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Transcritical flow of a stratified fluid: The forced extended
Korteweg—de Vries model
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Transcritical, or resonant, flow of a stratified fluid over an obstacle is studied using a forced
extended Korteweg—de Vries model. This model is particularly relevant for a two-layer fluid when
the layer depths are near critical, but can also be useful in other similar circumstances. Both
quadratic and cubic nonlinearities are present and they are balanced by third-order dispersion. We
consider both possible signs for the cubic nonlinear term but emphasize the less-studied case when
the cubic nonlinear term and the dispersion term have the same-signed coefficients. In this case, our
numerical computations show that two kinds of solitary waves are found in certain parameter
regimes. One kind is similar to those of the well-known forced Korteweg—de Vries model and
occurs when the cubic nonlinear term is rather small, while the other kind is irregularly generated
waves of variable amplitude, which may continually interact. To explain this phenomenon, we
develop a hydraulic theory in which the dispersion term in the model is omitted. This theory can
predict the occurrence of upstream and downstream undular bores, and these predictions are found
to agree quite well with the numerical computations. 26002 American Institute of Physics.
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I. INTRODUCTION formed for sufficiently low Froude numbers in the subcritical
regime. For the forced KdV equation Grimshaw and Sifiyth
The evolution of weakly nonlinear long waves, in both (GS) showed that the upstream and downstream wave trains
homogeneous and density-stratified fluid environments, is ofould be well described by the modulation theory for the
great interest in many branches of fluid mechanics, notablKdV equation, which, in turn, is a development from the
in oceanographic applications. When the leading balance isydraulic approximation in which the dispersive term is ne-
between quadratic nonlinearity and dispersion, the dynamicglected. However, it seems that the modulation theory for the
is typically governed by the well-known Korteweg—de Vries eKdV equation is not fully available, except for sufficiently
(KdV) equation. For larger waves, or for certain special con-small-amplitude wave$.
figurations in stratified fluids, it has been found useful to  Further, numerical simulations of the full equations for
include cubic nonlinearity, leading to the extended KdV stratified flow over topography have been performed for a
(eKdV) equation. Such model systems have been derived itwo-layer stratification and for a linearly stratified Bouss-
the literature for stratified fluids, and the localized solitaryinesq fluid’~*2Flows past an obstacle in a horizontal channel
waves have been identifigdee, for instance, the review ar- will reach criticality if the linear long wave speed of one
ticle by Grimshaw, as well as the recent more specialized mode is equal to the upstream flow speed. The energy of the
works by Hollowayet al,?> Michalet and Barthelemy,and  waves excited by the obstacle cannot propagate away from
Grimshawet al?) it, and hence a strongly nonlinear response occurs. Indeed it
In many geophysical and marine applications it is necAs this feature that leads to the necessity for such nonlinear
essary to include a forcing term; typical examples are whemheoretical models as those provided by the forced KdV and
the waves are generated by moving ships, or by flow oveeKdV equations. These full numerical simulations broadly
bottom topography. Previous studie$have identified some support the behavior types seen in the model equations. Fur-
interesting features of the forced eKdV equation. These inther, we note that a forced eKdV equation has been discussed
clude undular bores propagating upstream in the subcriticah the context of the generation of capillary-gravity waves in
regime, and monotonic bores in the transcritical regime; such two-layer fluid*! also, a set of coupled forced KdV equa-
bores may remain stationary. These features differ sharplyions have been discussed for surface waves, with a view to
from the solution of the forced KdV equation, where in theretaining a(weak interaction with the nonresonant wave
transcritical regime solitary waves are generated continuallynode®
and propagate upstream. Locally steady flow is observed for It is known that the solutions of the eKdV equation will
sufficiently large Froude numbers in the supercritical rangedepend on the relative signs of the coefficient of the cubic
of such eKdV systems, while stationary lee waves areonlinear and dispersive terms. Most studies of the forced
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FIG. 1. The interfacial displacement &t 60 with A=0, f,,=1.0, andé=0.3 for 3>0.
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FIG. 2. Herefy, vsu for A=0. FIG. 3. Heref,—f+g(A) vs u for A#0, for A<O. The caseA>0 is
similar.
eKdV equation mentioned above, with one excepliodeal  Il. FORCED EXTENDED KORTEWEG-de VRIES

with the case where these terms are of opposite sign. In thiEQUATION
case the eKdV equation supports a single family of solitary
waves, whose polarity is determined by the relative signs o;
the coefficient of the quadratic nonlinear and dispersive

