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Roundoff Noise Minimization in a Modified Direct-Form e, e,

Delta Operator IIR Structure
Fig. 2. Modified delta section with overflow scaling by, and A and
Ngai Wong and Tung-Sang Ng coefficient scaling byc; andks.

Abstract—Among various direct-form delta operator realized filter  in delay structures can be overcome. In particular, delta operator real-
structures, the delta transposed direct-form Il (6DFIIt) has been shownto  jzations are generally accompanied with better roundoff noise perfor-
produce the lowest roundoff noise gain in finite wordlength implementa-  Wance and more robust coefficient and frequency sensitivities [1], [2].
tions. Recent analyses focus on the optimization of the free parametex Alth hthei delt tori licated to imol t
of the delta operator, with scaling of the structure to prevent arithmetic ' ougnthe |nver§e ela opgra or IS more complicated to implement,
overflow. This paper proposes a modifieds DFIIt second-order section in  itS €xcellent numerical properties allow the use of shorter wordlengths,
which the As and filter coefficients at different branches are separately which results in moderate complexity or even gross savings in silicon
scaled to achieve improved roundoff noise gain minimization. Expressions greg [6].
for the filter coefficients are derived, and reduction of roundoff noise gain Comprehensive study of different delta structures has been carried
is verified by numerical examples. . b y .

outin [4]. It was found that the delta transposed direct-formiMFl1t)
shows the best roundoff noise properties among various delta struc-
tures. Emphasis has been put on the optimization of the free parameter
l. INTRODUCTION A(_A > (_)) of the delta operator in order to achleve_ minimum roun_doff
] ] ] _ _noise gain at the output. The second-oid@FIIt section, being a basic

Delta operator realized filters have attracted increasing attentiongpiiding block, was analyzed in detail [3], [4].
this decade due to their good numerical properties when compared t this paper, instead of limiting to a single optimal within the
the traditional delay structures [1]-[8]. This is especially true for sySecond-ordefDFIIt section, the concept of separately scaling fe
tems whose sampling rate is much higher than the underlying sigaalwell as filter coefficients is introduced. It will be shown that such an
bandwidth, causing the-plane poles to cluster toward the unit circle approach will enable the true global optimal solution to be obtained,
By replacing the conventional”* operator with the inverse delta oper-yhich further minimizes the roundoff noise gain of the section.
ator6~' = Az"!/(1 - z1), certain ill-conditioned numerical issues

Index Terms—Pelta operator, IIR filter, minimization, roundoff noise.

1. NOISE MINIMIZATION
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the proposed equivalent structure, which introduces two additional po
itive scaling constants, andk. to theAs and filter coefficients in the
second-ordesDFIIt section. These scaling constants allow higher de
gree of freedom for roundoff noise gain minimization.

If a wordlength of less than double precision is used, the summatic || ~2||w
nodesSy, S1, andS: in Fig. 2, known as branch nodes [9], have to be B 2 "F " 1
scaled to prevent overflow. The unscaled transfer functions{i-e.1) Ol Ol
from the input to these nodes are given in (1)—(3) at the bottom of tEFg 3. OptimalAs in different regions denoted by thick arrows.
page.

A common overflow prevention strategy is to use, norm scaling TABLE |
[9], where theL,, norm of a transfer functiod” is defined as VARIOUS EXPRESSIONS FOR THEVIODIFIED $DFIIt SECOND-ORDER

Region 3

k \/ Pl K,k 7. k

1 o o 1/p STRUCTURE
1P, = {% / P(e) dw} : 4) — _ _ I
- St IR Sl | IR /IAL
Using the convention (also throughout this paper) that a tilde-topp: & "BL., Bo/g b, |F0 B
transfer function represents itsdependent part after those prefixing Bk /g (26, +5 )/"Fl B.kik, [g (b +b, +b )/II;
constants, the scaling factgmwill be @k, B 0 )HIF " 1/‘75” K (10 ! ;"F | 2 "F"
1 +Ll1 Olles Tlieo 27172 +al+a2 Ollos 2

= ma. I L |F; || E ) - ~ - - ~ ~ o
9= max (1ol 1Pl 1P 2o = (G |l YRl (16, +26, L JAE +246. 1AL

