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Abstract—This paper presents a method of automated virtual quirements is broad, the number of classes in vehicle-type clas-
loop assignment and direction-based motion estimation. The sification is usually small.
unique features of our approach are that first, a number of loops Traditionally, vehicle count and even speed are acquired

are automatically assigned to each lane. The merit of doing this . .
is that it accommodates pan-tilt-zoom (PTZ) actions without through inductive loop detectors (ILD) [1], [2]. The ILD

needing further human interaction. Second, the size of the virtual concept is simple, making use of the induced electromotive
loops is much smaller for estimation accuracy. This enables the force (EMF) principle in electric circuits. However, it has to be

use of standard block-based motion estimation techniques that physically installed under the surface of the road, and once it
are well developed for video coding. Third, the number of virtual g jnstalled, it would be difficult to alter its detection configu-

loops per lane is large. The motion content of each block may fi let al deploving it t locati D ite th
be weighted and the collective result offers a more reliable and "aliON, 1€t alone redeploying It to a new location. Lespite the

robust approach in motion estimation. Comparing this with hlgh installation COSt, its app|lcat|0n is further hindered by its
traditional inductive loop detectors (ILDs), there are a number high failure rate (25%-35%) and maintenance cost. Because
of advantages. First, the size and number of virtual loops may of these reasons, other type of sensors such as ultrasonic,
be varied to fine-tune detection accuracy. Second, it may also raqar |aser, infrared detectors, and video cameras have also
be varied for an effective utilization of the computing resources. .

Third, there is no failure rate associated with the virtual loops been Qeveloped and deployed 2], [3]. For lnst.ance, gantry- or
or physical installation. As the loops are defined on the image roadside-mounted ultrasonic, radar, laser, and infrared detectors
sequence, changing the detection configuration or redeploying have been extensively evaluated. When vehicles pass within
the loops to other locations on the same image sequence requireghe footprint of a sensor, the wave emitted by the sensor hits the
only a change of the assignment parameters. Fourth, virtual loops vehicle and bounces back. The return wave, as detected by the
may be reallocated anywhere on the frame, giving flexibility in . . ' .
detecting different parameters. Our simulation results indicate sensor, can be u;ed to either Slgngl the presence of a vehicle,
that the proposed method is effective in type classification. or calculate the distance of the vehicle from the sensors, from
which the height, width, and length of the vehicle may be
estimated. Moreover, some of these sensors are able to measure
the speed of the vehicles by calculating the time lag between
the emitted and return waves. In summary, all these sensors,

. INTRODUCTION including the ILD operate on a similar principle.

NE very important aspect of traffic management is the On the other hand, video or closed-circuit television (CCTV)
O timely acquisition of relevant travel information on thec@meras operate on quite a different principle and have been
road network. Typical information, such as the average vehi@gtensively deployed for visual surveillance in many countries.
speed and volume on a particular road segment is especidifjeSe cameras are usually roadside- or gantry-mounted at
useful if it is up to date. It provides a glimpse of the segment&irategic locations on freeways or junctions, with video links to
utilization and possibly the degree of congestion. Even if it is ntcontrol center. The video outputs may be inspected by traffic
up to date, an estimation of the traffic parameters based on Hficials, and decisions can be made based on these observa-
torical data is a good enough indication of the network’s likel{fons- The attraction of this video surveillance approach is that
utilization in many cases. In addition to this, the detection of v&l-offers a far richer information content than that obtained from
hicle types in applications such as electronic road pricing is aldg® @nd similar sensors. This information content may also be
required for charging purpose, or for the enforcement of road @1alyzed by a computer algorithm at the same time, enabling a

strictions according to these types. As the application of both f@st and effective utilization of the data for traffic management.
However, processing video information creates a new set of
problems too. For example, the configuration of the camera af-
fects the field of view, directly determines whether a vehicle
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mentation are inevitable. If most of these problems can be is-no failure rate associated with the virtual loops or physical
solved, then visual surveillance methods truly present an attratstallation. As the loops are defined on the image sequence,
tive alternative to ILD and other similar sensors. changing the detection configuration or redeploying the loops

