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LMI Synthesis of H9 and Mixed H9/ H
Controllers for Singular Systems

Ligian Zhang, Biao HuangMember, IEEEand James Lam

Abstract—This paper considers theH, control problems for equivalently characterized by th&#, norm of an associated
continuous-time singular systems with and without anH, con-  system. In a white noise attenuation design, the variance of the
straint. Without the constraint, we derive necessary and sufficient output of the system error caused by white noise can also be

conditions for the existence of H, output feedback controllers .
using the linear matrix inequality (LMI) approach. With the H, represented in the form of thH, norm [6]. Hence, thefl,

constraint, sufficient LMI conditions on the existence of theH, control problem, which aims at finding a controller such that the
controller are obtained. In both cases, the desiredd, controller closed-loop system is internally stable and #ignorm of the
can be constructed through the feasible solutions of the LMIs. closed-loop system is as small as possible, has drawn consider-
The proposed synthesis method is illustrated through numerical gpje attention over the last few decades. Under the assumptions
examples. of DI,Dy» > 0 and Dy, DI, > 0 (see [16]), an optimaH-
Index Terms—H> controller, linear matrix inequality (LMI),  controller was given by solving two Riccati equations in [3]
mixed H/Ho, controller, singular systems. for linear state-space systems and, for singular systems, similar
results were given in [14]. A mathematically elegant solution
I. INTRODUCTION has been found whew’,D;» > 0 and Dy; D%, > 0 are

HE SINGULAR system model is a natural representatlosatISﬂEd' In_the case when sgch condltlc_)ns_ are n(_)t satisfied,
. . ato and Liu [12] gave the linear matrix inequality (LMI)
of dynamic systems and describes a larger class of systems .. .
: solution to the generaH, problems for linear state-space
than the normal linear system model. The usual state-space . .
o : systems. For linear singular systems, the state feedbick
description of linear systems cannot represent the algebrai¢ ; . . X
. . . control was considered in [7] based on strict LMIs and, in [13],
constraints between state variables. For example, in chemica L ;
. . . a state feedbacK, control problem for uncertain time-varying
processes, such algebraic constraints are often obtained from

. o . o .~ _sIngular systems was studied involving nonstrict LMIs (of the
thermodynamic equilibrium relations, empirical correction

T _ T
pseudo-steady-state assumptions, and closure conditions mE X = X" FE > 0)such that an upper bound of ti#

g T ‘m of the closed-loop system is less than a scalar 0.
Moreover, it is illustrated by Kumar and Daoutidis [9] that th owever, the dynamic output feedbatls control problem in

alg_ebralc equat_lons are implicit a_md _smgular m_nature in awuiiﬁ:e case whe?, D1, > 0 and Dy DI, > 0 are not satisfied
variety of chemical process applications with simultaneous fast_: :
still open for singular systems.

and slow phenomena such as a reactor with fast heat transt .
he H., norm of a system is another popularly used control

through a heating jacket, a reactor with fast and slow reactions, . .
! pefformance measure for control system synthesis. For linear
a two-phase reactor with fast mass transfer, a cascade

L st%te-space systems, the existencHgf controllers was tested
reactors with high-pressure gaseous flow, and so on. Impulsjve

and hysteretic phenomena, which exhibit in circuit theory, alsg. solving two Riccati equations in terms of the state-space

L trices in [3], and all suitable controllers were parameterized
cannot be treated properly using linear state-space models [10], X :
. ~vid'a linear fractional transformation. Recently, itig, control
[15]. Fortunately, singular system models offer an effective

. 4 . problem has been investigated based on an LMI formulation [5],
way to describe these behaviors. Such models are also wi . .

. : . For linear singular systems, thié., control problem has
encountered in large-scale systems, economics, netwo

power, and neural systems [2], [10]. béén also considered in [11], [15], and [16] using generalized

The H, norm of the system is one of the most importanlt?'ccat' equations and matrix inequalities. Due to the importance

. . of the H, and H., norms, the mixedd,/H ., control problem
control performance measures in control system desigHIn . . .
. . as received much attention recently. For linear state-space sys-
optimal control, the quadratic performance of a system can pé .
ems, such works can be seen in [1], [4], [17], [18], and s0O on,
and for linear singular systems, to our knowledge, it remains an
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is less than a prescribed> 0. Moreover, explicit expressions iii) If U1WUTE + U2 S is nonsingular withiW > 0, then
of the state-space matrices of the controller are given in terms  there exist¥ andS such that

of the solutions of the derived LMIs. A mixeH,/H . control T _T s aom
problem for singular systems is also considered in this paper. (U1WU1 B+ U25) = EViWVy + 5V;
Sufficie_nt conditions for such aco_ntroller are obtai_ned in LMls. With T = y—=1-1y-1

Numerical examples are used to illustrate the main results. " "

Proof: i): Let
l. PRELIMINARIES _ _
= [Pl P“l =UTPv T E=UTEVT = [I’” 0} :
A continuous-time singular system, which is denoted as P Py 00