= max (||F0|| b3 j2X

kAL ‘

00 ? k1k2A72> . (5
The transfer functions from different noise sources to the output aggproach as in [4], each argument in (5) is set to be the maximum and

result of multiplication quantization are given below. Itis assumed thag|ved for its valid region. Three regions are obtained, namely

noise from the back scaling hybefore the output” is absorbed into

the next section Region 1
Y (1 — 2712
Go_a_gl+alz—l+agz—'—’ 6) ‘ﬁ‘l
~ . _ _ oo > A > max 2 k1, 2 ke ky (12)
Ga.-Y_Y_ A Z'0-=Y @) 1Bl IFoll.
e1 es “kildarz"l4azz"2
Y Y A? 272 2, 2 2 5 |12 = |2
ma=X oY otz = IR, (| 6ol + -
G, €2 e4 gk1 ko 14+ a1z="+asz2 (8) ’ 2 2
Y =2 < ~ |7 % 2) —2 42
1= = + [ |Gs|] +2 |Gy, E°A
Gs es g1+a,1z—1 + agz—2 ©) e, L3, ] M
Y A 272 5~ 2 0,92 .4
GG:(’,—G:gH 1—|—(l,1271—|—(1,2272. (10) + 2||G2. 4 2]61 k2 A . (13)

Assuming that all products are quantized to the same wordlength byClearly, as (13) depends only on positive powers\gfthe output
rounding, and modeling rounding quantization error as an uncorrelatgeise gain is minimized by choosing the lower limitf
white noise process, superposition holds and the output noise Variaﬂ“e‘aion 2
o2 can be expressed as a sum of noise powers

2 2 2 ~ 2 ~ 2 ~ 2 ~ 2 2.2 I n
ol IU§Q‘< Gol| + HG5 + <HG6 +2 |G, 3 >k1 “A° ‘Fl ‘ 3
2 2 2 2 2k >A > —=ko (14)
X 1 Foll ‘FL
42 HG“ kfzk{zﬂ4>. (11) >
2 L2 ~ 12 ~ 112 Y .
2 . . . ‘73/‘75 = ‘Fl << Gol| + ||Gs )MAiZ
Heres. stands for the roundoff noise variance of each quantiza- oo 2 2

tion process and is dependent on the wordlength (or precision) used.

-2 N 2
A wordlength-independent noise gain term can therefore be defined as + <HGc C+2||Gus| )
the ratios2 /2. To minimize this gain, note that the scaling factor is a ? 2
max-function dependent o and there are three possible regions of = 2 b2 A 15
A corresponding to the three possible maxima in (5). Using a similar + H e P : (15)
_ }/ _ So _ bo +b1;/_l +b22_2
FO_Y_Y_ l+aiz7 +ayz—2 1)
F o= é . k_l (b1 — boar) + (bo(ar — az) + b2 — 51)371 + (boaz — 52)372 @)
'YX T A l+aiz="' +agz—2
P = So  kiky (b1 4 by —bo(ar + a2)) + (ai(bo +ba2) — bi (1 + az))z"" 4 (aa(bo +b1) — ba(1 4 a))z"2 3
TX T A2 l4+aiz='" +axz=2 '
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TABLE I

NoOISE GAIN COMPARISON FOR THETWO EXAMPLE SIXTH-ORDER LOW-PASS FILTERS

SECOND-ORDER SECTIONS FOR FILTERS A AND B

Polynomial Section Al Section A2 Section A3 Section B1 Section B2 Section B3
Denominator aj,a; -1.93504729 | -1.86611453 | -1.80612859 | -1.99512547 | -1.98883573 | -1.98540165
0.96471582 0.88788503 (.81824041 0.99610130 0.98938327 0.98552386
Numerator by (by=b,=1) | -1.25901348 | -1.87112896 | -1.92379959 2 2 2
6 /c.E w.r.t. (18) /dB 15.0978 10.7450 8.7220 24.1235 19.9887 19.0695
6.0, w.r.t. (20) /dB 15.0430 9.9691 7.0330 24.1109 19.7033 17.4691
Improvement /dB 0.05483 0.7759 1.6890 0.01263 0.2854 1.6005
FILTER A UNDER VARIOUS CASCADE ORDERINGS
Ordering Al-A2-A3 Al1-A3-A2 A2-A1-A3 A2-A3-Al1 A3-Al-A2 A3-A2-A1
()'oz/()',2 w.r.t. (18) /dB 21.3401 19.9110 18.4540 17.6521 17.2400 19.1439
602 w.r.t. (20) /dB 21.0604 19.7857 18.1802 16.9020 16.5724 18.3415
Improvement /dB 0.2798 0.1253 0.2737 0.7501 0.6676 0.8025
FILTER B UNDER VARIOUS CASCADE ORDERINGS
Ordering B1-B2-B3 B1-B3-B2 B2-B1-B3 B2-B3-B1 B3-B1-B2 B3-B2-B1
6,262 w.r.t. (18) /dB 33.9075 31.4075 30.0289 28.2737 28.6666 30.5646
002/0,2 w.r.t. (20) /dB 33.7262 31.2584 29.7870 27.7263 28.2592 30.0011
Improvement /dB 0.1813 0.1491 0.2419 0.5474 0.4074 0.5634

