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Abstract—This paper proposes and implements a new method the battery terminal voltage measured after the battery is suf-
for the estimation of the battery residual capacity (BRC) for elec- ficiently rested, for instance, 30 min [11]. However, practical
tric vehicles (EVs). The key of the proposed method is to model EV operation may not have much chance to stop for such a

the EV battery by using the adaptive neuro-fuzzy inference system. . .
Different operating profiles of the EV battery are investigated, in- long period that the stabilized OCV can be measured. For the

cluding the constant current discharge and the random current third group, a small amplitude signal of alternative current is
discharge as well as the standard EV driving cycles in Europe, the injected into the battery for the measurement of the internal

U.S., and Japan. The estimated BRCs are directly compared with jmpedance. As a result, the impedance obtained does not in-
the actual BRCs, verifying the accuracy and effectiveness of the (,,qe the dynamic characteristic of the large discharge current,

proposed modeling method. Moreover, this method can be easily " .
implemented by a low-cost microcontroller and can readily be ex- which is often exposed to the EV battery. Furthermore, the nec-

tended to the estimation of the BRC for other types of EV batteries. €SSary equipment to carry out such impedance measurement is
too expensive and bulky for EVs.

Different from the aforementioned methods, the application
of the artificial neural network (ANN) to the estimation of the
BRC under variable current discharge [14], [15] and constant
. INTRODUCTION current discharge [16], [17] provides a tool to deal with the

ITH ever-increasing concerns over environmental pr@Pove difficulties. This is due to two key features of the ANN.

tection and energy conservation, research and deveg’zrst, the ANN does notrely on the explicitly expressed relation-
ment on various electric vehicle (EV) technologies are being a&1iP betweeninputvariables and the BRC. When using the ANN
tively conducted [1], [2]. However, the application technologfPr the BRC estimation, one needs to only consider the selection
of EV batteries, namely, the driving range indicator, cannot ke&f variables as the ANN inputs. The relationship between the
pace with the development of other EV technologies. At presdfput variables and the BRC is formulated by a training process,
and in the near future, batteries have been identified to be f¢iding those difficulties in the modeling process. Second, the
major energy source for EVs because of their technological nfdaptive algorithm is another attractive feature of the ANN. An
turity and reasonable cost. Therefore, the key to the develéfidated training data set can be used to retrain the ANN so that

ment of the driving range indicator for EVs is to accurately e§0€ ANN can adapt the change of the BRC in the most recent
timate the battery residual capacity (BRC) [3]. conditions. On the other hand, the fuzzy logic is also explored
Conventionally, the estimation of the BRC can be Categglthe estimation of the BRC [18]. This is due to the fact that the
rized into three groups. The first group is based on the empfipzzy logic can handle uncertainties and imprecision in the real
ical formula [4]-[7] and the mathematical model (or the equiattery system. Moreover, the parameters of the fuzzy system
alent electric circuit) [8]-[10] through the analysis of batterjiave clear physical meanings so that rule-based and linguistic
characteristics of the constant current discharge. The secdM@rmation can be incorporated into the fuzzy system.
group is based on the coulometric measurement in which theThe ANN for the estimation of the BRC cannot provide
accumulated error is corrected by the stabilized open-circhuristic knowledge of the battery on the BRC estimation
voltage (OCV) [11]. The third group is based on the impedanf0cess because of its black-box approach. On the other hand,
measurement [12], [13]. For the first group, the parameters f§zy logic is a tool that can easily implement and utilize
the methods are generally obtained only from the steady Sté}gyri.stic regsoning, but it is generally difficult to provide exact
which cannot reflect the dynamic behavior of the battery in Ev0lutions. With the integrated synergy of the ANN and the fuzzy
Moreover, these methods highly depend on a particular type!@gic. the estimation of the BRC using adaptive neuro-fuzzy
battery. It is not easy to extend them from one type of battefjference system (ANFIS) can function to provide more

to another. For the second group, the stabilized OCV refers@gcurate solutions under different operating conditions and also
a better understanding of the estimation process. Therefore, the

. . _ purpose of this paper is to develop a new estimation approach
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Layer 1 Layer2 Layer3 Layer4  Layer5 Each node inthe Layer 3 is also a fixed node. They are labeled
“N” to indicate that they perform a normalization of the firing
strength from the previous layer. The output of each node in this
layer is given by
O} == ——— =12 4)

w1 + wo
wherew; refers to the normalized firing strength.

In Layer 4, each node is an adaptive node. The output of each
node in this layer is simply the product of the normalized firing
strength and a first-order polynomial (for the first-order Sugeno
Fig. 1. ANFIS architecture. model)

4 — 7 - P 7 - . . . /b —_
is only based on those measurable variables, namely, the O = @Wi%i = wi(piw + @y +73), t=12 (9
battery terminal voltage, the discharge current, the dischargecbmy one node labeled “S” is in Layer 5. It performs the func-

capacity, and the battery surface temperature. Once the ANFIS, of 3 simple summer. The output of this single node is given
is formulated, the method can be easily implemented byb§

low-cost microcontroller for the BRC estimation in EVs.