(E, 4, B, C), takes the form of Equation (4) then give& TP = PTE > 0, which implies

{ Ei(t) = Az(t) + Bu(t) Py = P > 0andP, = 0. With EVT = UTE, we have
y(t) = Cu(t) P=UPV"

wherez(t) € R™ is the state vectow(t) € R™ is the input —(Uh Uz][Pl :|EVT +[U, U2][ 0 0 } v
vector,y(t) € R is the output vectorE, A, B, C are con- Py Py
stant real matrices with appropriate dimensions, and(df@hk= =[U,P, OJUTE+U,[Ps P, VT

r(r < n). The pair(E, A) is regular if det(sE — A) is not U, PUTE+U, [Py Py V7.

identically zero. The zeros ofet(sE — A) are called thdi-

nite polesof (E, A). (E, A) is said to bestableif all the finite Let

poles of(E, A) lieinRe(s) < 0. (E, A) is calledimpulse free -
if degdet(sFE — A) = r. (E, A) is admissibleif it is regular, W=h S=[P BV

stable, and impulse free. P is then parameterized By andS. If P is nonsingulariV =
Since rankE) = r, there exist two orthogonal matricés P> 0.

andV such thatt has the decomposition as ii): Let
E:U[% g}vT ) YZ[Xl XQ]ZUTXV
X; Xy )
\é’vzretirt(iaci]: = diag(oy, ..., o) Witho; > 0fori =1, ..., r. Equation (5) then giveX EZ = EX T > 0, which implies
X1 = X{' > 0andX; = 0. Therefore, noticingzV, = 0, all
U=[Uy U, V=[Wn V] (2) the solutions of (5) are parameterized by
conformably with (1) and lev = [V, V5]. We then have X =UXxy™!
:U[Xl }v +U[0 Xﬂv—
E=U [ 0 0} % ©) 0
1, Ty,—T | X1 —1 {0 X2:| —1
. _ =U 1 2 V= 4+U 1%
From (1), it can be seen th#t spans the right null space of [ 0 0} [ 0 0} 0 Xy
E andU] spans the left null space df, i.e., EV, = 0 and Xy 0], 0 X, |[u VT
UTE = 0. i [o }V +U[0 X4H vy ]
Lemma 1: The following items are true. i . .
i) All P satisfying =EViST XSV +U{ }Vz :
ETP=PTE>0 4 Letw = SOy S = Ul ] X is then parameterized
can be parameterized as by W andS. If X is nonsingular, thef = X; > 0. _
iii): It can be seenthal = U WU E + U, S is a solution of
P=UWUI'E +U,S (4), andP~7 is a solution of a solution of (5). From the proof

) of i), we may see thaty = P, and P~T can be expressed as
whereW > 0 € R"™*" andS € R(*=")x" gre parameter

matrices; furthermore, wheh is nonsingular}y > 0. pT=-pyp-Ty-!
i) All X satisfying

where
XET=EXT >0 (5) . Pl _piprp T
PT=
can be parameterized as 0 Pyt
X = EViWVT 4+ SvF On the other hand, from ii) and its prod?~7' can also be ex-
pressed as

wherel > 0 € R andS € R"*("~") are parameter i i
matrices; furthermore, wheK is nonsingularj¥’ > 0. P T=EviwVvT + sV}
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and Proof: Since(E, A)is admissible, there exist two nonsin-
W=xrtprisst = e twe et gular matriced’ and() such that (see [2])
. TEQ=F = [{) 8} ©)
Lemma 2: (E, A) is admissible if and only if either of the —
following items is true. TAQ =4 = [%1 s 0 }
i) There existW > 0 andS such that oo
— B,
T — —
AT (ULWUTE + UsS) + (ULWUTE + UsS)" A <0 IB=B=5
holds. cQ = [61 62]

i) There exist > 0 andS such that B
T with A; Hurwitz. Let@ = [Q1 Q2]. From (9), it can be seen

(EVlvT/VlT + §V2T) AT + 4 (EVﬂ/T/VlT + SVQT) <0 thatEQ, = 0. Hence, we have€'Q = [C; 0] from (7). Notice
that

holds. . — — N\l
Proof: The proof can be obtained by Lemma 1 and the G(s) =C(sE-A)" B=0C4 (SI - Al) B
fact that(F, A) is admissible if and only if there exist3 (or  and, hence,

X) such that [11]

G =, /tracd C;P,CT
ETP=PTE>0 ATP+PTA<O 1G )1l \/ e( 1 1)
(or XET = EXT > 0, XAT + AXT < 0) hold. m WhereP; > 0 satisfies
Zlﬁl + flle + Plﬁrf =0. (10)
Ill. COMPUTATION OF THE Hy NORM From (1) and (9), we have
Let G(s) de.note the transfer function of singular system P I 0 iy 0
(E, A, B, C),i.e., 0 0 Q =10 o
G(s)=C(sE - A) 'B. which impliesQ~'V has the form of
The H; norm of an admissible singular systéii, A, B, C _ _ _ Qs 0
2 ) g y G{ ’ ’ ’ ) Q IV:[Q 1V1 Q 1V2]:
can then be defined as Quy Qus

