with and nonsingular. By premultiplying and postmul-
tiplying both sides of (8) using and , respectively, we have

(11)

Let . Equation (11) can then be written as shown
in the equation at the bottom of the page. From the block
of this equation, is the solution of (10), and the

norm can be computed by

trace

Moreover, since and ,
then

trace

trace

Hence, the proof follows.
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Remark 1: When , then reduces to a
state-space model . In this case, .
Hence, the norm given in Theorem 1 becomes

trace

and (8) reduces to a usual Lyapunov equation for linear systems
described by

It can be seen that is the controllability gramian of the state-
space model .

The following corollary can be easily obtained by considering
the dual system of :

(12)

when

(13)

where denotes the range of a matrix.
Corollary 1: Assume that is admissible and (13)

holds. The norm of can be expressed as

trace

where and are the solutions of

Theorem 2: Assume that (7) holds. The following statements
are then equivalent.

i) Given a scalar , and is
admissible.

ii) There exist and such that

(14)

trace (15)

hold.
Proof: i) ii): If , there exists a suffi-

ciently small such that

holds. From Theorem 1, we have (15), where and
satisfy

Furthermore, . Otherwise, since , a perturbation
on exists such that without violating (14) and (15).

ii) i): By (14) and Lemma 2, is admissible. Equa-
tion (14) implies that there exists satisfying

which means

Hence, .
Corollary 2: Assume that (13) holds. The following state-

ments are then equivalent.

i) Given a scalar , and is
admissible.

ii) There exist and such that

trace

hold.

IV. STRICT LMI CONDITIONS FOR CONTROLLER

Now we consider the control problem for the following
system:

(16)

where is the state vector, is the disturbance,
is the control input, is the controlled output,

and is the measured output. Here, we assume that
. Suppose that a dynamic output feedback

controller of (16) described by

(17)

is used, where is the state vector, and ,
, , and are unknown matrices.

The resulting closed-loop system is

(18)

where

(19)

It can be seen that when or
holds, or holds. In this case,
the norm of the closed-loop system (18) is finite so that we
may consider the control problem for (16). In this section,
we assume that , and the formulations for the
case when can also be given by considering
the dual system of (16).

The control problem is to find a dynamic controller (17)
such that the closed-loop system (18) is admissible and

(20)
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where is a prescribed scalar. Denote rank .
Similar to , let be decomposed as

(21)

where with , and are
orthogonal matrices. Partition and conformably with (21)
as

It can be observed that

where

Let

It can then be shown that and are orthogonal matrices, and

(22)

By Theorem 1, the norm of the closed-loop system is given
by

trace

trace (23)

where

(24)

are the solutions of

Hence, by Theorem 2, our problem is to find, , , ,
, and such that

(25)

trace (26)

hold.
Theorem 3: For a given scalar , there exists a con-

troller given by (17), , and such that (25) and (26)
are feasible if and only if there exist , , , ,

, and such that the following matrix inequalities:

(27)

(28)

(29)

trace

(30)

hold. Moreover, such a controller is given by

(31)

(32)

with

(33)

Proof: Sufficiency: It can be seen that
and are nonsingular by (27) and (28). Let

and be defined as in (33). Equations (27) and (28) imply

(34)

(35)

from which we can see that and are nonsingular. Further-
more, we can assume that is nonsingular from (29).
Otherwise, small perturbations on can ensure
the nonsingularity of . With given by
(31) and (32), we have the first equation shown at the bottom of
the next page. Let
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We have the second equation shown at the bottom of the page.
By (34), (35), and the Schur complement, it can be shown that

(36)

Notice that with and in (22) become

(37)

and (38), shown at the bottom of the page, where

(39)

Noticing (38) into (36), (25) holds, and by substituting (30) and
(39), (26) holds.

Necessity: By assumption, we know that there exists a
controller given by (17) such that is admissible and
(20) holds, i.e., there exist , , , , , and such
that (25) and (26) hold. With the partition in (24), if we let

and , (30) can be obtained from (26).
Denote the fourth equation shown at the bottom of the page,
and, thus, (25) gives

where

By letting , (28) is followed from .
Furthermore, define

Then

(40)

(38)
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From the block of (40), we have

(41)

Letting and noticing iii) of Lemma
1 and , we have

Let

Notice as . Equation (27) then follows from
(41). Without loss of generality, is assumed to be invertible.
Otherwise, a small perturbation of exists such that is
invertible without violating (25). Equation (29) is then obvious
from

Notice that the matrix inequalities (27) and (28) are not
linear. The following theorem gives equivalent LMI conditions
to (27)–(30).

Theorem 4: For a given scalar , there exist a controller
given by (17), , and such that (25) and (26) are
feasible if and only if there exist , , , , ,

and such that the following LMIs hold, as shown in (42)–(45)
at the bottom of the page. Moreover, such a controller is given
by

(46)

(47)

with

Proof: Notice that in (27) is nonsin-
gular. Premultiplying and postmultiplying both sides of (27) by

and its transpose, respectively, then
from iii) of Lemma 1, we have

where

with . By letting
, we may then see that (42) is equivalent to (27). Moreover,

the equivalence between (43) and (28) can be seen by letting
. Finally, (44) is equivalent

to (29) by noticing and the Schur
complement.