We begin the analytical formulation by considering the
orced eKdV equation for an appropriate field variable

terms, which for small amplitudes resemble those of the Kd\)J(X’t)’
equation, but for large amplitudes become “thick” solitary au au au ,du #u _of
waves with a limiting amplitudé.On the other hand, when E“LA X Yo Bu X oxd ax’ @

the cubic nonlinear and dispersive terms have the same- . . | fluidu is the interfacial
signed coefficients, the eKdV equation supports two familieéz_Or mstance{, In a two-layer fluidu 'S .t e interfacia
of solitary waves; one resembles the KdV solitary waves a isplacement.Here A measures the deviation from the long
small amplitudes, but the other, with opposite polarity, canvave phase speed, and is the parameter that controls the flow

exist only for large amplitudes. Since the coefficient of the'©9IME; f(x). 'S_ the representation .O.f the localized topo-
cubic nonlinear term in the eKdV equation can have eithetgraphlc forcing;a and3 are the coefficients of the quadratic

sign for various layered and stratified flutfei! our objec- and cubic nonlinear terms, respectively, and can be deter-

tive in the present work is to study waves generated by th ined explicitly in terms of the basic state of the stratified

:~4 1,5,7,8,10 Ho H _
forced eKdV for both signs of the cubic nonlinear term, with luid. For an initial condition, we seu(x,0)=0,

a particular emphasis on the less-studied case when the cuB’?@'Ch corresponds to turning on the basic flow at the initial

nonlinear and dispersive terms have the same sign. As tHime. The forcing function used in our numerical simulations

procedure for deriving such a forced eKdV equation is'S

standard;>®and well known, we shall proceed directly with f=f,, exp— &3, 2
a study of a nondimensional forced eKdV equation. Formats

and signs for this forced eKdV will conform as far as pos-

sible with the forms used in earlier studies.

The strategy will be a combined analytical and compu- /\

tational study. First, based on the usefulness of the hydraulic % u,
approximation used by @3n their study of the forced KdV “— “,
equation, an analogous hydraulic approximation for the .=¢ :

forced eKdV equation will be developed here and used to
study the transcritical regime. Second, the forced eKdV

equation will be solved numerically, and the results com-

pared with the hydraulic approximation. The most interesting

result is that two kinds of solitary waves can be emitted and

travel upstream in certain parameter regimes. The first type ism

generated at regular intervals when the cubic nonlinear term / ~——
is relatively unimportant, while the second type is produced ,

. . . xm
irregularly and occurs when the cubic nonlinear term plays a
crucial role. FIG. 4. Configuration for a stationary downstream shock.




Grimshaw, Chan, and Chow

Phys. Fluids, Vol. 14, No. 2, February 2002

758

Q
<]

40

20

200

100

-100

-200

-300

and¢=0.3.

1

1.0

m=

f

1.4

B=

-3.0

FIG. 5. The numerical solution with

Q

6
40
20

200

100

-100

-200

(a)

10

1.4,f,=1.0, andé=0.3. (b) The characteristics configuration for the hydraulic approximation with

0.3.(c) The interfacial displacement of the flow &t 60 with A=—1.0, f ,=1.0, and¢

FIG. 6. (a) The numerical solution witth=—1.0, 8

A=-10,8

0.3 for B>0.

1.4,f,=1.0, and¢



Phys. Fluids, Vol. 14, No. 2, February 2002

B=03,A=-1

Transcritical flow of a stratified fluid

2200 -150 100 -50 0

B=06

50

~200 150 100 50 0

50

100 150 200

'2 T T
-200 -150 -100 -50 0

50

100 150 200

-200 -150 100 .50 0

50

o

-2 T — T
-200 -150 -100 -50

(©) X

FIG. 6. (Continued).