Since the late 1980s, a number of papers have been ptdother locations on the same image sequence requires only
lished on detecting and/or tracking moving vehicles using imagiee change of the assignment parameters. Fourth, virtual loops
and video-processing techniques [3]-[5]. Dubuisson and Jaray be reallocated anywhere on the frame, giving flexibility in
[6] classified them into four categories according to how thaetecting different parameters. Our simulation results indicate
camera is mounted or whether motion information is used. that the proposed method is effective in type classification.
general, they can be grouped into two broad classes: modelThis paper is organized as follows. Section Il gives a brief
based approach and those that are not. The model-basedpapsentation of the principle of existing ILD. Section Il outlines
proach refers to those approaches that use a parameterizeth@proposed method. Section IV presents the virtual loop con-
polygonal model to describe and represent a vehicle. By aoept, and how the loops are assigned and reduced automatically.
large, the model-based approach is the most popular and Bastion V describes the detection of moving vehicles using a di-
been adopted widely by many researchers [6]-[14]. A typicegction-based block-based motion estimation technique. Section
example is the deformable model, in which the vehicle shaptformulates the vehicle identification approach, while the test
and interior attributes are fitted with predefined parameterizegsults are discussed in Section VII. This paper is concluded in
models consisting of 20—30 vertices. Such a model can distBection VIII.
guish vehicle types in a limited sense and indicate the vehicle
direction if there is no occlusion. However, computation com-
plexity increases with the number of vertices used to define the
model, and better accuracy requires more vertices. Often, one oEssentially, ILD are inductive loops buried under the surface
these has to be sacrificed for the other. For polygonal models, tifehe road junction. In theory, when a metallic object passes
vehicle outline is fitted with a polygon. It does not suffer fronover the loop and interferes with the loop’s magnetic field,
occlusion but it does not distinguish the vehicle types, dimetie change in loop current indicates the presence of a vehicle.
sions, and orientations either. For both methods, vehicle nithe magnitude of the current in the loop is dependent on the
tion can be estimated using techniques proposed in [11]-[1dJoseness of the object and the speed of the metallic object
For non-model-based approaches, there are quite a few cgsessing over it. Therefore, if the vehicle is moving slowly or
reported as well [15]-[18]. The simplest approaches are pratiops over the loop, very small or no current change will be
ably those that manually define a bounding area per lane on thduced. The meaning of this is that ILD may not be able to
video sequence where vehicles can be detected and their hgtect slow moving vehicles or vehicles that stop on top of it.
tion estimated [19]-[22]. AUTOSCOPE is one of these systeris order to have an effective detection, the inductive loops are
that employs this approach and claims that it can replace ILBually buried in grooves on the road surface that resembles
directly [19]. The obvious pitfalls of this approach are that ththe shape of loops. Because of this, ILD are prone to stress and
manual definition of bounding area is nontrivial and has to tstrain when vehicles traverse over it. When ILD are exposed
repeated whenever there are pan—tilt—zoom (PTZ) actions. ta-this condition continuously, breakage of the loop becomes
herently, there is also no concept of vehicle or object in this typemajor reason of failure for the ILD, which requires high
of methods. maintenance cost as well as disruption of traffic.

From the above, we observe that automated tracking andLD may be employed to estimate the speed of the vehicle. To
modeling methods are usually generic and flexible but complew this, two loops are buried with a known separating distance.
and computation-intensive. Whereas the non-model-bade@m the time difference between the vehicle passing over the
approaches are simpler but require a high degree of hunfast and the second loops, the speed of the vehicle can be esti-
interaction in their operations. To tackle some of these issuesated. As different types of vehicles have different wheel-base
we propose, in this paper, a method of automated virtual loopnfiguration, they will produce different “signatures” in prac-
assignment and direction-based motion estimation [23]. Thkiee. Therefore, ILD has also been used for vehicle-type identi-
unique features of our approach are that first, a number fafation. Vehicle-type identification is based on the signature of
loops are automatically assigned to each lane. The meritinélividual vehicle recognized by the ILD. The one—dimensional
doing this is that it accommodates PTZ actions without needifity D) signature may be current magnitudes or counts versus
further human interaction. Second, the size of the virtual loofimme depending on the type of ILD used. For example, a pri-
is much smaller for estimation accuracy. This enables the usde car would have a 1-D signature that consists of a high and
of standard block-based motion estimation techniques ttstarp peak, while a truck, because of its wheel-base distance
are well developed for video coding. Third, the number dfom the ground, would have a flat peak of much lower mag-
virtual loops per lane is large. The motion content of eadfitude but perhaps twice as wide across time [24], as depicted
block may be weighted and the collective result offers a moie Fig. 1. As can be seen, using ILD for type classification is
reliable and robust approach in motion estimation. Comparingble, but can only differentiate a few broad classes, as in this
this with traditional ILD, there are a number of advantagesase, small, medium, and large. Furthermore, the accuracy of the
First, the size and number of virtual loops may be varied tbD signature is not very reliable and, therefore, certain degree
fine-tune detection accuracy. Second, it may also be varied fifirmisclassification is inevitable. To improve on the drawbacks
an effective utilization of the computing resources. Third, thed ILD, a new method is required.

Il. PRINCIPLE OFINDUCTIVE LOOP DETECTION
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fese (5} As for the reference line, it could be the stop line at a junction
Fig. 1. Vehicle signatures from ILD. or any other lines that are drawn across the road, or can be drawn
using some landmarks. As for the former, it has been shown in
[26] that the stop line can be detected correctly. However, the
Digital video nitial VL Number of latter two cases may not be very common. In those cases, if no
or image ) «—— lanes, other lines or landmarks can be found, a worst case scenario
assignment ) . . .
sequence Stop line may be assumed, that is, the initial automated assignment of VL
will cover the entire frame without any spatial restrictions. As
a result, the VL reduction phase would require more extensive
VL Direction of removal of static or redundant VLs.
reduction the road Given a video captured by a CCTV or video camera, it is dig-
itized into a sequence of image frames. A typical frame at a
MV junction is depicted in Fig. 3. Based on these image frames and
estimation |* the road parameters (number of lanes, direction of the road),
a number of VLs is automatically assigned in an image frame
without any motion. This motionless information is easily ob-
tained by considering the dense motion field generated by block-
MV signature Camera based motion estimation on all the blocks in the frame. This as-
analysis settings signment is classified as initial as there is the probability that

the VL assignment at this stage may include those regions that
i would seldom have motion in the subsequent analysis, or they
provide redundant motion information. Therefore, a VL reduc-
tion method is required to identify and eliminate these VLs, al-
though leaving them in the subsequent calculations should not
affect the performance of the method as such. The rationale for
VL reduction is for reducing computational complexity rather
than performance. It should be noted that severe reduction of
the VLs may eventually affect the performance of the method,
if some of the dynamic VLs (those representing major vehicle

The block diagram of the proposed method is depicted imotions) are removed.

