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Channel Capacity and Error Exponents of
Variable Rate Adaptive Channel Coding
for Rayleigh Fading Channels

Vincent K. N. Lau, Member, |IEEE

Abstract—We have evaluated the information theoretical per- Rayleigh fading channels using variable rate adaptive channel
formance of variable rate adaptive channel coding for Rayleigh coding (VRAECC) with constant transmitted poweZhannel
fading channels. The channel states are detected at the rece'vercapacity describes the maximum allowable bit rate for reliable

and fed back to the transmitter by means of a noiseless feedbackt T h | E t d ib
link. Based on the channel state informations, the transmitter can ransmission across a channel. Error exponen escribes

adjust the channel coding scheme accordingly. Coherent channel how fast error probability drops w.r.t. block length. The
and arbitrary channel symbols with a fixed average transmitted channel states are detected at the receiver and fed back to

power contraint are assumed. Thechannel capacityand the error  the transmitter by means of a noiseless feedback link. Based
exponentare evaluated and the optimal rate control rules are o, the channel state informations, the transmitter can adjust

found for Rayleigh fading channels with feedback of channel . .
states. It is shown that the variable rate scheme can only increasethe rate of the channel coding scheme accordingly. We try to

the channel error exponent. The effects of additional practical answer the following questions in this paper.
constraints and finite feedback delays are also considered. Fi- « |5 channel capacity or error exponent increased by using

nally, we compare th_e performa_nce of the \_/ariable rate adaptive VRAECC?
channel coding in high bandwidth-expansion systems (CDMA) What are the optimal rate control functions that maximize
and high bandwidth-efficiency systems (TDMA). P

the error exponent?

¢ Does VRAECC perform better in high or low bandwidth
I. INTRODUCTION expansion?

RROR correction codes have been widely used to combatAn equivalent discrete time channel model is developed in
the effect of Rayleigh fading in mobile radio channelsSection Il. For simplicity, coherent detection and ideal inter-
In traditional FEC schemes [1], [2], fixed rate codes welleaving are assumed. The error exponent and channel capacity
used which failed to explore the time varying nature of thef a Rayleigh fading channel with feedback of channel state
channel. To keep the performance at a desirable level, thesingconstant inpuVRACE are evaluated in Sections Il and
were designed for the average or worst case situation. INg respectively. Numerical results are presented and discussed
better exploit the time varying nature of the channel, adaptiue Section V. Finally, we conclude with a brief summary in
channel coding based on feedback channel state has b8ention VI.
proposed. The performance of uncoded variable rate and power
transmission schemes for Rayleigh fading channel based pncyaNNEL MODELING AND INDUCED STATE DISTRIBUTION
the feedback of channel state information has been considered
in [3]-[7]. Many pract.ical adaptive error correction cpdei\_ Physical Channel Model
have been proposed in recent years to reduce the bit error ) ) ) ) o
rate and to increase throughput of the mobile radio channelsN® Physical Rayleigh fading channel is a bandlimited
[8]-[14], [15]. In this paper, we model a general schemgPntinuous-time cha_mnel in which the channel input can be
of variable rate adaptive channel coding which varies tfBodeled by a bandlimited complex random process. The ran-
code rate according to the channel condition and explore @M process is segmented into a number of channel symbols
fundamental reasons why there is a performance improvemifif? the ith channel symboK;;(¢) having a variable duration
over fixed-rate coding. T;, as shown in Fig. 1. To maintain generality, no modulation
We investigate the information theoretical performancé‘?rmat is specified. Variable rate channel encoder is integrated

namely the channel capacity and the error exponent, ofijy particular, channel capacity of downlink fading channels with variable

power schemes has been investigated in [16]. It is shown that the optimal
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Fig. 1. Segmentation of a bandlimited random procdgg) into a channel symboP?.
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Fig. 2. Equivalent discrete-time channel model fariable durationscheme.

into variable throughput modulator with an average pow&. Equivalent Discrete-Time Channel Model
constraint? only. Theith channel output (in complex low-
pass equivalent);(¢) is given by

Yi(t) = Ci(t) Xi (1) + Ni(t) 1
where C;(t) and N;(t) are channel fading attenuatfoand
complex white Gaussian noise for thth channel symbol,
respectively.