50

100 150 200

759



760 Phys. Fluids, Vol. 14, No. 2, February 2002 Grimshaw, Chan, and Chow

where ¢ is a shape parameter. In general, we assumefthattions together with shocks. As in GS, we expect the shocks to
has a single maximum and decays rapidly in the farfieldbe indicative of the presence of wave trains in the full equa-
Only positive forcing is considered in this study,e., f,,  tions(1), although, as far as we aware, there is currently no
>0 in Eq.(2)] and« is kept constantequal to 2 without loss counterpart for the eKdV equation to the modulation theory
of generality for all the numerical computations. However, for the KdV equation used by GS. On omission of the dis-
we vary the coefficienB and allow it to be both positive and persive term, Eq(1l) becomes
negative. A typical sequence of numerical computations for
A=0, f,=1 is shown in Fig. 1 fo3>0. Ju au au Ju of

—+A——aUu—— BUP—=—. 3

at IX ox X  IX
lll. HYDRAULIC APPROXIMATION

To explain the features shown in Fig. 1 and all our otherEquation(3) can be solved by the method of characteristics.

These are given by

numerical computations, we follow the approach off@8d

consider here the hydraulic approximation. Formally this is

valid for broad forcingdé—0 in Eqg. (2)], and can be ex- dx @: ﬂ @)
dt ox’

pected to lead to a combination of locally steady-state solu- dt
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FIG. 7. (a) The numerical solution witth=0, 8=1.4,f,,= 1.0, and¢=0.3.(b) The mass fluctuations with=0, f ,= 1.0, andé=0.3 (only My is showr).
(c) The characteristics configuration for the hydraulic approximation with0, 8=1.4, f ,=1.0, andé=0.3.
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Since we are interested only in asymmetric steady hydraulic
where on a given characteristictat 0, x=Xg, u=0. Herex, solutions, we assume here thgt~0 atx=0, and so Eq(8)
is a parameter defining each characteristic. Equatiénare  holds; later we will show that only the upper sign in E8)
readily solved numerically, although we note that analyti-is relevant. In the farfield, where—0 we letu—u.., where
cally the solution can be written in the form u_ and u, represent the upstreanx-&—=) and down-
stream g— +) values, respectively, and we will require
Au—zau?= 3 8u*=1(x)~f(xo), ) thatu+7£(u, . Lzzlter we will sr?ow tha:/1,>u+ ) Integraticilg
which givesu in terms ofx andx,. Substitution into the first Ed. (7) with respect tax gives
of Egs.(4) then givesx=Xx(Xq,t), and the subsequent elimi-

2 3

nation ofx, then yields the solution of Eq3). However, if Au— o 'B_U_f:c, 9
the characteristics intersect, then a shock much be inserted. 2 2
The shock speed can be determined by integrating )~ whereC can be determined by the farfield conditions, or by
across the shock, and is the condition atk=0, so that

V= A= 3a(Uat Up) — 5B(U5F Ui+ Up), (6) «, B, a2 AU
whereu, , are the values ofi on each side of the shock. C=Au.— pU=Tgue" Aum= 2 3 ~fm.
However, in our numerical solutions of Eq4) we allow the (10

characteristics to intersect, and the shocks are inserted on
schematically, i.e., we determine numerically the poiixs
where characteristics first intersect, and sketch a c(swid a B )
line) whose slope at the initial intersection point is given by ~ A= 7 (Us++u-_)+ Z(uf +u u_+u%). 11
Eq. (6).

Next, to determine the criteria for a steady hydraulic ~ First, for simplicity, letA=0. In this case, Eq(8) im-
solution, we ignore the unsteady term in E8) which then  plies thatu,=0, oru,=—a/g. If u,=0, thenC= —f, and

Ilyurther, sincau_# U, , we obtain

becomes the solution of Eq(9) becomes
_1 2,1 3
Aﬁ—u—au&—u—ﬁ ,du ﬂ @) fn—f=3au°+38u°,
X X X which is plotted in Fig. 2. Clearly,
We shall assume that>0 without loss of generality, and B o3
also in the subsequent discussion, we shall assumegthat —u + _ui—f <—> (12)
>0. The casg3<0 can be recovered by the transformation 2 3 65

u——u, A——A. At the local maximum of the forcing, myst hold for this solution to exist and, furthermore,
located atx=0, f(0)=f,,, f,=0 and we letu=u,,. Then

Eq. (7) shows that eithen,= 0 or that @ a
—>u_>0>u,>—-—
112 2B B
In the other case, ifi,,= — a/f, it can be shown that there is
(8) no solution, most obviously by again using Fig. 2.