1 [ T, ) 1/2 with Q.1 and@,3 honsingular. By premultiplying and postmul-
Gl = (g /_ trace(G (_J“’)G(J“’))> ) tiplying both sides of (8) usin@ and7™”, respectively, we have

oo

It can be seen thaf|G(s)|l» is finite if and only if TEQQ™VIWVIQ QTATTT + TSV Q=TQ T ATT"
lim,_.oo G(s) = 0. To ensure||G(s)||]2 to be finite, we  +TAQQ'VIWVQ TQTETTT + TAQQ™'VoSTT™

assume that [7], [13] +TBBTTT = . (11)
ker C' D ker (7) LetTS = [3"]. Equation (11) can then be written as shown
_ in the equation at the bottom of the page. From(thd ) block
whereker(-) denotes the kernel of a matrix. of this equation@,; WQZ, > 0 is the solution of (10), and the

In the following theorem, we can see that if the norm of 7, norm||G(s)]|, can be computed by
(E, A, B, C) is finite, the H, norm of (E, A, B, C) can be

expressed explicily o G0, = | race T1Qu W TT).
Theorem 1: Assume thatE, A) is admissible and (7) holds.
The H, norm of (E, A, B, C') can be expressed as Moreover, sinc&),; = [I, 0]Q~'V; andCi[I, 0]Q~! = C,
then

IG(s)ll, = \/tracd CVWV;TCT)
1G(s)]l, = \/trace<51[lr 01Q- Vi WVIQ-T [HU{)

whereW > 0 € R™*" andS € R"*("=") are the solutions of

(EViWVI + SVT) AT + A (EViWVT + SV) " = \/ trac CViWVI'CT).
+BBT =0. (8) Hence, the proof follows. [ |

QuWQLAT + 4,QuWQL + BiBT Q. WQT, + $1QT, + B1BT

_ _ =0
(QMWQZ; + SnQT + B1B§)T S2Q% + QusSh + BB
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Remark 1: WhenE = I, then(E, A, B, C) reduces to a Hence||G(s)|2 < 7¥2- [
state-space modél, B, C). In this caseV; = I, Vo, = 0. Corollary 2: Assume that (13) holds. The following state-
Hence, thell; norm given in Theorem 1 becomes ments are then equivalent.

i) Given a scalary, > 0, [|G(s)ll2 < 72 and(E, A) is
— T ’
IG(s)ll; = |/ tracd CWCT) admissible.

and (8) reduces to a usual Lyapunov equation for linear systemsi) There existV > 0 andS such that

described b
Y AT (L WUTE + UsS8) + (WWUTE + U,8)" A
+0TCc <0

It can be seen that is the controllability gramian of the state- tracd BTU,WUT B) < 2

space modelA, B, C).

The following corollary can be easily obtained by considering ~ hold.
the dual system ofE, A, B, C):

{ ET&(t) = AT#(t) + CTa(t)

WAT + AW + BBT = 0.

IV. STRICT LMI CONDITIONS FORH> CONTROLLER
(12) Now we consider théd, control problem for the following

~ —_ RT:A
y(t) = BTa(t) system:
when
Er =Ax + By,w + B,u
imgB C imgk (13) 2 =Chx + Dyyw + Disu
whereimg(-) denotes the range of a matrix. y =Cox + Dayw + Dazu (16)

Corollary 1: Assume that([s, 4) is admissible and (13) wherez € R™ is the state vectory € R? is the disturbance,
holds. TheH, norm of (E, A, B, C) can be expressed as - . ;
u € R™ is the control inputz € RP is the controlled output,

1G(s)l, = \/trace(BTUIWUlTB) andy € R! is the measured output. Here, we assumehat=
0,7i=1, 2, j =1, 2. Suppose that a dynamic output feedback
whereW > 0 € R™*" andS € R("~")*" are the solutions of ~controller of (16) described by

T - N ~ ~
AT (U,WUTE + UpS)HUZ\WUL'E + U,S) ' A+CTC = 0. Bé— Ac+ By u=Ce (17)

Theorem 2: Assume that (7) holds. The following statements
are then equivalent.

i) Given a scalary, > 0, [|G(s)|[2 < 72 and(E, A)

used, wherg € R" is the state vector, anfl € R™*",
A € R™", B € R™*! andC € R™*" are unknown matrices.
is The resultlng closed-loop system is

admissible.
ii) There exist > 0 andS such that E.i.= A.x. + Baw 2z = C.x. (18)
(BEVIWVT + SV) AT + A (EViW VT + sViF) " where
+BBT <0 (14) .
trac§ CViW VI CT) < 42 (15) Te = [5}
hold. E 0
Proof: i) = ii): If ||G(s)|l2 < 72, there exists a suffi- R
ciently smalle > 0 such that
|C(sE—A)~ B V21|, <7 a=| A BuC
2 ©|BC, A
holds. From Theorem 1, we have (15), whé¥e > 0 and S
. B,
satisfy B, = [ 0 }
(EViW VT + SVE) AT + A (EViW VT + sviE)T C.=[C, 0]. (19)