The equivalent channel is a discrete-time, continuous-input
and continuous-output channel with feedback. There is a
channel stat&€”; associated with théh channel symbol. The
channel state is available to the receiver and known to the
transmitter via a feedback channel with a certain unavoidable
delay, A seconds. For eacld’;, there is a corresponding
It has been shown that a continuous-time complex sig Iediction, denoted bg;, at the transmitter. The channel states

which is approximatelytime-limited to7; and bandiimited to ¢ 2"dC (and hencez; and z;) are correlated but through

J can be represented by2iVT,-dimensional vector in the ideal interleaving, they become i.i.d. and the channel becomes

signal space spanned by the Prolate spheroidal wave functigngﬁg?gyli?nr?g?gzte;'ut is given by

[17]. Hence, théth channel symbol is represented b§i&7;- _ ° .
dimensional vectoX ;. Assume that’; and W are both much Y, =CXi+ N, 2
smaller than the coherence time, and the coherence bandwig{fere N, is an uncorrelated Gaussian noise variable with
C(t) can be considered as a constant in every d|m_en5|on\@‘rianceg[||j\7i||2] = noWT; andy is the white noise spectral
the signal space. Hence, the continuous-time model is reduggghsity. We assumé[C?] = 1
. . " T "
to a discrete-time model. For thevariable durationscheme, symbol duration of the
ith channel symbol/; is varying according to the predicted
2Since coherent detection is assumed, channel phase variation is corregtlggnnel stateZ;. The Char_mel model is illustrated I_n Fig. 2_'
by the receiver and hence, WLOG, the channel phase reference is set to Z6@Ch channel symbol carries a constant number of information
3We have a flat fading channel. bits R with a varying dimensior2WT;, which is a function
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of predicted channel state;. Random block coding [18] sequence of predicted channel stéfgs= {Z1, - - -, Zx }, and

with block length N is used. An indexQ2 € [1,2V%] is L . - o
fed into thevariable dimensiorchannel encoder, giving out hence, itinduces a probability density @y which is different

. from the original fading density in general. For simplicity, we
a codeworgl QW channel symbols. Each channel symbpl in g cume asi?nple predi%tion rui)ét) :gc(t—A). Hencel?é(t))i/s
C‘?de.WOTC“i |sﬁger1erate<.j randomly according to a conunu‘o%n ergodic random process and it is shown in Appendix A that
distributionQ(Z; | 2;). This forms a random codebook of size >

2NR \which is known both to the transmitter and the receiveff’€ induced probability density ofi, denoted byPy (2 ),

The channel can be described by a channel transition den&hygiven by
po(¥; | #iciZ;). The dependence af andpo on Z; comes Pn (21,22, -+, 2n) = P(21)P(22) - -- P(Zn) (3)
from the dependence of the symbol dimensd#Z; on Z;.

where
For thevariable inputscheme, théth symbol duratiorrl; .
is a constant given byl,. Fig. 3 illustrates the equivalent P(2) Y lim =2 = f2) ) (4)
discrete-time channel model. Thth channel symbol carries N=oo N6 EfT(2)

‘R; information bits and variable throughput is achieved b
varying R; w.r.t. the predicted stat#;. Random block coding
is used and theth channel symbol is generated randoml
according to a continuous time distributiof( X; | Z;). The
overall size of the random codebook&1++R~1 which is

> is the number of symbols wittt € [2,2 4+ §] in a
sequence ofN' symbols, f(z) is the fading density and
%f = [.(1/T(2))f(2)dz. Furthermore,E; is shown to be
the average symbol rate (number of channel symbols per

sqcond). Since givel, the symbol duratiorl; is constant,

both known to the transmitter and the receiver. The chan - . . .
can be described by a transition probabilit)Y; | X;,C;). Zﬁ?n%%r;déﬂ?:t?;:i:iti(c i|vz)nIT3 n?;f]ﬁede‘j by the varying
X g y

Note that due to the constant symbol duration, the chann
transition probability is independent of the predicted state P(c| 2) = f(c| 2)

For both schemes, channel outputs, together with channel 2 2+ \232 1203 A 5
states and predicted states, are fed into a deinterleaver and = (71— A2) TP T (17— a2) | O\ TFT 2 (5)

a maximume-likelihood decoder at the receig}eThe decoder
produces an estimate of the transmitted inéieand an error
occurs when? #£ €.