2
o o
A=aun+pBuz, ie., Bun=—5=\ 7 +AB




762 Phys. Fluids, Vol. 14, No. 2, February 2002 Grimshaw, Chan, and Chow

4.4
B=1.0,A=1
0
-4 T T T T T T T 1
-200 -150 -100 -50 0 50 100 150 200
4 -
B=18
0
-4 T T T T T T T 1
-200 -150 -100 -50 0 50 100 150 200
4 -
B=36
u 0
-4 T T T T T T T 1
-200 -150 -100 -50 0 50 100 150 200
4 -
B=38
0
-4 T T T T T T T )
-200 -150 -100 -50 0 50 100 150 200
4
B=42
0 -—M j\ W
-4 T T T T T T 1
-200 -150 -100 -50 0 50 100 150 200
(@) X

FIG. 8. (a) The interfacial displacement & 60 with A=1.0, f,,=1.0, and¢=0.3 for 8>0. (b) The numerical solution witlA=1.0, 3=4.2,f,,=1.0, and
£=0.3.(c) The interfacial displacement &t 60 with A=2.0, f ,=1.0, andé=0.3 for 8>0. (d) The numerical solution witlh =3.0, 3=1.4,f,,=1.0, and
£=0.3.
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Then, in the general case, we considet 0 for a>0,
B>0. First Eq.(8) shows thau,, will not exist unless

2

a
A>——

a5 (13

Sinceu,,=0 whenA =0, we choose,, by the upper sign in
Eq. (8). Equationg9) and (10) then give

au?®  Bud
fm=f+9(A)= —Aut ——+——, (14
where
g(A)=—Aum+gur2n+§u§1, or
al a3 2 C(Z 3/2
g(A):ZB+1232_332[4+AB] |

We now plotf,,—f*g(A) as a function ofu in Fig. 3, and
see that there are two turning points:

(a local minimum, (15

) ’ o 1 a2 1/2
U:Um, Um:*ﬁfﬁ Z+AB s

(a local maximunm. (16)

Thus, a solution withu_>u,,>u_ exists untilf,, reaches a
value, such that

Transcritical flow of a stratified fluid 763
-75 -50 -25 0 25
X
’ o ! B ’
fn= = AU = Um) + 5 (U = uf) + 3 (U —uy)
! o ’ B !
=—g(A)—Aujp+ Sup'+ T ug (17)
From Egs.(15) and(16),
2 (o 12 o
u,’n—umz—lg[4+A,8 , ur’n+um=—E,
and we find that this hydraulic solution exists, provided that
4 a2 32
fmss—ﬁz 4+A,8] . (19
Note here that
a2 [, 888 (1 BT 19
- - <
g(a) 1262 t2 t 2 : (19

holds for all A in the allowed rangeA>—a?/48 and
g(A)=0 atA=0.

The shock velocities upstreamV/() and downstream
(V) are found from Eq(6) with u, ,=(0u_) and (Ou,),
respectively, so that

aur Bui —[fntg(A)]
Ve=A=—Zm= == U. '

Since we require tha¥/,>0>V_, it follows thatu_>0
>u, and that(see Fig. 3

f>—0g(A), (20

which defines the transcritical regime. The results 8&)
and Eq.(20) are the main conclusion from this study of the
steady hydraulic solutions. Equati¢b8) is the condition for
the existence of the downstream steady state while Eq.
(20), together with Eq(13), define the range ok for which
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this asymmetric hydraulic solution can be obtained. We reitspatial discretization process. The code is validated by com-

erate that when both Eq18) and Eq.(20) are satisfied we
anticipate that in the full equatiofil) the shocksu. are
replaced by wave trains, as in GS.

The case

2 3/2

fo.>— , (21

m 332

4

+ApB

paring the numerical result with the exact solitary wave so-
lutions of the eKdV equation.

