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Roundoff Noise Minimization in a Modified Direct-Form
Delta Operator IIR Structure

Ngai Wong and Tung-Sang Ng

Abstract—Among various direct-form delta operator realized filter
structures, the delta transposed direct-form II ( DFIIt) has been shown to
produce the lowest roundoff noise gain in finite wordlength implementa-
tions. Recent analyses focus on the optimization of the free parameter�
of the delta operator, with scaling of the structure to prevent arithmetic
overflow. This paper proposes a modified DFIIt second-order section in
which the�s and filter coefficients at different branches are separately
scaled to achieve improved roundoff noise gain minimization. Expressions
for the filter coefficients are derived, and reduction of roundoff noise gain
is verified by numerical examples.

Index Terms—Delta operator, IIR filter, minimization, roundoff noise.

I. INTRODUCTION

Delta operator realized filters have attracted increasing attention in
this decade due to their good numerical properties when compared to
the traditional delay structures [1]–[8]. This is especially true for sys-
tems whose sampling rate is much higher than the underlying signal
bandwidth, causing thez-plane poles to cluster toward the unit circle.
By replacing the conventionalz�1 operator with the inverse delta oper-
ator��1 = �z�1=(1� z�1), certain ill-conditioned numerical issues
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Fig. 1. Delta equivalence of delay structure with transfer function given by
(1).

Fig. 2. Modified delta section with overflow scaling byg, and � and
coefficient scaling byk andk .

in delay structures can be overcome. In particular, delta operator real-
izations are generally accompanied with better roundoff noise perfor-
mance and more robust coefficient and frequency sensitivities [1], [2].
Although the inverse delta operator is more complicated to implement,
its excellent numerical properties allow the use of shorter wordlengths,
which results in moderate complexity or even gross savings in silicon
area [6].

Comprehensive study of different delta structures has been carried
out in [4]. It was found that the delta transposed direct-form II (�DFIIt)
shows the best roundoff noise properties among various delta struc-
tures. Emphasis has been put on the optimization of the free parameter
�(� > 0) of the delta operator in order to achieve minimum roundoff
noise gain at the output. The second-order�DFIIt section, being a basic
building block, was analyzed in detail [3], [4].

In this paper, instead of limiting to a single optimal� within the
second-order�DFIIt section, the concept of separately scaling the�s
as well as filter coefficients is introduced. It will be shown that such an
approach will enable the true global optimal solution to be obtained,
which further minimizes the roundoff noise gain of the section.

II. NOISE MINIMIZATION

Suppose that a transfer function in thez-domain, represented by (1),
is obtained under certain specifications and sampling conditions. It can
then be transformed into an equivalent delta structure with the substitu-
tion z = 1+ ��. Fig. 1 shows the�DFIIt implementation of (1). This
structure was studied extensively for optimization in previous works
[3], [4], where the same�was used in both��1 operators. Fig. 2 shows
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the proposed equivalent structure, which introduces two additional pos-
itive scaling constantsk1 andk2 to the�s and filter coefficients in the
second-order�DFIIt section. These scaling constants allow higher de-
gree of freedom for roundoff noise gain minimization.

If a wordlength of less than double precision is used, the summation
nodesS0; S1; andS2 in Fig. 2, known as branch nodes [9], have to be
scaled to prevent overflow. The unscaled transfer functions (i.e.,g = 1)
from the input to these nodes are given in (1)–(3) at the bottom of the
page.

A common overflow prevention strategy is to useL1 norm scaling
[9], where theLp norm of a transfer functionF is defined as

kFkp =
1

2�

�

��

F (ej!)
p

d!
1=p

: (4)

Using the convention (also throughout this paper) that a tilde-topped
transfer function represents itsz-dependent part after those prefixing
constants, the scaling factorg will be
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The transfer functions from different noise sources to the output as a
result of multiplication quantization are given below. It is assumed that
noise from the back scaling byg before the outputY is absorbed into
the next section
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Assuming that all products are quantized to the same wordlength by
rounding, and modeling rounding quantization error as an uncorrelated
white noise process, superposition holds and the output noise variance
�2o can be expressed as a sum of noise powers

�2o =�2eg
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Here�2e stands for the roundoff noise variance of each quantiza-
tion process and is dependent on the wordlength (or precision) used.
A wordlength-independent noise gain term can therefore be defined as
the ratio�2o=�

2

e . To minimize this gain, note that the scaling factor is a
max-function dependent on� and there are three possible regions of
� corresponding to the three possible maxima in (5). Using a similar

Fig. 3. Optimal�s in different regions denoted by thick arrows.

TABLE I
VARIOUS EXPRESSIONS FOR THEMODIFIED �DFIIt SECOND-ORDER

STRUCTURE

approach as in [4], each argument in (5) is set to be the maximum and
solved for its valid region. Three regions are obtained, namely
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Clearly, as (13) depends only on positive powers of�, the output
noise gain is minimized by choosing the lower limit of�
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TABLE II
NOISE GAIN COMPARISON FOR THETWO EXAMPLE SIXTH-ORDER LOW-PASS FILTERS

As (15) depends on both positive and negative powers of�, the�
that minimizes (15) is expected to lie somewhere in between the limits
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Since (17) depends only on negative powers of�, the output noise
gain is minimized by setting� equal to the upper limit.