As (15) depends on both positive and negative powers dhe A
that minimizes (15) is expected to lie somewhere in between the limgiven by

the same point. Hence the global optirda(denoted by an asterisk) is

Region 3 ) HFL ‘ jos o0
op = F, 1= s
N IR
i ”FO”% ks, i ha ) 2420 (16)  From (20), the ratios\, /k, and A, /k» can be obtained since
- ‘ 1\00 | Folloos [|Fi]loos || F2|le are computable. Consequently, the global
and optimal A becomes implicit and is embedded into the ratios. Using
2 g 2 these results, neat expressions for each filter coefficient and the noise
orjol = ‘ Iy <<HG0 Jt Gs 7) ki ksAa~ variance of the proposetDFIIt section (Fig. 2) can be derived and
= : : are given in Table |.
n <Hé° 2 e HG1 , 2) A2 An interesting observation is that all the node norms in the scaling
2 Py R factor (5) are now equal to the filter norm, i.@.Fo||. Usually
) the filter norm is designed to utilize the dynamic range of the finite
+ 2(|Ga.4 ) (17) wordlength. Therefore, by equalizing all node norms to the filter
2 norm, the dynamic range at all branch nodes is utilized. In an efficient

Since (17) depends only on negative poweraothe output noise

gain is minimized by setting equal to the upper limit.
Fig. 3 shows a possible partition of these regions. The thick arrow# shifting.

indicate possible choices of the local optimed according to the pre-

vious reasoning. Past analyses [3], [4] implicitly get= ko, = 1,

and a single optimal is chosen for the whole second-order section
by comparing the noise gain minima in different regions. In [4], this

optimal A is given by

hardware implementation, the scal&dd can be rounded to the nearest
powers of two so that multiplication can be accomplished by simple

I1l. NUMERICAL EXAMPLES

Several second-order sections are taken from [4] to test against the
proposed approach. Sectiods and Bi, i = 1, 2, 3, as shown in
Table Il, are cascade sections for two example sixth-order narrow-band

‘ P low-pass filters. For fair comparison, and to eliminate the effect of
A,, = max oo (18) Wword precision on the output noise variance, the wordlength-indepen-
1 Foll dent noise gain term defined a3/s?2 [see (11)] is used. First, each

However, in the proposed section in this pagerandk-. are chosen

section is individually prescaled using is. norm, with scaling em-
bedded into the numerator coefficients. The noise gain of each section

such that is then evaluated with respect to the,, in (18) and the proposedl?,,
N . in (20). It is apparent that there is always reduction in roundoff noise
‘ B oo 7. _ ‘ P oo 1 _ (19) gain using the proposed approach, especially when the pole angle de-
1ol b ‘ ) N creases. Next, each of the three sections is cascaded to investigate the
oo effect of different section orderings. Along the cascade system of each

The third term in (19) is in fact the geometric mean of the first twordering, L., norm scaling is distributed and embedded into the nu-
terms. Now by substituting them into (12), (14), and (16), it is apparenterator coefficients such that overflow is prevented at the output of
that the three local minima in the three different regions converge @gery second-order section [4]. Again, as shown in Table Il, there is a
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consistent reduction in roundoff noise gain in whichever order the secApproximation of Classical IR Filters with Additional
tions are cascaded. Specifications

IV. CONCLUSION H. H. Dam, S. Norbedo, and L. Svensson

In this paper, the concept of separately scalingAtseand filter co-
efficients in theSDFIIt section has been introduced. This approach Abstract—in this paper, we introduce a modified tapped all-pass (MTA)
leads to further improved global minimization of output roundoff noisgétructure for the sum of two all-pass functions. The new structure includes

; ; ; ; ; linear coefficients in the all-pass sections, allowing additional constraints
ain as compared to choosing a single optidabnly. Using numer- i P .
9 P 9 9 P Y 9 such as null or group delay constraints for the filters. These null constraints

ical examples, roundoff noise performance of this modifi@FIit  ,pe significant for applications when the suppression of the noise at certain
second-order structure has been demonstrated to be better than theffegsencies is important.
results obtained so far. Readily computable expressions for the optimain alternative structure to incorporate the extra constraints is the mod-
filter coefficients have also been derived. ified tapped cascade (MTC) infinite impulse response structure. Design ex-
amples show that the MTA structure is less sensitive to quantization than
the MTC structure in the passband. Moreover, the total number of multi-
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