BBT = —¢eI < 0.
+ ¢ It can be seen that whéer C; D ker E orimgB,, C imgF

Furthermore}V > 0. Otherwise, sincéV’ > 0, a perturbation holds ker C.. D ker E, orimgB, C imgF, holds. In this case,
on W exists such thalt’ > 0 without violating (14) and (15). the H, norm of the closed-loop system (18) is finite so that we
i) = i): By (14) and Lemma 2(E, A) is admissible. Equa- may consider thei, control problem for (16). In this section,
tion (14) implies that there exis® # 0 satisfying we assume thdter C; D ker E, and the formulations for the

case whenmgB,, C imgF can also be given by considerin
(EV1WV1 + 5V, )AT +4 (EVIWV1 +5V; ) . the dual systim of (16)? ° ’ °
+BB" + BB =0 The H, control problem is to find a dynamic controller (17)

which means such that the closed-loop system (18) is admissible and

|C(sE—A)7'[B B, <. 1G2wlly = ||Ce(sEe = Ac) ' Be||, < 72 (20)
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wherev, > 0 is a prescribed scalar. Denote= rank E)).
Similar to F, let £ be decomposed as

0 (21)

B0 [Ef 0] P

0
wherey; = diag(é1, 02, "'u&f) Wi}h a; >0, andf], V are
orthogonal matrices. Partitidii andV conformably with (21)
as

U=[U1 U2] VZ[V:L V2]~

It can be observed that

E 0 U 0 (. 01 VT o0
=1y gl=lo ol2ls o[y o]
0 FE 0 U L0 0 0o VT
where
o ol i o]
0 0 Iy O Xy 0}
P = (= Y = .
[0 17:] [0 0 [0 5.
0 0 I,_:|

Let

619

Hence, by Theorem 2, our problem is to fild A, B,C, W, >
0, and S, such that

Ac (EchWch + Sc‘/cg)T + (EC‘/C].WC‘/CI]? + Sc‘/cg) AZ
+B'B. <0 (25)
tracg G, ViWHVIECT) < 3 (26)

hold.

Theorem 3:For a given scalat, > 0, there exists a con-
troller given by (17),W. > 0, andS. such that (25) and (26)
are feasible if and only if there exig¥; > 0, W5 > 0, Sy, So,
F, and@ such that the following matrix inequalities:

(A+ GC) (EViWy VT + 8,V T
+ (EViW V" + 51V5") (A+ GCy)" + By,B,, <0
(27)
(A + B,F) (EViW, Vi + SoVi) T
+ (EViWa V" + 8,V5") (A+ B,F)" + B,B,, <0

(28)
Wo — Wy >0
(29)
trace(ClVlszlTClT ) <2
(30)

hold. Moreover, such a controller is given by

It can then be shown that, andV, are orthogonal matrices, andA = (X~ — PT) - (PAT+(A+BUF+ GCy)X 1 +BwBZ>

U, 0
Uy = X
0 T
(U, 0
Uo=| > .
0 T
‘v, o
Ve = b
L 0 ‘/1
S
Voo = N (22)
L 0 ‘/2

S(x~t—pT)7! (31)
E=E
B=aG
C=-FX '(x'-pPT)"! (32)
with
Xt = (BT + 5,V T
P=EViW VT + SVl (33)

Proof: Sufficiency: It can be seen thaty; W, VL' +S; VI

By Theorem 1, theéd> norm of the closed-loop system is giverhndEV1W2V1T + S,V are nonsingular by (27) and (28). Let

by

Co(sE. — A) "B :trace(ccmlwcnfcf)

|

:trace(cmwjlvfcf) (23)

where
wi
c

W12 Sll 512
We = [(WIZ)T ] e = [

W22 S21 522 ] (24)

are the solutions of

Ao (BEVaWVE + 8.VE) + (EVaW.VE + S.VE) AT
+BTB. =0.

X andP be defined as in (33). Equations (27) and (28) imply

(A4 GCo)PT + P(A+GCy)T + B,BL <0
(A+B,F)X '+ X T(A+ B,F)" + B,BL <0

(34)
(39)

from which we can see th& and P are nonsingular. Further-
more, we can assume th&t ! — P7 is nonsingular from (29).
Otherwise, small perturbations &#,, W5, S1, Ss can ensure
the nonsingularity of\ =* — PT. With £, A, B, C given by
(31) and (32), we have the first equation shown at the bottom of
the next page. Let

X1+ pPT
X71 _ PT

X—l

X. =
- X 14 PT
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We have the second equation shown at the bottom of the pagbere
By (34), (35), and the Schur complement, it can be shown that

Vi =AX! + (xH7A" 4+ B,CXZ 4+ (X2 CTB]

AX.+XTAT + B.BT <. 36
+ C C + C < ( ) + BwBZj
Notice that withE = E, V., andV,, in (22) become Yip =AX2 + (XHTAT + B, CX2 + (XM ol BT
Yoo =AX2 + (X2)TAT + BCo X2 + (XTI BT,
Vi 0 Va
I/vcl = c2 — (37) .
0 W 0V By letting FF = CX?21(X!1)~1, (28) is followed fromY;; < 0.