where A2 = Jo(2nf44), fs is the Doppler spread/y is
the zeroth-order Bessel function, adgl is the zeroth-order
modified Bessel function.
o For the variable input scheme, the symbol duration is
C. Induced State Distribution constant and hence, thirduced densityeduces to original
For thevariable durationscheme, the sequence of symbostanding fading density.
duration {73(21),---,Tn(2n)} is varying according to the
“Note that because of the variable throughput, the interleaving task is IIl. ERROR EXPONENT FORVARIABLE RATE SCHEMES

nontrival. For thevariable durationscheme, interleaving is done Iparallel We shall bound the average codeword error probability by

interleavingas illustrated in [19]. For theariable inputscheme, interleaving . Gall ) h 122
is illustrated in [20]. For the sake of simplicity, we assumed ideal interleavir%n average error exponent using Gallager's approach [22].

without further discussing the actual schemes. Given a sequence of channel statés and a sequence of
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predicted channel state%\r, the channel is equivalent to an Expressing (11) and (12) in terms &, the average error
additive white Gaussian noise (AWGN) channel. Hence, tipeobability F. is given by
conditional codeword error probabilif§. (¢, z ) is bounded — N (E(p,Q)—pRs)]

by [22] ) | P.e <2 % (15)
P(Enin) < o= NEx (1Q.6x )] 6) where E(p,C{)/ is given by
=F/F
forall N > 1 andp € [0,1]. Ex(p, Q,Cx,2y) is called the Elp. Q) B0, Q)
Gallager’s error exponent and is given by 1 [ [ fle]l2)f(z)
. = Ef 1Og2 - // =
L = 1 & - 4
EN(pv QvCNvZN) = _N ZIOgQ ~ - Q(‘/EJ | Zj) 2WT(2)
j=1 Yj Tj

/ </ Qx| 2)po(y | zc) f’“dw)pﬂ dy]

+1
= AN g —
X po(yj | Tjcizj) e+t dxj] dyj}. (7
X dcd/%}. (16)

To determine the average error probability, we have to
uncondition (6) w.r.t¢x andz . The average codeword error

e L To obtain a tight error bound, we have to minimiZew.r.t.
probability is given by

o @, p andT(¢). Sincep is a parameter which is not measurable

P, :/ P.(@y,2n)P(c1,31) - Pley, 2x) dén dzy N practice, the function®)(x | 2) and 7'(¢) are independent
in JEN of the parametep and hence, the optimization is decoupled.

(8) 1) Optimization wrt,o Define theaverage error expo-

whereP(c;, 2;) is the joint density of; and 2;. nent E,(p, Q, Rb)
By symmetry, theith channel symbolX; has2WT; i.i.d. (p,Q Ry) = [E(p, Q) — pRy]. (17)
components[X; 1,---, X; owr,]. Hence, Q(Z; | %) and

We first prove the following lemmas.

po(¢i | Zici%;) can be expressed using product forms as Lemma 1: For anyZ'(¢) andQ(X | Z), E in (16) satisfies
WL X the following properties:
=[] @@i;12) © O Lo _ .
j=1 (i 0< 5 < E;I(X;Y | CZ). Equality holds iffp = 0.
B 525
pol¥i | Tici%:) = H po(yi ;| zijci). (1o) (i) B < 0.
, _ =t _ Proof: Refer to Appendix C-1. O
Separating (8) into product oV integrals and using (6), Let
(9), and (10), the average error probabilffy is given by OF
P. < 2N (r.Q)—rR] (11) Ro = | (18)
_ p=
for all p € [0,1] andQ(x | 2) where F'(p, Q) is given by OF
_ P p=1
E(p,Q) = _10g2{ /2/67’(67 %) l/ <A Qx| 2) The following summarizes the general result of the opti-
Y ) mization w.r.t. p. X
. pt1 VTR Lemma 2: For anyT(¢) andQ(X | Z), the optimal error
X po(y | we)#+T dw) dy ded? (12) exponent is given by
E}(Q.Ry) € max Ey(p, Q. Ry) = B(p", Q) — PRy (20)
where p* € [0,1], a function of R, is given by
A. Variable Duration Scheme oF _ _
: A ~ . .. 6_/; :72(, ngbeSRo
Since {T1(#1), -+, Tn(2n)} is an ii.d. sequence and by L o=pr _ (21)
the weak law of large numbers [23] pr=1 By <Ry < 0.
1 . . Proof: Refer to Appendix C-2. O
v (D) + -+ I (Ey) Collecting the above results, we have the following theorem.