Fig. 2. It is developed around four major modules: initial vir- Once a set of final VLs is determined, a direction-based
tual loop (VL) assignment, VL reduction, motion estimationblock-based motion estimation method is proposed to estimate
and signature analysis. Assume that the number of lanes, rélael motion vectors in those VLs along the direction of the
direction, camera parameters, and a reference line are kaowioad. This is essential as it will reduce the number of search
priori. The assumption of a known number of lanes and road ghieints needed to find a match. The motion vectors as a result
rection is considered reasonable as these two values would @fothe motion estimation are then grouped together to form a
change even if there were PTZ camera actions. For the cam&+ representation (or signature) of the vehicle, which may be
parameters, if the camera is fixed in height, focal length, the diswther analyzed, as to which group does the vehicle belong
tance from the focal point on the road surface, pan and tilt ato. Details of these proposed modules are discussed in the
gles, these parameters can be used directly for the calculatiofadowing sections.
the vehicle type. However, if there are PTZ actions, the method
given in [25] for automatically determining these camera pa-
rameters can be adopted. In practice, no PTZ action is allowed
during the automated VL assignment, reduction, and vehidle Concept of VLs
type identification phases, else all the steps must be repeatet@he concept of VL is to emulate the functionality of ILD on
to locate the correct VLs again. an image sequence. The image sequence may be acquired from

Vehicle type
and speed

Fig. 2.

Block diagram of the proposed method.

Ill. OVERVIEW OF THE PROPOSEDMETHOD

IV. VL A SSIGNMENT AND REDUCTION
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a roadside- or gantry-mounted camera. Based purely on the se-
guence, a number of regions within an image frame may be de-
fined and called virtual loops, which can be extended throughout
the entire sequence, or redefined at other points in the sequence.
The regions may take any size or aspect ratio, although intu-
itively, the number of regions and the region size should be in-
versely proportional to each other. Once the VLs are defined,
motion estimation methods may be employed to determine mo-
tion vectors of objects that traverse over the VLs, as in the case
of the relationship between the ILD and the vehicle that tra-
verses over it. Except in this case, the object can be vehicles
or other moving objects, such as human beings, since the mo-
tion estimation method would not differentiate metallic objecisg. 4. Typical initial VL assignment.
from nonmetallic objects. This capability of being able to detect

humans crossing the road adds value to the VL approach. Furgor 3 two-lane road and the field of view (FOV) as illustrated

thermore, vehicles and other objects that move slowly or eVR{Fig. 3, an initial M is found to be between 100 and 200. In
stop could also be detected, whereas they would be missedggt 17 is dependent on several factors:

the ILD’s case. From the motion vector, information regarding )
the speed, direction, and the length of the object becomes availl) the FOV of the image frame;

able, from which vehicle type may be identified. 2) the number of road lanes;
3) the size of the VL.

B. Virtual Loop Assignment For the first point, the FOV directly determines the likely tra-

] ) ) . Jectories of vehicles in the frame and their sizes as perceived
The simplest way to automatically assign the VL location Sy the camera. Therefore, if FOV is smaller, thehwould in-

toffill up the whole image frame with VLs. However, this would;rease in order to cover a larger area. If the FOV is larger, then
resultinalarge number of VLs. For example, 264880 pixels 1/ \ouid be smaller for the opposite reason. For the second
image frame would need 4800 VLs of sizex88. Obviously, ,4int if the vehicles are going to be detected at different road
processing this large number of VLs is computationally intefsneg gifferent sets of VLs must be assigned to individual lanes.
sive. Moreover, most of these VLs may be located on static Ffparefore, more lanes simply means that a lafigés required.
gions with little motion throughout the sequence, e.g., sky a@g the lane number is knovanpriori, we can sed/ accordingly.
pavement. On the other hand, some of these VLs may provigigis concept is significantly different from those of [19]-[22]
redundant information. Therefore, it is more appropriate t0 Sgnere they only use one assigned region per lane for detection,
lect only a subset of the VLs for processing. apart from the fact that they are drawn manually. In the case of

_Let us define theth VL in frame f to be an' x N block  the v|_size, for a fixed detection regiof/ is inversely propor-
given by tional to N2, i.e.,

1 . .
M= e - area of detection region (2)