Furth defi
and (38), shown at the bottom of the page, where urthermore, detine

. I 0
W2 —W2 + Wl P = ]
W, = 0 39 = _
[—Wg W Wa-w, | (39) —(X2)T(XAT 1
B So =Sy + 51 0= [ 1 0]
TS+ S S-S | - 1

.. . L E. :QTEcpiT
Noticing (38) into (36), (25) holds, and by substituting (30) and A, =QTAP-T
(39), (26) holds. T o

Necessity: By assumption, we know that there exists a ]—?c =Q F”
controller given by (17) such that’., A.) is admissible and .=C.P7T.
(20) holds, i.e., there exidt, A, B, C, W. > 0, andS, such
that (25) and (26) hold. With the partition in (24), if we letrhen
Wy = W1 and S, = S!1, (30) can be obtained from (26).
Denote the fourth equation shown at the bottom of the page, _ . B X1 X12(X22)-1x2
and, thus, (25) gives X.=PTX.Q=| ° ¢ 0 ¢ ¢ Xm]
Y, Y; A v v AT T
AX.+ XTAT + BT, = 1; 12 0 AcX, :l-TXc A + BCBCT o
Yio Yo =Q"(AX. + X Al + B.BI)Q <. (40)
A ~B,FX~1(Xx-1-pr)™*

E 0
o=y ] -

GOy (PAT 4 (A+ BoF + GO)X 1 + Bng) (x-t—pr)~

AcXe+ XTAD + BB
(A+ ByF)X '+ X T(A+ B,F)" + B,BY  —(A+ B,F)X~' = X~T(A+ B,F)T — B,BT
— T T
= | (A4 BF)X - X7 (A4 BLF)T - BB (A+ GC2)PT + P(A + GCy)
+(A+B,F)X '+ X T(A+ B,F)" +2B,BE

ViW, VL ET + V58T Vi(Wy — Wo)VTET + Vy (ST — ST)

= = VaW.VEIET +v.,8T  (38)
Vi(Wy = Wo)VTET + Vo (ST = ST) Vi(Wa — W)VITET + Vo (ST — ST) e

c

S ’ ViW,VTET + V, 8T VWRVIET 4 Vy(§21)T X1 x12
Xo =VaW.VEIET 4+ VoST = =

Vi(W22)TVIET 41, (822)T iW2RVIET 41, (522)" X2 x22
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From the(1, 1) block of (40), we have andN such that the following LMIs hold, as shown in (42)—(45)
R at the bottom of the page. Moreover, such a controller is given
(A B (Xfl)T(XCQZ)_TBCg) (ch B Xcl2(X022)_1XC21) by pag g
+ (XM - xP2x2)ix)’ A= (PAT + (A4 B,F + GC,)X ' + B, BY)
. N\T _ —1
(A= (xX(XB) TBG) + BLBL <0 (41) @ -r (46)
. E=F
Leting G = —(X?")"(X?2?)~" B and noticing iii) of Lemma Boa
1andULEV; = Er, we have . L . =1
11 12 22\—1 y21 C=-Frx- (Xi -r ) (47)
- 2112ATAT22 21\T G=PM
- (Vch VI"E 4+ Vo(S2) > F=NX
(U1 LW 0TE + @S) XL = (EViWVT + S,vf) T

. (Vl(W12)TV1TET + 7 (S“)T) =ULWULE + UsS.
‘ ‘ Proof: Notice thatEV, W, V¥ + SVl in (27) is nonsin-
_ 11 12 22\—1 12\T T T 1 2
=" (Wc — WA (W) (WeT) ) WE gular. Premultiplying and postmultiplying both sides of (27) by
+ Vs (52T — (SPHYT U, 8V, (ST (EViw, VT + S V)1 and its transpose, respectively, then
)

R from iii) of Lemma 1, we have
_ (S(?l)TU E 1(W(, ) (W12 TVTET )

ST E). (LT B+ 158)" (44 60y)
Let +(A+GCy)T (WU E + U58)
Wy =W — WI(w22)~L(wi2)T + (U1WU1TE+ UQS*)TBng (U1WU1TE+ U2§) <0
S1= (ST = (S)T 02875 (12T where
(ST, S (W) (Wi Ty T ET (EViW Vi + 5, v) ™" = ULWULE+ 058
_ (Sgl)TUQSVI(WCH)TVlTET)T' with W = 21wty 1 By letting (U, WUT E+ U, S)TG =

M, we may then see that (42) is equivalent to (27). Moreover,
Notice W; > 0 asW,. > 0. Equation (27) then follows from the equivalence between (43) and (28) can be seen by letting
(41). Without loss of generalityy ! ? isassumedto beinvertible. N = F(EViW,ViT + SoVi1)T. Finally, (44) is equivalent

Otherwise, a small perturbation Bf 1 exists such thatV!2 is to (29) by noticingW; = X 'W-!'%:! and the Schur
invertible without violating (25). Equation (29) is then obviougomplement. |
from
W — Wy =W — (Wpll _ W}Z(sz)_l(W}Z)T) V. LMI C ONDITIONS FORMIXED Hs/H ., CONTROLLER
—WRW2)" LWL > In the above section, we obtain the LMI conditions f@s

controllers. In this section, we will consider the mixdd/ H .,
m control problem for singular systems. Consider the following
Notice that the matrix inequalities (27) and (28) are naingular system:
linear. The following theorem gives equivalent LMI conditions Ei = Az + Byw + Byu
to (27)-(30).