will converge in probability to£[73] = 1/E;, where the  1heorem1: For anyQ(X | Z) and T'(¢), if Ry < Ro,
expectation is taken w.r.t. the induced densiyZ). The then limy o o = 0.
average information bit rate (bits per secofitl) is given by Proof:  Consider

_ _ Y om 5 + IR,
5 def NR N0 OENQ,Ry) _ mpF Lo —Ru] — o
Ry = RE;. 13 e\, M) Opr _ LOp" AN
b T1+T2+'~~+T]\r - f ( ) 87@;, IR 9 P <0
dp* /7
Hence, we have

_ 5 12N (QR) _ _
R =Ry/E; (14) for Re € [HyBo]. 5= = ~1for Ry € [0, Ry].
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Hence, E} is strictly decreasing w.rtR,. At R, = Ry, Wwherez, is given by the solution of

p* = 0 and EX(Q*,R;) = 0. If Ry, < Ry, we have Ao(p") 28)
E*(Ry) > E*(Ry) = 0 and hence from (15)P. — 0 as 1p = — )
N — oco. O logs [fy Ua; Q*@poly | xzp)l/(p +) dx]p dy}
2) Optimization w.r.Q(x | 2): For simplicity, take@ to 2, is given by the solution of
be a capacity achieving distributiér@*, which maximizes the Aolp*)
mutual information. Given a channel state and a predicted I = (29)

*( prt+l
state Z;, the channel is memoryless and is equivalent to 1082 [f [, @ @poly | 22"/ (7" +1) da] dy}
an AWGN channel. By symmetry, the capacity achievingyuitively, a longer symbol duration should be used to encode
distribution [22], [1] Q@*(z;; | #;) would be a zero-mean R information bits when the predicted statés small.

Gaussian density with var|anoe§( = Fy/(2W). Since the  supstituting (27) into the constraints (24), (25), and (26),
vananceaX is independent of;, Q* (i | 2)is mdependent the constantdy(p*) is given by

of Z;; we shall drop the conditional notation d in Q" Ao(p")

hereafter. P41
The remaining problem is to minimizE, w.r.t. T(%). 1 / log / UQ X poly | z3)7 da:} dy
3) Optimization w.rtZ’(z): In this section, we minimize Ef 2

P. w.rt T(2). For any givenR,, take p = p* as in
(21) andQ(z) = Q*(x). Two situations, namely negligible . f(z)dz + log,
feedback delay and significant feedback delay, are considered

/ [ [ @@l oz dx} mdy]

as follows. oo .
a) Small feedback delaywe assume feedback delay is X / f(2)dz + log, [/ [/ Q" (z)
small relative to the channel coherence time. Thereftiig,= 0 v

i N 1 p*+1 oo . .

c(t — A) ~ c(t) and - poly | ma) 7 dx} dy} x/ f(%) dz}. (30)
fle] 2) — 8(c— 2). (22) S

By (22), rewrite P, in (15) as The optimal error exponent; (Q*,R;) is found by solving

the simultaneous equations of (20), (21) in Lemma 2, as well

B No' Ry f as (27) numerically for any give®®, € [0, Ro].
Fo<2 ®r EN / / </ Q( b) Large feedback delayWhen feedback delay is large,
(22) no longer holds. Since the integrandifis not separable
2WT;(4) w.r.t. ¢ and 2, it is not possible to obtain a closed-form
d;vj} (23)

L P+
X po(y | x2)em 7 da:) dy expression for the optimé&l(2). We shall investigate the effect

of feedback delay on the performance using the control rule

The optimization problem is equivalent to choosind? (27) instead.
{T\,T»,--- . Ty} that minimize P. in (23) under the 4) Overall Result of Optimizations for Variable Duration

constraints Scheme: Given Ry, take p*, Q*(x | 2) andT(2,R;) to be
F(3) . the optimal parameter, the capacity achieving distribution and
E; ). T(z) dz; =1 Vie[l,N] (24)  the optimal symbol duration control rule, respectively. The
o 5 ; solution of the average error exponehf (Q*, R;, A) with
T(f”) = VL'G [1. V] (25) delay A is given by the following.
T(%)< T, Viell,N]. (26) iy 0< Ry < Ri: UsingT(2,Ry) in (27) with p* = 1, the
Constraint (24) is due to the fact that total area under the solution is given by
induced density?(%;) should be equal to one. Constraint (25) EX(Q*, Ry, A) = E(1,Q%, A) — Ry (31)

is to set a lower limit oril’(2) so that2WT; > 2. Constraint _ ] o o
(26) is to set a peak limit o (%) so that symbol duration is 1) £ <Ry < Eo: UsingT(, R, ) in (27), the solution is

smaller than the channel coherence time. given by the following nonlinear parametric equations:
By the Calculus of Variations, it is shown in Appendix B Ry = w

that the optim& T'(2) is given by - o (32

— Er(QvavA):E(pvaA)_pr
T(2,Rs)