As depicted in Fig. 5, by choosing a certdif, we are able
fori =1, ---, M, whereM is the number of VLs in the frame to reduceV to suit the particular block-based methods used for
and(n,, n,) is the spatial coordinates of the VL center. Witimotion estimation. In particular, ¥/ is reduced to one per lane,
reference to the frame shown in Fig. 3, as the stop line can ibeeverts to the cases as described in [19]-[22]. Although there
seen at the junction, the initial assignment of the VLs starts bg-no formal criterion for the selection d¥, its value should
yond the stop line [26] as it would be reasonable to assume th&ither be too small nor too large for the following reasons. If
all the vehicles would traverse across the stop line. The assigh-s small (V' < 8), the number of pixels within the VL is
ment starts at the middle of the imagH/2), whereH is the small, hence the features contained in the VL are limited. In
height of the image frame. The VLs are placed downward unthis case, the results obtained from motion estimation may have
the region below(H/2) and above the stop line is filled. Usu-large mean-square errors due to the mismatch of motion blocks
ally, it is unnecessary to closely pack all the VLs as neighboet noise present in the image frame. On the other hand, if
hood VLs are likely to give similar results. In practice, smals large(N > 16), each VL may contain numerous features.
gaps are left between the VLs. If the stop line is unavailable, tkeven the perspective view in Fig. 3, when the vehicle moves
assignment will start atH/2) and the VLs are placed down-away from the camera, large VL tends to exaggerate the panning
ward until the entire lower half of the image is filled. This isout effect of the vehicle, and again would give a poor match in
generally applicable for the image frames as given. In this cagegtion estimation. For these reasofsis usually chosen to be
one quarter of the image frame will be filled with VLs. In factbetween 8 and 16.
the initial number of virtual loops and their locations can be ar-
bitrary to some extend as most of these VLs would be removEd
subsequently. A typical initial assignment relying on the stop After the initial assignment}/ is reduced by the following
line is depicted in Fig. 4. step. The principle of reduction is based on the fact that those

Virtual Loop Reduction



90 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 1, NO. 2, JUNE 2000

M Mean of |v;|:
A —2
200 1
ol = z [vilf. £+1)] (5)
160 4 S.D. Of|1}i|:
o Oy = th £ -l @
For Area = 200 pixels f=0
Mean of Zv;:
80 A
o =57 2 Lol F41) )
40 b =
S.D. of Zw;:
1 F,—2 9
0 , ; : —> N _ ) _
0 4 8 12 16 Tlu TA|F, —1 fz—% [2uilf, f+ D) —ng,]7 @)

From (4)—(8), those VLs with MV that satisfy all the following
conditions are retained in the final assignment.

Condition 1): Large mean magnitude and small standard de-

Fig. 5. Relationship betweehl andN.

VLs with substantial motion would be retained. This can be vi-

sualized by considering a busy (plenty of motion) segment of the viation, i.€., M1
image sequence, and determining the mean and standard devia- L S — 1 Z "
tion of the motion vector magnitude and direction. If the mean il = — i
value is large with small standard deviation, then it must denote and

a detection of part of an object traversing across the FOV. If the M—1
mean motion vector direction is also consistently alone the di- O] K = Z T, |-

rection of the road, then it reinforces the preceding deduction.

Based on this argument, VLs that are characterized by the abov€ondition 2): Mean orientatlon is in the direction of the
properties are retained. The following paragraphs depict the de- road, i.e.,|p /s, — road| < €1, Whered,oaq
tails of the reduction. is the direction of the road in the image frame

Over a short image sequence Bf frames (10-20 frames) ande; is predetermined from the camera set-

with vehicles passing under the FOV, the MAD (mean absolute ting.
difference) [27] of theith VL between consecutive frames, Condition 3): Small orientation standard deviation, i.e.,
and f + 1 using full search [27], [28] is determined by the fol- Tl K 34 , Where
lowing equation: M-1
MAD (d,, d,) Olu =g z_% Ol
= 2 [sine ny, P=si(natds, nytdy, f+1)] \év:\ll(i::tiljnthe mean of the orientation standard

¥ (nasny) " . . :
3) Condition 1) retains those VLs having consistently large mo-

tion, i.e., significant motion due to the motion of one or more
for a set of candidate motion vectdis,, d, ), where—-R<d,, vehicles. Condition 2) retains those VLs that lie along the di-
d, < R, and R is a predetermined integer to define the size oéction of the road. Therefore, VLs having motion due to other
the “search window.” The value dk can be determined from objects (such as pedestrians cross the junction) are eliminated.
the camera setting, frame rate of the image sequence, and theléns is based on the fact that pedestrians crossing the junction
pected maximum speed of the vehicle traversing across the F@\ll produce MV at very different orientation to that of the direc-
It should be noted that full search is used in this case withaithin of the road. Condition 3) further eliminates those VL with
direction bias, which is different from the method presented large orientation deviations. Such deviation in orientation often
Section V. represents motion due to other sources, for example, motion of
From (3), the estimated motion vector (MV) corresponding tshadows.