Fig. 3 shows a possible partition of these regions. The thick arrows
indicate possible choices of the local optimal�s according to the pre-
vious reasoning. Past analyses [3], [4] implicitly setk1 = k2 = 1,
and a single optimal� is chosen for the whole second-order section
by comparing the noise gain minima in different regions. In [4], this
optimal� is given by

�op = max
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1
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1
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However, in the proposed section in this paper,k1 andk2 are chosen
such that
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The third term in (19) is in fact the geometric mean of the first two
terms. Now by substituting them into (12), (14), and (16), it is apparent
that the three local minima in the three different regions converge to

the same point. Hence the global optimal� (denoted by an asterisk) is
given by

�
�
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1

kF0k
1

k1 =
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1

~F1
1

k2: (20)

From (20), the ratios��op=k1 and��op=k2 can be obtained since
kF0k1; k ~F1k1; k ~F2k1 are computable. Consequently, the global
optimal� becomes implicit and is embedded into the ratios. Using
these results, neat expressions for each filter coefficient and the noise
variance of the proposed�DFIIt section (Fig. 2) can be derived and
are given in Table I.

An interesting observation is that all the node norms in the scaling
factor (5) are now equal to the filter norm, i.e.,kF0k1. Usually
the filter norm is designed to utilize the dynamic range of the finite
wordlength. Therefore, by equalizing all node norms to the filter
norm, the dynamic range at all branch nodes is utilized. In an efficient
hardware implementation, the scaled�s can be rounded to the nearest
powers of two so that multiplication can be accomplished by simple
bit shifting.

III. N UMERICAL EXAMPLES

Several second-order sections are taken from [4] to test against the
proposed approach. SectionsAi andBi; i = 1; 2; 3, as shown in
Table II, are cascade sections for two example sixth-order narrow-band
low-pass filters. For fair comparison, and to eliminate the effect of
word precision on the output noise variance, the wordlength-indepen-
dent noise gain term defined as�2o=�

2
e [see (11)] is used. First, each

section is individually prescaled using itsL1 norm, with scaling em-
bedded into the numerator coefficients. The noise gain of each section
is then evaluated with respect to the�op in (18) and the proposed��op
in (20). It is apparent that there is always reduction in roundoff noise
gain using the proposed approach, especially when the pole angle de-
creases. Next, each of the three sections is cascaded to investigate the
effect of different section orderings. Along the cascade system of each
ordering,L1 norm scaling is distributed and embedded into the nu-
merator coefficients such that overflow is prevented at the output of
every second-order section [4]. Again, as shown in Table II, there is a
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consistent reduction in roundoff noise gain in whichever order the sec-
tions are cascaded.

IV. CONCLUSION

In this paper, the concept of separately scaling the�s and filter co-
efficients in the�DFIIt section has been introduced. This approach
leads to further improved global minimization of output roundoff noise
gain as compared to choosing a single optimal� only. Using numer-
ical examples, roundoff noise performance of this modified�DFIIt
second-order structure has been demonstrated to be better than the best
results obtained so far. Readily computable expressions for the optimal
filter coefficients have also been derived.
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Approximation of Classical IIR Filters with Additional
Specifications

H. H. Dam, S. Norbedo, and L. Svensson

Abstract—In this paper, we introduce a modified tapped all-pass (MTA)
structure for the sum of two all-pass functions. The new structure includes
linear coefficients in the all-pass sections, allowing additional constraints
such as null or group delay constraints for the filters. These null constraints
are significant for applications when the suppression of the noise at certain
frequencies is important.

An alternative structure to incorporate the extra constraints is the mod-
ified tapped cascade (MTC) infinite impulse response structure. Design ex-
amples show that the MTA structure is less sensitive to quantization than
the MTC structure in the passband. Moreover, the total number of multi-
plications is significantly reduced by using the MTA structure as compared
to the MTC structure.

Index Terms—Digital filter made as the sum of all-pass functions, MTA,
MTC, null constraints.

I. INTRODUCTION

It is straightforward to design filter transfer functions with Butter-
worth, Chebyshev, or elliptic characteristics. The placement of poles
and zeros, which guarantee certain limits on the passband and stop-
band attenuation, are available in tabulated or algebraic form given the
filter order, passband and stopband ripples, and transition bandwidth.
However, the transfer functions are based on the underlying assumption
that the power density of the rejected signal is constant across the stop-
band, or at least the designer does not have any information about it.
The frequencies of the high-attenuation dips, therefore, do not matter.
In actual design problems, some information about the power density
is usually available, but this information cannot be included in the de-
sign of classical filters.

In this paper, the design of a parallel all-pass filter structure with
linear coefficients, as shown in Fig. 1, is investigated. This modified
tapped all-pass (MTA) filter structure is a generalization of the La-
guerre structure [1]. The filter structure is obtained from the sum of two
all-pass functions by imposing a set of linear coefficients in the all-pass
sections. These linear coefficients allow additional filter specifications
such as null or group delay constraints. Additional null constraints will
be discussed in this paper. These null constraints are significant for ap-
plications when the suppression of the noise at certain frequencies is
important. The implementation of group delay constraints will be sim-
ilar.

The transfer functions from the filter inputs to the all-pass section
outputs constitute basis functions for optimization of the linear coeffi-
cients. One could consider an optimal design that includes selecting the
associated basis functions and the linear coefficients. This optimization
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