Ao(p™)

log, [ f, [ f, Q" @poly | 22)/0+1 da]” ™ dy]
= > 223, (27)  B. Variable Input Schemes

T, 5,>5>0

r = Because of the constant symbol duration, itguced den-
L, Z 2 sity in Section 1I-C is reduced to the standard fading density
5Although the capacity achieving distribution will not, in general, optimizef (¢, 2). Using similar techniques to Section IlI-A, the average

E(9)(p*, Q) for all Ry (and hence™), the obtained error bound can servecodeword error prObabI|It)PF is bounded by
as an upper bound.

6Sincep* is a function ofR,, T(%) is a function ofR, as well. P. < 2~ NE-(rQR) (33)
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where Using the normalized rate contrdR(2) = Rr(2), P. in
E.(p,Q,R) (33) is given by
_logQ{//2_[E(p7Q7C,£)_PR1f(C7 7::’) dcdé}} (34) P@ S {/ f(cl721)27[E(/7*7Q*,C1)*P7€1*1(21)] dcl dél} .
Ep,Q,C,P:’ . B O e ) R (2 A
( ) 1 " {/2 c flens2n)2 [E(p",Q" en)—pRrn( N)]dCN dZN}.
=W, logQ{ [ [ @l a1 e0m dy}. e A
Yy T

(35) The optimization problem is equivalent to choosing

To obtain a tight error bound, we have to minimiZ& {7’177’27'_"77’1\’} that minimizes P. in (39) under the
w.rt. p, Q(z | 2), andR(%). SinceQ(z | 2), R(2) and p constraints

are independent of each other, the optimization problem is / FGr(E)ds =1 Vi€ [1,N] (40)
uncoupled.
1) Optimization w.r.tp: Minimization of P. is equivalent ri(3) >0  Viel[l,N] (41)
to maximization of E,.(p, Q*,R). Define theoptimal error
exponentE*(Q*, R) as By the Calculus of Variations, it is shown in Appendix E
N ' that the optimal control rule is given b
E} (@ R) = max B, (p. Q" R) = E.(¢". Q" R). (36) > . Gg Y
I R *7 *77? - *7 *77? ? z 2 2
We first introduce the following lemma. r(2) = {()’ RIGT @A) (7, Q% 2)] 0< ;< 2
Lemma 3: For anyR(2), 8?E,./9p* < 0 for all p. ’ - (42)
Proof: Refer to Appendix D-1. O
The result of the optimization is summarized in Lemma 4where G(p*, Q*, 2) is given by
Lemma 4: For anyR(2), let p; be the roots of the equation
o e ooy (OF G(p" =log {/ fle| g2~ Flme C>dc} (43)
/ / f(c, 3)2—[1@7(/7,@,(:,4)—/77%(4)] <8_ — R(é)) dedz = 0. 2
0 0

“ and z; is given by the solution of

(37)
The optimal parametes* is given by 1 { (p*,Q*, % / f(z
* P1, p1 € [Oa 1] 38 R
P71 >1 (38)  Vf(3)ds
>l TG A dy = 1. (44)

Proof: The necessary condition fex to be the optimal
parameter is(9E,(p,Q*,R))/dpl,, = 0. By Lemma 3, |ntuitively, at small feedback delay;(z) is an increasing
d’E,/dp® < 0, and hence, the stationary point obtainedunction ofz and the control law implies that more information
p1, corresponds to the absolute maximum point. Furthermorsits per symbol should be carried if the predicted statis
OE,/dp is a decreasing function of. Supposep; > p2,  good. On the other hand, at large feedback defagnd c are
we havedE, /dpl,, > 9E,/dpl|,, = 0. Therefore,E, is an  independent and(#) tends to be independent &f suggesting

increasing function w.r.to for p < p;. Since the error bound that fixed-rate control will be optimal if the predicted state is
in (33) is valid only wherp € [0, 1], the optimal parametgr* not accurate.