Theorem 4: For a given scalay, > 0, there exista controller =0
given by (17),W. > 0, and S, such that (25) and (26) are Zoo = Coo
feasible if and only if there exi§ > 0, Wy > 0, S, Ss, M, y =Cox (48)

(WUTE 4+ UyS)TA+ AT(UWUTE 4 UyS) + MCy + CTMT  (UyWUTE + U,S)TB,, |

N N <0 42
BIL(UyWUL'E + UsS) -1 ] (42)
A (EViW, V" + SQVQT)T + (EViWa V)" + 8,V5") AT + BN + NTB] + B,,B,, <0 (43)
—W, I
N <0 (44)
I =Wy, ]

tracdCL Vi WL VI CT) < ~2 (45)
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wherexz € R” is the state vectorp € R? is the disturbance, The following lemma gives a necessary and sufficient condi-
u € R™ is the control inputz € RPt andz> € RPz are the tion of the existence of a controller by (17) such that, A.)
controlled outputs, ang € R! is the measured output. Theis admissible and (50) holds.
design objective is to find a controller (17) such that when Lemma 3: For a given scalafj,, > 0, there exists a con-
is a Gaussian white noise, tti& norm of the transfer function troller given by (17) such thatt., A.) is admissible and (50)
fromw to z is less than a givet,, and whenw is a deterministic holds if and only if there eX|§ﬁ/1 > 0, W2 > 0, Sl, Sz, M, and
signal of unity power, the,, norm of the transfer function N such that the following LMIs hold, as shown in (51)—(53) at
fromw t0 z, is less than a givef.. . A similar control problem the bottom of the page. Moreover, such a controller is given by
for normal linear systems was considered in [1]. . . )

Notice that the resulting closed-loop system from (48) and A= (PAT + 9% (A+ B, F + GCy)X !
(17) is . . R N —1
+ B,BT + PCOTOCOOX‘l) (vgoX_l - PT)

Eei. = Acxc +Bow z2=Ccte 2oo = Cooole R
where E =k
. B=aG
re= ] G — PR (X - PT)
E 0 with
E.= . N N
0 B G=PM
A A BuO F == NX
c = ~ ~ “ N T
BC, A -1 _ (EV1W2V1T + SQVQT)
B, = {Bw} P~ T_UlWUlTE—i—UQS‘.
0
C.=[C; 0] The proof of this lemma needs the following lemma.
c ' [c 0] Lemma 4 [11]: For a given scalafy,, > 0, there exists a
coo T LT controller given by (17) such thatv., A.) is admissible and
The transfer function fromw to z is (50) holds if and only if there exist, P, F', andG satisfying
Ga(s) = ColsBe = A) 7' B, EPT = PE” >0 (54)
H H R R R R T
and the transfer function from to z, is (A n GCz) PT L p (A n GCz) n Bng
Gow(s) = Cooo(sE. — Ac) ™" 1 o or ar
In order that thefl, norm of G.(s) is finite, we assume that T N2, PCCePT <0 (55)
ker C; D ker E. Thus, our control problem can be stated as ETX = XTE >0 (56)
follows: for a singular system given by (48), find a controller . . T .
with the form of (17) such thatE,, A.) is admissible and X7 (A + BUF) + (A + BUF) X+ 0T 0
||sz(s)||2 <72 (49) + LQ XTBwBZ:X <0 (57)
162 (9l < Yoo (50) s
wherey, > 0 andv., > 0 are prescribed scalars. E (Wzonl - PT) > 0. (58)

(nWulE + UzS) A+ AT (WWUTE + U5) .
1 ) ) (WUl E+15) B,
+—20CTOCOO+MCQ+CQTMT <0 (51)

OO

BL (LWUTE + 128) 1

A (BT + §2V2T) + (BViWaVil + SV AT ) )
- . (EV1W2V1T + 52V2T) or
+B,N + NTBT + 7—231”35 <0 (52)

oo

O (EV1W2V1T + S2V2T)T )

—2 W 1
[ T2 ) ]<o (53)
I s,
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Such a controller is then given by From (3) and noticing/Z'V; = [VITVI] [£], we then have

VIV,
A= (PAT +’YC2,O (A‘l—BuF—i— GCQ) X! UTEVVTV1 ('YgOWQ _ Wl) ‘GTVVTETU
N N N N —1
+ BwaZ-i-PCOTOCOOX_l) (fyZoX_l—PT> [z o[ ( 2 _W)[I of 5
_ o ollo Yoo ¥V 2 1)1 4r 0 0