2
IIl. ANFIS MODELING i 2
Oi’:z:Zwizi: > . (6)
A. ANFIS Architecture i=1 > w;
=1

The ANFIS is a fuzzy Sugeno model put in the framework
of adaptive systems to facilitate learning and adaptation [1%rom this ANFIS architecture, it is observed that there are two
Such a framework makes the ANFIS modeling more systemeaptive layers (Layer 1 and Layer 4). Layer 1 has three modi-
atic and less reliant on expert knowledge. To present the ANHigble parameteréu;, b;, c;) related to the input MFs. These pa-
architecture, the following two fuzzy if-then rules based onm@ameters are called premise parameters. Layer 4 also has three
first-order Sugeno model are considered: modifiable parameterép;, ¢;,r;) pertaining to the first-order

* Rule Lif (zis A;) and yis B1) then(z; = piz+qy+r1) Polynomial. These parameters are called consequent parame-

* Rule 2:if (zis A2) and @ is Bo) then(z, = pox+-qoy+ro) ters. The task of the learning algorithm for this architecture is
wherezx andy are the inputsAi andB; are the fuzzy setg; are to tune all the modifiable parameters to make the ANFIS output
the outputs within the fuzzy region specified by the fuzzy rulénatch the training data. Note that if the parameters;, and
andp;, ¢;, andr; are the design parameters to be determined of the bell MFs are fixed, the output of the ANFIS becomes
during the training process. Thus, the possible ANFIS architec-
ture to implement these two rules is shown in Fig. 1. Note that a
circle indicates a fixed node while a square indicates an adaptive =wi(p1z + quy +71) + w2(p2x + @2y +72)
node (the parameters are changed during adaptation or training). =(w12)p1 + (D1y)q + (01)r1 + (Dax)po

In this five-layered architecture, aII‘t.he nodes in Layer 1 are + (W2)q2 + (w2)72 @
adaptive nodes. The output of each nodethe degree of mem-
bership of the input represented by which is a linear combination of the modifiable parametgrs

) q:, andr;. Therefore, the least-square method (LSM) can easily
Ol = {’“‘Af (@), =12 (1) identify the optimal values for these parameters. However, if
' ppis(y), =34 the MFs are not fixed and are allowed to vary, then the search

wherey.. (x), 15, _, () can be adopted by any fuzzy memberspace becomes larger and, consequently, the convergence of

ship function (MF). For example, if the bell MF is used, it yield$he training algorithm becomes slower. In such case, a hybrid
1 learning algorithm combining the LSM with the gradient de-

pa,(x) = —————— (2) scentis adopted, which is composed of a forward pass and a
1+ (wa;c) ! backward pass. In the forward pass, the premise parameters are
; fixed and the vector of the outpuf corresponding ta: input
wherea;, b;, andc; are the parameters that change the shapessfmpleqzy, yx: & = 1,...,m), can be deduced from (7) and
the MF. written in the following matrix form:

In Layer 2, each node is a fixed node. They are labeled “M”
to indicate that they play the role of a simple multiplier. The
outputs of these nodes are given by:

Z =wiz1 + waZs

Z=Wo ®)

whereW = [(u‘}ia:j,wiyj,wi:i = 1, 2):j =1,... ,m]T is
3) the coefficient matrix andb = [pi,qi,ri,:1 = 1,2]7 is the
vector of the consequent parameters. Then, (8) is solved using
The output of each node in this layer represents the firinge LSM to determine the consequent parameters. Once the op-
strengthw; of the rule. timal consequent parameters are found, the backward pass stage

012 = Wi = Mha; (x)liBz- (y)7 i = 17 2.
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Fig. 2.  ANFIS model for BRC estimation.

starts. In this stage, the gradient descent is used to optimdittery terminal voltage, the discharge current, the discharged
adjust the premise parameters corresponding to the fuzzy setpacity, and the battery surface temperature

in the input domain. The output of the ANFIS is calculated by

fixing the consequent parameters to the values found in the for- X=VxIxCxT. (10)

ward pass. By comparing the estimated output with the act . :
outpu, the output error of the ANFIS is then propagated frol?e output of the ANFIS model is the BRC, which refers to the

the output to the input to adapt the premise parameters using ﬁ{r‘centage of the battery_ available capacity (BAC). Thus, the
. . utput spac&’ can be defined as

standard backpropagation algorithm. It has been proven that the

ANFIS can be used as a universal approximator [20] and the hy- Y=C,={C[0<C <1} (11)

brid learning algorithm is highly efficient in training this ANFIS ' '