thesth VL is the value of(d,., d,) which minimizes the MAD,  From the final set of VLs, they are further divided into
that is, groups according to the number of lanes the FOV covers. This

is achieved by further considering the VL's MV magnitudes in
) (4) each frame. In the two-lane case presented in Fig. 3, vehicle

motion on the outer lane (right) only causes the VLs in the
Denotingv;(f, f + 1) by v;, the mean and standard deviatiomuter lane to experience large MV magnitudes, but not the
of the MV magnitud€|v;|) and orientatior{ Zv;) of theith VL  inner lane (left). On the other hand, vehicle motion in the inner
are computed oveF;, as follows: lane may cause large MV magnitudes in both lanes. @Qyer

vi(f, f+1) =arg <(dmin MAD (d,, dy)

g Sy
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Fig. 6. Final VL assignment after reduction.
frames, based on the above criterion, the VLs may be grouped -
accordingly. Fig. 6 depicts the VLs that have been divided into
two groups for two lanes. In this case, there are ten final VLs in
the left lane, and eight in the right lane. It should be noted that

if the camera is gantry-mounted, the motion detected in each
lane will be separated and, therefore, the division of VLs infd9- 7- Direction-biased three-step search.
groups will be more distinct.

As can be seen, the search is within the angular direction
V. VEHICLE MOTION DETECTION B £ (1.50,,.) and a magnitude range afp/8. This elim-

To estimate vehicle motions on the road. the MVs of the fin4}ates objects that are traveling in a different direction, and of
set of VLs are computed using (3). However, for the purpose ¥ rr_1agnitude larger than the prgscribed bpuqdary. The'first.re—
computing efficiency, a three-step search is used instead of a Riffction seems reasonable as objects moving in other directions
search [27], [29], [30]. In our case, as only the vehicles movirf]® unlikely vehicles of interest in this paper. To combat the issue
along the direction of the road are of interest, a direction-bias@fdetecting objects or vehicles moving in a direction different
three-step search method is employed for motion estimatidipm the road direction, the same direction-biased search pattern
The search points at each step of the direction-biased three-SBély be applied withi set to a different value. The second re-
search are depicted in Fig. 7, assuming that the search window&ction limits the speed of the vehicles to be detected. In other
further constrained by the road direction and its tolerance, whifords, if the speed of a vehicle is much larger tai will not
forms the fan-like search areas centeredrat, n,). Typical be detected by this search pattern. In practice, it is acceptable
MVs determined by this method are also given i‘llf] Fig. 6. to set such boundary to the search pattern, even though in some

In this search method, the first step is to determine the mee cases the search will fail.

MV magnitude and direction as given in (9) and (10)

] Mot VI. VEHICLE-TYPE IDENTIFICATION
=M, Z Hvi © 1 perform vehicle-type identification using the reduced VL
and =0 set, we propose to analyze the function of the MV magnitude
Mo—1 averaged over the nonzero VLs and over time of each lane. In
8= N Z [y, (10) principle, when a vehicle first enters the VLs, the MVs of the
My — ! VLs can be estimated, and the same applies when it leaves the

where M, is the number of final VLsp and3 define the two VLs. The magnitude of all these MVs should give a clear in-
first-step search points. F@ as in Fig. 7, itis defined gsfrom ~ dication of whether the vehicle is entering or leaving the VLs.
(na, n,) and sustained an angle gfin the fan-like window, However, the magnitude of the MV's between these two unique
where the numbers define the search points visited in that pRRints is dependent on the type of vehicle and possibly other
ticular step and the circled numbers illustrate the possible seaf@ftors. For example, container trucks often have a long trunk of
points with minimum MAD. For “1,” it takes on the values ofSOme homogeneous properties, the movement of which is quite
p/2 from (nm’ ny) and sustains an ang|e 6f The four nearest difficult to detect. In other words, the MV magnitudes in this
neighbors of®D are defined as two alongat locations of§p/4 ~ Case may be small although the truck is moving. On the other
from (n,, n,) and5p/4 from (n,, n,), whereas the other two hand, fire trucks for instance, often have heterogeneous struc-

arep from (n, n,,) but with direction difference of + O\ /] tgre along their trunks that wou_ld possible giye large M\_/ mag-
These points are labeled as “2” and are the four points visitedni{ude when detected. One point for certain is that during this
the seccond step. The four nearest neighbo(ﬁay, are de- period, the content of the VLs should be different from the road
fined asp’ & (p/8) or 3’ + (alle/g)_ These points are labeledsurface. By taking adva}ntage of this knowledge, we can define
as “3” and are those being visited in the third step. Given thige movement of a vehicle across the FOV by the following:
search pattern, the MAD values are calculated and the smallesil) changes in the average MV magnitude from low to high;
value is located as a match. The MV of thas then defined by ~ 2) majority of the VL contents are different from the road