E
G S, (ygotfvz - Wl) 2, 0
0 0

—1 =

Q» ol tlj>
|

L FX T (A% - PT)
>0
which impliesy2 Wy — Wi > 00ory2 Wy — S tW-1x-1t > 0
without loss of generality. Otherwise, a small perturbation of
~ ~ ~ A A H 2 H H H
-1 (A n GCQ) n (A 4 GCQ) P74 P—leBZ)‘P—T W, exists such thays W, — W7 > 0 without violating LMI

Proof of Lemma 3:Multiplying both sides of (55) by>—1
andP-T , respectively, we obtain

(52). [ |
+L cT o, <. Based on Lemma 3 and Theorem 3, the mi¥édand H .
72, control problem can be solved.

T Theorem 5: For given scalarg, > 0 andvy,, > 0, there
]BDy 1) a;‘(/j II/II? ‘(;f Limsm‘zi L gngr}(,“; :cgnwb/e;]eg)ris[sjeg as exists a controller given by (17) such thiét., A.)isadmissible
o 172 LA 2" and (49) holds under the constraint of (50) if there ebigt> 0,

with W = S-1W sl Thus, by lettingP~'G = M, w
can see that (54) and (55) are equivalent to (51). On the otﬁ/g? > 0, 81, 8, F', andG such that the following LMIs hold,

hand, multiplying both sides of (56) and (57) Ky andX ~*, as shown in (59)— (62) at the bottom of the page. Moreover, such
respectively, we obtain a controller is given by
X TET = gX ! A= (PAT+7§O (A+BUF+GCZ) X!
N\ 4 . NT . . o1
(A + BUF) 14X T (A + BuF) XTI oL X! By BT 4+ PCT O X~ )(VZOX_l B PT)

1
+—2 BwBZ: < 0.

oo

, % o
Il
Q=

Again, by ii) of Lemma 1,X -7 can be expressed a8~ =
EViWaViT + 8,V It can be seen that (56) and (57) are equiv- ¢ — 2 XY (720)271 _ pT)_ (64)
alent to (52) by letting?’ X —! = N. Notice thatEV, = 0 and

with
VX = PT = Vi (A Wo =W VI BT+ V3 (2,87 - 8T ). G=PM
Therefore, (53) implies (58) sindd = S1W, 'xL. Con- F=NX, .
versely, from (58) X-1 = (E‘/lWZVl + 52‘/2 )
EVy (vioVVz - Wl) VI'ET > 0. PT =UWUTE + U,S. (65)

~ N\T ~ N 7
(U1WU1TE + UQS) A+ AT (U1WU1TE + UzS) .
. ) . (WUTE +10:5) B,
+— CLCx + MCy + CF M* <0 (59)
2,
BT (UIWUITE + Uzé*) I
R R T R R -
A (EV1W2V1T + SZVZT) n (EV1W2V1T ¥ SQVZT> AT
o ) (EV1W2V1T + SQVQT) cr
+B,N + NTBT + oy B, BT <0 (60)
) oo
Cue (Ev1 Wo VT + SQVZT) 1 ]
—72 W, I
[ T ) } <0 61)
I -%Wy,
A ’}/2
trace(C1 VAW, VICT ) < 22 (62)

oo
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Proof: It can be seen from Lemma 3 that if (59)—(61where
hold, then the controller of (17) with2, A, B, and C by N K R
(63) and (64) is such thatE., A.) is admissible and (50) Z1 =2 (A + BuF) X142 X1 (A4 B, T
holdg. We will show that the controller (17) witk, A, B, T
and C' by (63) and (64) is also such that (49) holds. With + BuB., A
E, A, B, and C given by (63) and (64), we then have the Z>= —Z; — X TCLCP”
first equation shown at the bottom of the page. It can be _ - T A - T T
seen thatl, WUTE + UyS and (EViW,VT + S,VT) are 2= (A+GG) PT+ P (44 GCo) +BuB]
nonsingular from (59) and (60). Let and P be defined as + 7 +X—Tc§oooof)T + PCOTOCOOX—l
in (65). Equations (59) and (60) imply
and as shown in the second equation at the bottom of the
. . A . T age by (66) and (67). Hence,
(A+G0) P+ P (4460 +B,BE page by (66) and (67)
% T AT T

+L2PCOTOCOOPT<O (66) AX.+X A, + B.B; <0.
Voo

N ot er AT Since P~T = UyWU{ E + U, 8, by iii) of Lemma 1, there
(A + BuF) X +X (A + BuF) exist W, and S, such thatP? = EV,W, V" + 5,V,"'. Notice

1 T ST AT s 1 the equation shown at the bottom of the next page, where
+ 5 BuBy, + X7 O G X7 <0 (67) ©., andU,, are given in (37) since’ = E and