V. LMI C ONDITIONS FORMIXED CONTROLLER

In the above section, we obtain the LMI conditions for
controllers. In this section, we will consider the mixed
control problem for singular systems. Consider the following
singular system:

(48)

(42)

(43)

(44)

trace (45)
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where is the state vector, is the disturbance,
is the control input, and are the

controlled outputs, and is the measured output. The
design objective is to find a controller (17) such that when
is a Gaussian white noise, the norm of the transfer function
from to is less than a given , and when is a deterministic
signal of unity power, the norm of the transfer function
from to is less than a given . A similar control problem
for normal linear systems was considered in [1].

Notice that the resulting closed-loop system from (48) and
(17) is

where

The transfer function from to is

and the transfer function from to is

In order that the norm of is finite, we assume that
. Thus, our control problem can be stated as

follows: for a singular system given by (48), find a controller
with the form of (17) such that is admissible and

(49)

(50)

where and are prescribed scalars.

The following lemma gives a necessary and sufficient condi-
tion of the existence of a controller by (17) such that
is admissible and (50) holds.

Lemma 3: For a given scalar , there exists a con-
troller given by (17) such that is admissible and (50)
holds if and only if there exist , , , , , and

such that the following LMIs hold, as shown in (51)–(53) at
the bottom of the page. Moreover, such a controller is given by

with

The proof of this lemma needs the following lemma.
Lemma 4 [11]: For a given scalar , there exists a

controller given by (17) such that is admissible and
(50) holds if and only if there exist , , , and satisfying

(54)

(55)

(56)

(57)

(58)

(51)

(52)

(53)
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Such a controller is then given by

Proof of Lemma 3:Multiplying both sides of (55) by
and , respectively, we obtain

By ii) and iii) of Lemma 1, and can be expressed as
and

with . Thus, by letting , we
can see that (54) and (55) are equivalent to (51). On the other
hand, multiplying both sides of (56) and (57) by and ,
respectively, we obtain

Again, by ii) of Lemma 1, can be expressed as
. It can be seen that (56) and (57) are equiv-

alent to (52) by letting . Notice that and

Therefore, (53) implies (58) since . Con-
versely, from (58)

From (3) and noticing , we then have

which implies or
without loss of generality. Otherwise, a small perturbation of

exists such that without violating LMI
(52).

Based on Lemma 3 and Theorem 3, the mixedand
control problem can be solved.

Theorem 5: For given scalars and , there
exists a controller given by (17) such that is admissible
and (49) holds under the constraint of (50) if there exist ,

, , , , and such that the following LMIs hold,
as shown in (59)–(62) at the bottom of the page. Moreover, such
a controller is given by

(63)

(64)

with

(65)

(59)

(60)

(61)

trace (62)
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Proof: It can be seen from Lemma 3 that if (59)–(61)
hold, then the controller of (17) with , , , and by
(63) and (64) is such that is admissible and (50)
holds. We will show that the controller (17) with , , ,
and by (63) and (64) is also such that (49) holds. With

, , , and given by (63) and (64), we then have the
first equation shown at the bottom of the page. It can be
seen that and are
nonsingular from (59) and (60). Let and be defined as
in (65). Equations (59) and (60) imply

(66)

(67)

Furthermore, we can assume that is nonsingular
from (61). Otherwise, small perturbations on , , ,
and can ensure the nonsingularity of . Let

We then have

where

and as shown in the second equation at the bottom of the
page by (66) and (67). Hence,

Since , by iii) of Lemma 1, there
exist and such that . Notice
the equation shown at the bottom of the next page, where

and are given in (37) since and

which satisfies

From (62) and Theorem 2, the proof is obtained.
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Fig. 1. Electrical circuit.

VI. I LLUSTRATIVE EXAMPLE

Example 1: Consider the electrical circuit given in [13],
which is depicted by Fig. 1. In the circuit, and are the
inductance and capacitance, respectively; and

denote the voltages and current flow, respectively. Here, it
is assumed that

where is the control input and is the white noise distur-
bance with zero mean and unit intensity. The controlled output
is defined as

and the measured output is defined as

This dynamic system is then a singular system, which has the
form of

where . Our objective is to find a
dynamic controller with the form of (17) such that the resulting
closed-loop system is admissible and its norm is
less than a given for the given dynamic system with

It is noticed that this system is not impulse free since it has one
finite pole at , but rank . Here, it can be also
seen that is satisfied.

and can be obtained by the singular value
decomposition of as

By solving LMIs (42)–(45) in Theorem 4, we obtain

Thus, a stabilizing controller achieving
can be calculated by (47) and (46), which is
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Example 2: Still consider Example 1, but here we assume
that there is another controlled output , which is defined as

The objective is to find a dynamic controller with the form
of (17) such that the resulting closed-loop system is admis-
sible, and . By solving LMIs
(59)–(62) in Theorem 5, we obtain

Thus, a stabilizing controller achieving
and can be calculated by (47)

and (46), which is

VII. CONCLUSIONS

The main conclusions of this paper are as follows.

i) An expression of the norm for the admissible singular
systems in terms of system matrices has been derived
under a certain condition.

ii) The control problem of finding a dynamic output
feedback controller such that the closed-loop system is
admissible and its norm is bounded by a given
has been considered. The desired controller has been ob-
tained by solving a set of strict LMIs.

iii) A mixed control problem has also been consid-
ered. It has been shown that such a controller exists when
a set of LMIs are feasible. Explicit expressions of a de-
sirable controller are given through the solutions of the
derived LMIs.

iv) Two numerical examples have been used to illustrate the
effectiveness of the proposed methods.
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