the distance of the point froifi,,, n,,) and its direction. surface;
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drawback is to some degree unavoidable. However, performing
motion estimation in different directions such as perpendicular
to the road direction (for pedestrian motion), or opposite to the
road direction may prevent this to occur. Third, the frame rate
of the image sequence must be high enough. Our observation
"""""" is about 10 frames per second (f/s) or higher. This is because if
,,,,,,,,,,,, Threshold (T) the frame rate is not high enough, the distance traveled by the
“““““““““ vehicle between consecutive frames would be too large. As a re-
sult, the search window for motion estimation would have to be
: ; much larger, which means the processing delay would be longer
— i >/ and the accuracy of the MV could be lower.
f A In practice, if vehicles pass over the VLs in a queue and if
the camera is roadside-mounted, the occlusion of vehicles may
cause the method to fail. However, this problem could be re-
) . ] solved by a gantry-mounted camera with a steep tilt angle of up
3) changes in the average MV magnitude from high to lov, 92, For night scenes, as the proposed approach views vehi-
This can be visualized in Fig. 8. With this framework, we cagles from behind, the rear vehicle lights will simply be viewed
proceed to define the 1D signature of a vehicle based on motigf part of the vehicle features, which will have minimal effect
vector magnitudes. to the identification process. In the rare event that a vehicle
The 1-D signature of a vehicle is defined as when the averagiganges lane while passing over the VLs, its likely the proposed
MV magnitude rises above a thresh¢l) at framefo, a vehicle - approach will still hold because the final number of VVLs is small
is said to have entered the VLs. When the average MV magghd it is unlikely that the vehicle can change lane abruptly over
tude drops below" at framef,, the vehicle is said to have left sych a short distance. On the other hand, if the vehicle stops over
the VL. The threshold" in this case is computed as 50% Othe V/Ls, due to traffic condition or other incidents, then the pro-
the maximum MV magnitude determined. For the average MYosed method will not be able to determine its type.
magnitude between thegg and f1, as long as the majority of  For shadows cast by the vehicle itself, the effect can be han-
the VL contents are different from the road surface, the actugibd as follows. For roadside-mounted camera, a vehicle on the
average MV magnitude is not of great concern. Therefore, thRift |ane naturally appears to overlap on the right lane in the
can be considered as “Don’t care.” From the 1-D signature, therspective view, which causes the VLs of both lanes to reg-
vehicle’s type can be identified by its pseudolength), which  jster motion. On the other hand, a vehicle on the right lane only

IMV|
4

Fig. 8. Vehicle signature from the VLs.

is computed by the following equations: causes the right lane VLs register motion. If the sunis on the left,
1 [ 1 Mot then the shadow effect is mild and can be dealt with by consid-
;| (fo, f1) = 5 lﬁ Z [vi(fo, fo+ 1) ering the difference in motion in both lanes. If the sun is from
0 Zz;\? . the right such that both sets of VLs register motion disregarding
-

which lane the vehicle passes over, then the homogenous nature
of the shadow on the road and the motion vector magnitudes will
have to be considered. From our tests, it appears that the shadow,
Ihether it is from a tree or vehicle, is homogenous in color on
road. When motion estimation is done on the shadow, the in-
l%(Xrnal region of the shadow will have close to zero motion vector

1
+3 ; [oi(fus f+ DI (22)
which is the pseudospeed of the vehicle in the 2-D image co
dinates. The pseudolength in 2-D image coordinates is given
(12) and the pseudolength in 3-D world coordinate is given

(13) magnitude, while the edge of the shadow will have larger mag-
Lap = ey (fo, f1) - <f1 _ fO) (12) hitudes. The distribution of large magnitude motion vectors is
' fr therefore considerably different from those due to the vehicle.

Lap = (. (for 11)) - <f1 J;fo) (13) For gantry-mounted camera, the same can be applied.

where®(.) is the 2-D image to 3-D world coordinates mapping
and fr is the frame rate of the image sequence [11]. Therefore,
if the mapping function is available, the speed of the vehicle To verify the propose method, we have chosen a traffic video
and its pseudolength can be estimated, which would be usdhken from an existing CCTV camera post currently operated
for road management and law enforcement. by the Hong Kong Police. The post was roughly 3 m high by
In general, there are a number of properties inherent in thige side of the road. During the experiment, the camera param-
approach. First, only rough type identification based on the veters were fixed. The weather was fine with bright afternoon
hicle length is possible. At present, this method is unable to dman, where a nearby tree cast a large shadow on the road. With a
tinguish a cargo truck from a bus. Second, only those vehiclglight breeze during the time of acquisition, the shadow moved
that traverse across the VLs along the road direction could back and forth. This sequence is chosen as it represents a real-
detected. Exceptional cases such as vehicle traveling in an istic outdoor scenario. The traffic video was digitized and pro-
known direction will not be detected. As the automated assigressed by our algorithm on a Pentium PC, where virtual loops
ment of VLs attempts to generalize the placement of VL, thigere automatically assigned, reduced, and divided into groups

VII. RESULTS
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1-D signature of a seven-seat van.
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1-D signature of saloon car.
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Fig. 12. 1-D signature of motocycle.
Fig. 10. 1-D signature of a fire engine.

TABLE |

TYPE IDENTIFICATION RESULT: PSEUDOVEHICLE LENGTH IN 2-D
per lane. From the VLs, direction-biased three-step search was f f fof) I
performed on each VL and their average MV magnitudes were 0 ! Hpv oo 1 b
calculated over time, which are plotted as their 1-D signature. | 7_geat van 28 37 20.20 18.18
Equations (11_) and (12) were usedto ca_lculate the pseudosp(_aed Fire engine 53 74 17.41 36.56
and length. Figs. 9-12 depict the MV signatures of four vehi- Sed . 7 o 1474 16.21
cles: a seven-seat van, a fire engine, a sedan, and a motorcycle. 228 : :

Motorcycle 264 | 268 13.43 5.37

Their respective values are given in Table I.