The localized forcing is switched on impulsively when
the time integration starts. We keepconstant ¢=2), and
fix the forcing to be given by Eq(2) for all simulations.
Then A and 3 are varied to generate different flow regimes.
In a subsequent discussion, the “mass” of the system is de-

requires a different treatment. Instead of the treatment abovéined to be the area between the interfacial displacement and
we assume now that a stationary shock forms over the frorthe undisturbed mean position. For two-dimensional flow,

face of the forcing ak=x/, (Fig. 4). The structure to the left

of this shock is similar to that described above:

au®  Bu®

au® U’ _
2 3

!
m?

d(u)=—Au+ =—C—f, x<x

where

—C=fntg(d), 9(d)=d¢(up). (22

Then asx=x/,, it is clear from Fig. 3 thati=u/, [see Eq.
(16)], and this is sufficient to also determirg,. Then since
the shock speed is now zero, one kigsl,) = ¢(ur,), which
determinesi;,. Downstream of the shock& x;,) one seeks
a steady solution where—u’, asx—, andu—uy, asx

— X/, +. It is readily shown that this is also given by Eq.
(22), so that, in factu’. =u_, i.e., the downstream steady-
state level is identical to that upstream. However, in th

by a rarefaction wave.

IV. NUMERICAL COMPUTATIONS

e
downstream case, this is not a shock, and instead is resolvcﬁglat

this volume, or area per unit depth, will represent the mass
except for a constant factor equal to the density of the fluid.
In order to study the mass fluctuation in front of and behind
the forcing, we split the mass of the whole system into two
parts, namely, —o<X<0 (M) and Osx<+oo

X (Mpenind- As the total mass of the system is conserved,
MrontT M penind™ M1ota= 0 Since the null initial condition is
used here.

A. Part 1, forced eKdV, B>0
1. Case (A): A<O

The transcritical range foA is defined by Eq.(20),
which depends otii,,, a, and 8. One particular value o8,
namely,3= 1.4, will be chosen for the purpose of discussion.
The transcritical range is then given by0.71<A<2.35.

We first consider a large negative valueof{A=—3)

is outside the transcritical regime. Figur@5shows a
typical solution of Eq(1) with £€=0.3, andf ,=1. The criti-

cal value ofg found from Eq.(18) is given byB.=0.28, and

so there is no steady hydraulic solution available, since here

We now discuss some numerical studies of the forcegB> .. Nevertheless, this case is quite similar to that of the
eKdV equation for various flow regimes. A numerical code isusual forced KdV equatioh A localized stationary depres-
developed using the Adams—Bashforth—Moulton predictosion is observed just downstream of the forcing region fol-

and corrector method to integrate E@) forward in time,

lowed by a stationary lee wavetrain. A solitary wavetrain is

and central finite difference formulas are employed in thegenerated in the upstream direction with one very dominant
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leading wave. The upstream solitary wave, formed at a verppore composed of solitary waves of nearly uniform ampli-
early stage, attains a mass of six units very soon after theude, a stationary downstream depression terminated by a
integration starts. The total mass of the system is conservatodulated wave train. The scenario is analogous to that de-
and stays equal to zero steadily as time proceeds. Outside tBeribed by GS for the forced KdV equation. Figure 1 shows
transcritical regime, the introduction of the cubic nonlinear-the interfacial displacement at60 for different values of
ity does not generate any dramatic influence on the solutionz. When g8 is only slightly greater than the critical value
as compared with the usual forced KdV model. (B=1.2), the downstream depressed region ceases to exist,
Next, we consider a case closer to the transcritical reand instead a localized minimum develops. There are still
gime, A=—1, but still with §£=0.3 andg=1.4[Fig. 6@].  regularly generated solitary waves upstream, and a modu-
There is now an undular bore upstream, although the oscilated downstream wave train remains. On further increasing
latory wave train downstream is the dominant feature. Thehe value ofg, two systems of upstream solitary waves are
critical value of 8 given by Eq.(18) here is3.=0.59, and observed. They are regular ones, which are generated at an
also B> ;. It is therefore not surprising that there is no early stage and irregular ones, which are apparently gener-
stationary depression just downstream of the forcing regionated in accordance with the fluctuations in the depression just
Instead, there is a downstream wavetrain, which is highlyin the lee of the forcing region. These irregular solitary
oscillatory. The characteristics obtained from E@$. are  waves, and the accompanying irregularly downstream waves
shown in Fig. 6b). There are two shocks formed, one up- are the most striking results of the present work, and differ
stream that leads to the observed undular bore in K@, 6 drastically from the forced KdV model.
while the other is over the forcing and leads to the unsteadi- \When the cutoff criterior[Eq. (18)] is exceededi.e.,
ness of the downstream wave train. Figufe)&hows the B> g.) one can construct another steady hydraulic solution.
interfacial displacement dt=60, revealing the regime tran- This new solution has a stationary shock on the downstream
sitions asp is increased. A3=0.3, well below 3., the side of the forcing, and is followed by a transition to a rar-
solution is similar to that for the usual forced KdV equation, efaction. In the full equatioil) we interpret the presence of
with an upstream undular bore, a depression just behind th@e stationary shock with the fluctuations seen just in the lee
obstacle, followed by a modulated wave train. This behaviof the forcing, leading to the irregular generation of the
persists until3> 8., and for3=0.6 we see some variability higher-amplitude solitary wave€HASW) observed in the
in the downstream wave train, possibly indicative of a rar-numerical computations, while the rarefaction becomes a
efaction type of modulation. On further increasing the valuerather weak downstream wave train. In this regime, we find
of Bbeyonds;, the irregular oscillatory wave train becomes hat the hydraulic approximation is again useful in predicting
the dominant feature downstream while the number of Upthe criterion for the presence of a steady lee depression,