X . 2 W. 2 Wo + W,

Furthermore, we can assume thatX — — P7 is nonsingular W, :[ ZWA 2 Z N

from (61). Otherwise, small perturbations &fi;, Wa, S1, VW2t Wi e W2 — W1

1 T ~
and S, can ensure the nonsingularity @fOX — PT. Let K _[ 428, —%052 + 8
c 2 4 A

) ,Ygo -1 _720)2_1 + pT —V552 + 51 ’YOOSQ - 51

which satisfies

T T T oT
We then have Ac (VdWchEC + Vc,250)

~ ~ T
+ (VaW.VIET 4 Vio8T) AT + BIB. <0,

% T AT Zy 2

AX.+ X, A, + B.B. = T . _
Zy  Zs From (62) and Theorem 2, the proof is obtained. [ |
~ ~ -1
A A2 B, FX1 (wgox—l - PT)
A= »
GOy (PAT 4+ 42 (A+ BuF + GC)X ' + B,BT + Pczocoo)%*l) (ygof(*l - PT)
IE
I 1]LzT Z3]lo I

_ A Zy + Zsy
T\ %+ 25 Zi+Zs+Za+ 75

i &\ v 5 N\T T ~T AT .

Voo (A + BuF>X—1 +92X°T (A + BUF) + B,BY - X700 P

- ~ ~ A ~ T

I ~POLC X! (4+GCo)PT+ P(A+GCy) + BuBY |

N\ . T 0
2 (A ¥ BuF>X—1 FA2 KT (A ¥ BuF) + By, BT

+X TCLC X!
1 R

L ') -

IN

(A + GCQ)PT + ﬁ’(A + 602)T+ B,BT
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Uy, Us, V1, V5, andX,. can be obtained by the singular value
decomposition ofr’ as

which is depicted by Fig. 1. In the circuif; and C' are the

inductance and capacitance, respectivelyt) (k = 1, 2) and

i(t) denote the voltages and current flow, respectively. Here, it Vo =
is assumed that

1 0
Ui=1(0 1
100
i o [0
Fig. 1. Electrical circuit. U 0
2 =
|1
VI. |LLUSTRATIVE EXAMPLE 10
Example 1:Consider the electrical circuit given in [13], Vi=10 1
0
0
0
1
3

n o 0
i(t) = u(t) +w(t) "o 2
By solving LMIs (42)—(45) in Theorem 4, we obtain
whereu(t) is the control input and(t) is the white noise distur- . 0.2076 0.0318
bance with zero mean and unit intensity. The controlled output W= [0.0318 0.7361} 0
is defined as W, — [ 23020 —01956] _
27| -0.1956  0.4273
2(t) = va(t) : ’
~ 0.2523
and the measured output is defined as S = |1.4683
| 0.0039
y(t) = vi(t) + va(t). [12.3717 ]
_ . _ _ _ Sy = | —1.9324
This dynamic system is then a singular system, which has the 54907
form of ©0.6249 ]
L 0 0 -R -1 1 M = 0.7066
0 C o0lit)=] 0 -1/G 0|a(t) | —0.8292 |
000 Lo o 0.2836]"
0 0 N = | -0.0772
+ | L|w@®+ | 1|u) | 0.2482 |
-1 -1 72 =0.7.
z(t)=1[0 1 0]z(t) Thus, a stabilizing controller (£, A, B, C) achieving
y(t) =0 1 1]z(¥) |G.wll2 < 0.7 can be calculated by (47) and (46), which is
E=E
wherex(t) := [i(t) va(t) vi(t)]T. Our objective is to find a —0.1121 —2.1924  0.0011
dynamic controller with the form of (17) such that the resulting A=10%%x | —04957 —8.5487  0.0044
closed-loop system is admissible and ffs norm ||G .||z is 04309  8.6340 —0.0045
less than a given, > 0 for the given dynamic system with -
A 52.5414
_ _ _ _ B = | 208.6767
L=3 G=1 C=2 R=2. | 211.0282
It is noticed that this system is not impulse free since it has one —0.18477 7%
finite pole ats = —(1/2), but rank& = 2. Here, it can be also C = | -1.2868
seen thaker C; D ker E is satisfied. | 0.0010
A PR VAWRVT BT + 921557 Vi(Wa =W VBT 4 Va(ST — 2287

Vi(Ws =22 W) VITET + V2 (ST = 228T) va (n2, 1 — WA )V 7 4 Va (2,8% — 57)

- chc‘/(afllﬂE(T+Vr2§(T
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Example 2: Still consider Example 1, but here we assume iii) A mixed H»/H., control problem has also been consid-
that there is another controlled output, which is defined as ered. It has been shown that such a controller exists when
o a set of LMIs are feasible. Explicit expressions of a de-
Zooll

sirable controller are given through the solutions of the
The objective is to find a dynamic controller with the form

derived LMls.
; : . iv) Two numerical examples have been used to illustrate the
of (17) such that the resulting closed-loop system is admis- ) P
sible, [|G.wll2 < 72 and||G._wllco < Yoo- BY solving LMIs

effectiveness of the proposed methods.
(59)-(62) in Theorem 5, we obtain

u)=[0 0 1zt
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