It should be noted that the pseudospeed and length values
are given in 2-D values. The reason is that our interest is in thiés. For the sedan, its signature is similar to that of the van
relativity of these values. Actual values in kilometers per hoxcept that it is slightly wider (11 frames) and the magnitude
or meters can only be obtained via a 2-D-to-3-D transformatiois.smaller. This indicates that the sedan was traveling at a lower

From Figs. 9-12, we can observe that all four 1-D signapeed than the van. But what is important is that the actual length
tures share a set of common characteristics. These are first,aghéhe van and the sedan is similar, and their estimated length
transition from low to high is in accordance with our definiconfirms this point. Finally, for the motorcycle, its signature is
tion of defining a vehicle entering the VLs. Similarly, the trannarrow and only has one peak, as the length of the motorcycle is
sition from high to low also behaves as predicted. Secondly, thieort. It is also observed that in the case of the motorcycle, be-
frame time between the two transitions is proportional to tteuse it is much smaller than the other vehicles, the number of
length of the vehicles. As depicted in Table I, for the van, itsonzero VLs is small (about 50% of the total VL number). Even
signature is nine frames wide and has the highest magnitutieugh our detection is based on this small number of nonzero
among the four cases. This indicates that the van is traverswigs, the result still illustrates a clear signature. As there is no
across the VLs at the highest relative speed, which was verehicle smaller than a motorcycle, it should be reasonable to as-
fied in the image sequence visually, and is also confirmed Byume that the motorcycle defines the lower bound of all possible
the pseudospeed calculation. For the fire engine, its has a widases. Figs. 13-16 depict the image segments of the four vehi-
signature of 21 frames and the magnitude between the two trates traversing across the VLs. In these image frames, the VL
sitions fluctuates substantially. This can be explained as the eénters are indicated by dots, where the motion vectors are dis-
fect of the complex structure of the fire engine’s body on th@layed as line segments from the VL center. Their magnitudes
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(@) (b)

(© (d)

Fig. 13. Image sequence and MV of a seven-seats van: (a) frame 29, (b) frame 32, (c) frame 35, and (d) frame 37.

(b)

(© (d)

Fig. 14. Image sequence and MV of a fire engine: (a) frame 51, (b) frame 59, (c) frame 65, and (d) frame 71.
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© (d)

Fig. 15. Image sequence and MV of a sedan: (a) frame 74, (b) frame 76, (c) frame 79, and (d) frame 82.

(©) (d)

Fig. 16. Image sequence and MV of a motorcycle: (a) frame 264, (b) frame 266, (c) frame 268, and (d) frame 269.
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can be clearly identified, which correspond to the 1-D signasent, for help in acquiring the image sequences used for this

tures shown in the previous four diagrams. research.
As can be seen from Table I, the pseudolengths in 2-D image

coordinates of the vehicles are given. It can be observed that

the fire engine has the longest pseudolength in two dimensions,

which is almost twice that of the seven-seats van and the sedarﬂl] N. Ushio and T. Shimizu, “Loop vs ultrasonic in Chicago: Ultrasonic
" vehicle detector field testisolating diffused reflection and enduring harsh

For the motorcycle, its pseudolength in two dimensions is the  enyironment,” inProc. 5th World Congr. Intelligent Transport Systems
shortest. Assume that the sedan has an actual length of 4 m, the 1998.

calculated actual length of the van is about 4.6 m, the fire truck[2 S-W.Kimetal, "Performance comparison of loop/piezo and ultrasonic
! sensor-based traffic detection systems for collecting individual vehicle

is about 9 m, and the motorcycle is about 1.3 m. These values  information,” in Proc. 5th World Congr. Intelligent Transport Systems
are considered to be fairly close to the actual lengths of these 1998.

vehicles. From these values, we are able to classify the vehicleE] Ashworthetal, “image processing for traffic monitoring, iimforma-
. . . tion Technology Applications in TransportUtrecht, The Netherlands:
into at least three types (long, medium, and short) accordingto  vNu Science, 1987, pp. 65-86.
their pseudolength. [4] N. Hoose, Computer Image Processing in Traffic Engi-
neering London, U.K.: Research Studies, 1991.
[5] M.lIraniand P. Anandan, “A unified approach to moving object detection
VIIl. CONCLUSION in 2D and 3D scenesJEEE Trans. Pattern Anal. Machine Intelkol.
) ) o 20, pp. 577-589, June 1998.
This paper has presented a vehicle-type classification methogs] m.-P. Dubuisson and A. K. Jain, “Contour extraction of moving objects

that is completely vision-based, without needing to rely on in-  in complex outdoor scenedyit. J. Comput. Visioyvol. 14, pp. 83-105,
ductive-loop detectors or other kinds of sensors. It employs th(j17 1995.

; . - . . 1 D. Koller, J. Weber, and J. Malik, “Robust multiple car tracking
idea of automated virtual loop assignment and direction-based ~ with occlusion reasoning,” Univ. Calif. Berkeley, UCB Tech. Rep.

motion estimation on the image sequence acquired via a road- UCB/CSD-93-780, Oct. 1993.