stream waves in the undular bore decreases. which is directly related to the structure of the upstream soli-
tary waves. ForB=1.4, five regular and two irregular
2. Case (B): A=0 HASWs are generated &t 60. The time development in the

We now consider the resonant casedcf 0, {=0.3 and  numerical computation fo8=1.4 is shown in Fig. @&). The
fn=1, where the critical valugg.=1.15. ForB>p3., our  first HASW, generated at~30.5, travels faster than the
numerical computations show good agreement with the hyregularly generated solitary waves and interacts with them.
draulic approximation in that there is an upstream undulaiVe are proposing that the generation of this kind of HASW
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is due to the presence of a stationary shock on the down- Finally, consider the cas& =2, £=0.3, andf,,=1,
stream side of the forcing in the hydraulic approximation.which is also in the transcritical regime, whilg.=0.38.
Simultaneously, an oscillatory wave train is sent down-This case shown in Fig.(8), illustrates the nonlinear char-
stream. Once the localized depressed region possessaster of the solitary wave formation. The generation period
enough negative mass, it is apparently pushed upstream adécreases and the number of the solitary waves increases if
undergoes a transformation. Simultaneously, one can recogre choose a larger value gf[Fig. 8c)], but are all still the
nize several fluctuations of mass in the upstream reldtfam  irregular regime. However, the amplitudes of the solitary
7(b)], i.e., Myont, is NO longer a straight line. If these local- waves generated decrease from about 32-=al.2 to about
ized and large negative disturbances near the forcing regio2.4 at3=3.6.

have insufficient mass, they will decay into radiation and be  For an example outside the transcritical range, Aet
sent back downstream. Figurécy illustrates the character- =3, 8=1.4, (£=0.3, andf,,=1. A locally stationary eleva-
istics for the case oB=1.4, which shows evidence to sup- tion forms over the forcing region, and a downstream modu-
port these interpretations. Some characteristics curves, frotated wave train is obtaingdFig. 8(d)].

the downstream side of the forcing region, bend toward the

upstream direction, and have more than one turning poinB. Part 2, eKdV, B<0

When we increase the value gfto 1.6 (Fig. 1), the number

of regularly generated solitary waves drops to three. For 1. Case (A): A<O

=3.6, only one regular splitary wave is fo_rmed at an_early We first considen = — 3, é=0.3, andf = 1. Figure 9a)
stage. Consequently, we infer that increasing the cubic norgy, s 4 series of interfacial displacements=a60. The cut-
linearity hinders th_e gen_eratlon of the reg_ular solitary waves « criterion for this case i3~ —48.99, so that we must
and at the same time triggers the formation of the HASWS'have|,8|<|BC| to have a steady hydraulic solution. Only one