[21]. The BRC estimation process can be viewed as a mapping from
the input space into the output space, which maps the battery

B. ANEIS Model Formulation terminal voltage, the discharge current, the discharged capacity,

The ANFIS model for the estimation of the BRC is a FIS im{:md the battery surface temperature to the BRC. Fig. 2 shows

plemented on an adaptive ANN structure. The battery termint:g'S ANFIS model for the BRC estimation in EVs.
voltageV, the discharge curredt, the discharged capacity,
and the battery surface temperatlifare used as the inputs of
the ANFIS model while the BRC valug, is used as the single Battery testing plays an important role in evaluating the per-
output of the ANFIS model. formance of batteries, especially for those batteries used in EVs.
The universes of discourse of the battery terminal voltag€ig. 3 shows the battery evaluation and testing system (BETS),
the discharge current, the discharged capacity, and the battghich was built at the International Research Center for Elec-
surface temperature are, respectively, defined as tric Vehicles, The University of Hong Kong, Hong Kong. This
system consists of the following four main parts:

e programmable charger in which almost any charging al-
9) gorithms can be performed;
« programmable electronic load in which flexible and vari-
able discharge regimes can be designed, such as the con-

whereV;, V,,, I, I,,, T;, andT,, are the constants representing  Stant current discharge, the constant power discharge, the
the upper and lower bounds of the feasible operating ranges of constantresistance discharge, and the variable current dis-
the battery terminal voltage, the discharge current, and the bat- charge according to EV driving cycles;

tery surface temperature, add, is the upper limit of the fea- ¢ temperature-controlled chamber in which batteries can be

sible operating range of the discharged capacity under consider- tested under any predefined air temperature over the range
ation. Three fuzzy sets are defined on each of the input spaces, from —20°C to 50°C;

corresponding to low, medium, and high for each variable, and ¢ data acquisition subsystem in which the sampling time can

labeledV®, I*, C*, andT*, respectively, with: = 1, 2, 3. The be preset as in the order of seconds, minutes, or hours
input spaceX is defined as the Cartesian product spaces of the depending on the requirements of users.

I1l. EXPERIMENT

I={NL<I<LI,}
c={clo<c<c,t
T= {1 <T<T}
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Fig. 4. Comparison between actual BRC and estimated BRC for training data.

Fig. 3. Battery evaluation and testing system.
estimation. In this study, a simptemean filter is used for con-

] ) ) ) venient realization, which is given by
The lead acid battery with the nominal voltage of 12 V is used

for testing, whose rated capacity is 40 Ah at the 20-h discharge
rate, namelyCso = 40 Ah. However, the rated capacity for

EVs is only a reference value which cannot be considered as
the actual BAC because the discharge current in EVs is gener-
ally much higher than that corresponding to the rated capacity.
As a consequence, the BAC in EVs is generally much lower,

than the rated capacity. Since the BAC varies with the chang@€reX¥(i+n) is the original measured data and ;) is

of discharge current, it is defined as the quantity of electrici{(il1e filtered data. The stepcan be selected depending on the

that can be delivered by a fully charged battery at a certain dg—aﬂ_g'ﬂg fiﬁql;ency of th(ihbalttery t(irr]mlgta_l voltlag(;.-.c;n general,
charge current and temperature until the specified cutoff volta ¢ nhigherthe frequency, the larger the step selected.
is reached. Mathematically, it can be written as

XY, =XY1,..., XY (1) = XY

- 1 s,
AY(H”):;ZAY@M), n=0,1,2... (13)
=1

B. Selecting Data
Co=f(V,1,T)

V=Vore (12) The ANFIS model can make the estimation of the BRC only
based on the way that it is learned from the experimental data.
whereC, is the BAC,V is the instantaneous terminal voltageThus, the selection of the training data from the numerous fil-
I is the discharge currenf; is the battery surface temperatered data significantly affects the estimation of the BRC. One
ture, andV,g is the specified cutoff voltage. In accordance witlpurpose of the data selection is to remove those data that are
this definition, many experiments that simulate the battery opefarrelated with other data, namely, when the experimental data
ated in EVs are conducted on the BETS. They include the cdneluding the battery terminal voltage, the discharge current, the
stant current discharge (CCD) and the random current dischagicharged capacity, and the battery surface temperature have
(RCD) as well as the variable current discharge corresponding observable change within several samples, only one of them
to the European reference driving cycle (ECE), the U.S. Fedef@leds to be included in the training data set. Another purpose of
urban driving schedule (FUDS), and the Japanese mode 10H&data selection is to keep the training data set as small as pos-
(JM10.15). The corresponding experimental data are automajble to reduce the training time for model construction. Similar
cally recorded, with each row representing the battery termingl the input selection of the ANFIS proposed in [22], the fol-
voltage, the discharge current, the discharged capacity, and |#ging procedure is used to select the training data.

battery surface temperature as well as the BRC. Step 1) Set the value and use (13) to filter the measured
data for each test.
IV. DATA PROCESSING Step 2) Putall the filtered data into one data set and form the
whole data set.