AL _ . . [8] J. M.-P. Dubuissoet al., “Vehicle segmentation and classification using
side- or gantry mounted CCTV camera. It is characterized by deformable templates|EEE Trans. Pattern Anal. Machine Inteliol.

a number of features that are unique to this proposed method. 18, pp. 293-308, Mar. 1996.
First, the use of CCTV image sequence is flexible and cost-ef-[9] W. F. Gardner and D. T. Lawton, “Interactive model-based vehicle

: : . . _tracking,” IEEE Trans. Pattern Anal. Machine Intgllvol. 18, pp.
fective as image sequence carries an enormous amount of infor 1115-1121, Nov. 1996.

mation good for visual inspection as well as algorithm analysis{10] G.D. Sullivanetal, “Visual object recognition using deformable models
Second, itaccommodates PTZ actions without requiring manual ~ of vehicles,” inProc. Workshop on Context-Based Visid$95, pp.

: : L : 75-86.
adjustment or corrections. This is superior to the methods th ] N.H. C. Yung and A. H. S. Lai, “Detection of vehicle occlusion using

use single-detection region, which requires human interactions = a generalized deformable model,"Rioc. IEEE ISCAS'981998, IEEE
when PTZ occurs. The added advantage of the automated vir-  Catalog 98CH36187, ISBN: 0-7803-4458-8, MPA13-16.

. . . . . 2] D. Koller et al,, “Model-based object tracking in monocular image se-
tual loop assignment process is that it is applicable to multilan& quences of road traffic scenesit, J. Comput. Visiopvol. 10, no. 3, pp.

cases, with or without any landmarks for the initial assignment.  257-281, 1993.
Third, this method offers more accurate motion estimation bel3] S. Malik et al, “A machine vision based surveillance system for Cali-

cause the virtual loop size is much smaller than those employed E’g\}'alg)gfs' Univ. Calif. Berkeley, PATH Project MOU-83, Final Rep.,

by existing methods. Furthermore, this enables the use of stap4] s. Gil et al, “Combining multiple motion estimates for vehicle
dard block-based motion estimation techniques that are well de-  tracking,” in Computer Vision—ECCV'96 Berlin, Germany: Sprin-

. . . ger-Verlag, 1996, vol. I, pp. 307-320.
veloped for video COdmg' Fourth, the number of virtual IOOpS[15] B. Gloyeret al, “Video-based freeway monitoring system using recur-

per lane can be varied. The motion content of each block may "~ sive vehicle tracking, SPIE Proc. Image and Video Processing Ubl.
be weighted and the collective result offers a more reliable and _ 2421, pp. 173-180, 1995.

. . . . . . . [16] F. Bartolinietal, “Motion estimation and tracking for urban traffic mon-
robust approach in motion estimation. Comparing this with tra itoring,” in Proc. Int. Conf. Image Processing'9gol. Ill. 1996, pp.

ditional ILD, there are a number of advantages. First, the size  787-790.
and number of virtual |00pS may be varied to fine-tune detectiofil7] J. Malik and S. Russell, “Traffic surveillance and detection technology

. . . o development: New traffic sensor technology final repdP&TH Publi-
accuracy. Second, it may also be varied for an effective utiliza- cations no. UCB.ITS-PRR.97.6, Jan. 1997,

tion of the computing resources. Third, there is no failure ratgis] J. C. Rojas and J. D. Crisman, “Vehicle detection in color images,” in
associated with the virtual loops or physical installation. As the _ Proc. IEEE Conf. Intelligent Transportation Systeri897.

- - . ; P. Michalopoulos, “Vehicle detection video through image processing:
loops are defined on the image sequence, changing the deteCtlBﬂ] The autoscope systemEEE Trans. Veh. Technolol. 40, Feb. 1991.

configuration or redeploying the loops to other locations on thezo] B. w. Hwang, T. H. Kang, and J. G. Lee, “A study on the real time mea-
same image sequence requires only a change of the assignment surement of vehicle speed using dynamic image processingtda.

: 5th World Congr. Intelligent Transport Systeri998.
parameters. Fourth, virtual |OOpS may be reallocated anyWher[gl] N. Hoose, “Impact: An image analysis tool for motorway surveillance,”

on the frame, giving flexibility in detecting different parame- Traffic Eng. Contr, vol. 33, no. 3, pp. 140-147, 1992.
ters. As for future direction, we would consider expanding thg22] Y. lwasaki, “An image processing system to measure vehicular queues

- - . . and an adaptive traffic signal control by using the information of the
virtual loop concept to detecting pedestrian motion and other queues,” INEEE Conf. Intelligent Transportation Systems ‘D97,

vehicle motions such as lane changing. pp. 195-200.
[23] N. H. C. Yung, K. C. Chan, and A. H. S. Lai, “Vehicle-type identifica-
tion through automated virtual loop assignment and block-based motion
ACKNOWLEDGMENT estimation,” inProc. IEEE/IEEJ/JSAI Int. Conf. Intelligent Transporta-
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