upstream solitary wave is generated and a depression devel-

3. Case (C): A>0 ops in the forcing region. These results are quite similar to

Figure 8a) shows the interfacial displacementtat60 those of the forced KdV equation, and indeed Figb)9
for different values of3 with A=1, §=0.3, andf,=1. This  shows the time history of the cage= — 1.4, which is very
is still in the transcritical regime, whilg.=3.67. For the similar to the result of the casg= + 1.4 (Fig. 5).
fixed time period chosen the number of solitary waves gen- For A=—1, there is a transition from the undular bore
erated is proportional to the value gfbefore it reaches the solution to the monotonic bore solution B8 is increased.
cutoff criterion of 3.67. WherB exceeds the critical value, Figure 1@a) shows quite dramatically a series of pictures
the depression cannot be maintained, and according to owepresenting this transition. The undular bore solution is ob-
hydraulic approximation, a stationary shock is formed betained for3= —1.0 and the monotonic bore solution is found
hind the forcing region. Some HASWs are also observed fofor 8= —3.2; hereB.~—3.67 and sd8|<|B.| implies that
the case ofs=4.2. Figure 8b) shows the time history of the the steady hydraulic solutions hold. But, [@increases, the
case B=4.2. Shocks will be needed if the characteristicresolution of the upstream shock into an undular bore be-
curves intersect. Stationary shocks develop just behind theomes instead resolution into a monotonic bore. Even when
forcing region, and they form upstream advancing HASWs.|8|>|8.|, e.g., 3= —4.2, the monotonic bore solution can
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still be observed. The undular and monotonic bore solutions For A= 3, a steady supercritical solution is obtained for
are globally unsteady, but do ultimately give new locally all the simulations within and outside of the steady depres-
steady conditions immediately upstream of the forcingsion regime(Figs. 13, as the value ofA considered in this
region® Earlier work in the literature®® shows that the case is outside the transcritical range. A localized elevation is
gualitative form of the solution depends on the Froude numgenerated and located at the forcing with constant amplitude
ber (A in our case and the strength of the forcing. We find (=0.35 for the different values of8 considered. The ampli-
here that it also depends on the strength of the cubic nonlintude of the elevation is quite insensitive to changeg,iin
earity. The time history for a particular value g8,  marked contrast with the previous case.
B~—3.2, is shown in Fig. 1({).
V. CONCLUSIONS

2. Case (B): A=0

This case is shown in Figs. & and 11b), where now
B.=—1.15. However, even fol8|>|3.| (say 3=—2.0 or
B=—23.6), a monotonic bore solution is still found. A tran-

Transcritical flows of a stratified fluid over topography
are considered using a forced extended Korteweg—de Vries
model (eKdV). In the present paper we extend the earlier

i L ) : ~ " studies by allowing the cubic nonlinear and dispersive terms
sition similar to that for the casé= —1 is also obtained in

X X . . to have the same sign for their coefficients. A hydraulic ap-
this regime, in that agg| decreases, the upstream monotonic

) tE)roximation(HA) is developed by ignoring the dispersion
bore becomes an undular bore, e.g., an undular bore is obs. .\ This simplified model of the dynamics is shown to

served at,8=—0..6. But note that the structure.of the up- agree remarkably well with independent, direct numerical
stream r_noqotor_uc bore cha_nges near the forcmg,_ once tr'lf?)mputrcltions(DNC) of the full forced eKdV over most pa-
cutoff criterion is reachedFig. 11&]. The hydraulic ap- 5y eter regimes. A very interesting result is that two kinds of
proximation is highly effective and precise in predicting the gjii v waves are emitted in certain parameter regimes. Be-
transition point in this case. Figure (bl shows the time  gjjoq the regularly generated ones similar to those in the
history of the monotonic bore solution wif=—1.4. forced KdV model, there are irregularly generated solitary
waves of variable amplitudes. The velocities of the two types
3. Case (C): A>0 of waves are different, and interactions among them are ob-
In Fig. 12 we consideA =1, which is within the tran- served.
scritical regime, whileB.= —0.59. ForB= —0.3 (below the A further contribution of the present work is to unite
cutoff criterion, three well-developed upstream solitary these two approachéblA and DNQ to enhance the under-
waves are emitted. A stable depression just behind the forestanding of the underlying fluid physics. More precisely, the
ing is found. Further increasing@| results in a stable solution hydraulic approximation computes a cutoff criterion for the
of elevation at the forcing. The amplitude of the elevationabsence of a downstream depression, a lower boundl for
continues to decrease as one increases the numerical valuasy such hydraulic solution, and a determination of the tran-
B (Fig. 12. The time history for the casédd=1 and scritical regime. Indeed, we claim that once this cutoff crite-
B=—1.4 shows one single, localized elevation stationary ation is exceeded, one can construct another steady hydraulic
the location of the forcing. solution. This new steady solution has a stationary shock on
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