A. Filtering Data Step 3) Assign the initial size of the training data set as small

From the measured data, it is observed that the battery ter- as 5% of the whole data set.
minal voltage varies significantly with the rapid change of the Step 4) Select the training data from the whole data set ran-
discharge current, while the BRC decreases monotonically with domly.

the increase of the discharged capacity. Thus, filtering is necesStep 5) Train the ANFIS model using the training data and
sary to extract the essential features of the battery for the BRC then stop right after the first epoch is finished.
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Fig. 5. Comparison between actual BRC and estimated BRC for CGEy, 6. Comparison between actual BRC and estimated BRC for RCD
operation. (a) CCD profile. (b) BRC profiles. operation. (a) RCD profile. (b) BRC profiles.

Step 6) Check whether the predefined error criterion for tiigrther training. The whole data set composed of 17 data files
whole data set is achieved for the trained ANFIgorresponding to 17 tests is involved in the selection procedure
model. If it is achieved, the selection procedurwith 26 822 records. Finally, the training data set contains 3500
stops and the corresponding data is recorded as ttaja records, or 13% of the total number of the data records in

training data set. Otherwise, go to Step 7). the whole data set.
Step 7) Increase the size of the training data set by 1%, and
then go back to Step 4). V. EVALUATION AND RESULTS

As described previously, the ANFIS employs an efficient After the data processing is finished, the training data set is
hybrid learning algorithm that combines the gradient descamed to train the ANFIS model further with the hybird learning
and the LSM. In this learning algorithm, the LSM is the majoaigorithm, while the whole data set is used to verify the accu-
driving force that leads to fast training while the gradientacy of the estimation of the BRC. To allow for comparison, the
descent serves to slowly change the underlying MFs theaterage percentage error (APE) is adopted. It is defined as
generate the basis functions for the LSM. Since the LSM is N
computationally efficient, various combinations of the data can 1 Ckad) = CreD] e
be selected to train the ANFIS model with a single application APE = N z_; |Chra ()] 100% (14)
of the LSM, namely, right after the first epoch of training. =
As a result, one data set with the smallest root-mean-squavadtereN is the number of the training data set or the data set for
error will be selected as the training data set and proceededdach test, and',.. andC,., refer to the estimated BRC from the
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operation. (a) ECE discharge profile. (b) BRC profiles. operation. (a) FUDS discharge profile. (b) BRC profiles.

trained ANFIS model and the actual BRC from the experiment@lirately represent complex nonlinear mappings. The nonlinear
data, respectively. The APEs for both the training data set agfhpping from the battery terminal voltage, the discharge cur-
the data set of each testare calculated. Fig. 4 shows the estimaéﬁqi, the discharged Capacity, and the battery surface tempera-
BRC and the actual BRC for the training data set. It can be fougigte to the BRC under their practical operating ranges can fully
that the estimation is of high accuracy, and the correspondigglize this inherent merit. Second, the proposed data selection
APE is only 0.53%. procedure of the training data set can enable the ANFIS model

To evaluate the trained ANFIS model for the estimation of th@inimizing the error between the estimated BRC and the actual
BRC effectively, the 17 data sets for each test are used to veffRC while maintaining its generality. Thus, it is expected that
the trained model. The results corresponding to the aforemee model can accurately represent the battery characteristics for
tioned CCD, RCD, ECE, FUDS, and JM10.15 operations atiee purpose of BRC estimation. On the other hand, this ANFIS
shown in Figs. 5-9, respectively. All these figures illustrate thatodel potentially offers high adaptability provided that it can be
the proposed method provides highly accurate estimation of egjularly retrained by new training data sets. The keys are how
BRC for different operating profiles of EVs. It should be notetb extract the informative data from those new discharge cur-
that the APEs of the proposed ANFIS model are all within 2%ent profiles and how to identify the obsolete data from those
which offers a significant improvement over the APE of 10% iprevious discharge current profiles so that the training data set
[15] in which the ANN model is adopted. can be effectively updated. The corresponding investigation will

The ANFIS model can estimate the BRC accurately due be our future work in the area of ANFIS modeling for the BRC
two facts. First, the ANFIS model inherently offers a merit to aestimation.
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@ crocontroller and readily be used for the BRC estimation in EVs.
Finally, the proposed method is so general that it can be ex-
1 ! ' ' ' ' ' ' ' tended to the BRC estimation for other types of EV batteries.
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