is given byp* =1 if p; > 1. 0 4) Overall Result of Optimizations for Variable Input
Collecting the results from the two lemmas, we have the&cheme: Given an average code rafé, take p*, Q*, and
following theorem. 7(3) to be the optimal parameter, the capacity achieving

Theorem 2: For anyR(%), if the average code rat® % distribution, and the optimal rate control law, respectively.
JSOR(2)f(2) d, is less than or equal W6(X;Y | C,Z), Let R, = I(X;Y | C,Z) and R, > 0 be the solution of
then th_)OO P, =0. the equation

Proof: Refer to Appendix D-2.
2) Optimization w.r.tQ(z | 2):  Similar to Section IlI- A— / / fle, 2)27 Qe —Rir(5)]
1, take@(z | 2) as the capacity achieving distributié} (x
which is a Gaussian distribution with varlancé, P0/2W v <3_E
The remaining problem is to minimizE. w.r.t. R(2). p |,y

3) Optimization w.r.tR(z): In this section, we minimize ) _ _
P. w.rt. R(#). Using a normalized rate controR() = The optimal error exponert (Q*, R, A) at a feedback delay
Rr(3), we find the optimal normalized rate control func® iS given by the following.
tion, 7(2). For any givenR, take p = p* as in (37) and i) R, > R > 0: Using the rate control rule in (42) with
Q(z) = Q*(z). Unlike Section I1-A3, a general expression p* = 1, the solution is given by
for the optimal rate control function for both negligible and
nonnegligible feedback delays is derived. EN(Q"R,A) = E(1,Q", R, A). (46)

- Rﬂ’(é)) dedz =0. (45)
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i) Ry >R > R;: Using the rate control rule in (42), the Using the capacity achieving distributio®*, the mutual
solution is obtained by solving the following system ofnformation is given by
three nonlinear simultaneous equatibnsmerically

1 * * 5 - ) ) - * * s ol I(XZ“];Y;?J | CZZZ)
p*—ﬁ{G(p 7Q 721) . f(Z)dZ A G(p 7Q ,Z)f(Z) dZ} 1 7 r 02P0 . o
:1 B 2 = 5 /6/21082 <1 —+ W?’]O)f(c Z)P(Z) dz de. (49)

e, pyp- e -me@l (OF o goas _ _

o Jo ’ dp For the variable durationscheme, the feedback channel
=0 capacityC (in bits/sec) becomes
EXNQ*,R,A) 2p
=E.(p",Q",R,A). 47) C=WE;y //T(?) log, <1 42 0)

cJz WT]O
IV. CHANNEL CAPACITY FOR VARIABLE RATE SCHEMES x fle| 2) [Ei ;E’ﬂ d? de
f 4

In this section, we derive a general expression for chan-

2
nel capacity of Rayleigh fading channel with variable rate - W/f(c) log, <1+ c Po) /f(é | ¢) d2 de
transmission. Channel capacity is defined as follows. c Wio ) J:

Definition 1: A channel is said to have a channel capacity . ) ? Py
c> 0 if = W/cf(c)log2<1+ Wio de
(i) for everye > 0 andé > 0, 3 a channel code of rdte = Ciny) (50)

R = C — ¢ with block length N such that the error

probability is bounded above by VN > ng for some \yhere Cinysy) is the fixed-duration channel capacity without
no > 0. feedback. For theariable inputscheme (in bits/sec) be-

(ii) for every ¢ > 0, all codes with raték = C + ¢ cannot  comes(1(X;Y | CZ))/T,, which is equal to the fixed-rate

have asymptotically zero error probability 5— co.  channel capacityC(,.;»y as well. Hence, the variable rate

Lemma 5 (Converse): The channel capacityC (in schemes cannot increase the channel capacity of Rayleigh
bits/symbol) of a Rayleigh fading channel, with feedbackading channels.
of channel states to the transmitter using variable rate
transmission, is upper bounded By

ot o X V. RESULTS AND DISCUSSIONS
C<C = QI(T;%);) (XY | 02). (48) In a microcellular environment at 2 GHz with mobiles
moving at a maximum speed of 75 km/h, the coherence time
Proof: Refer to Appendix C-3. 0 is around 1 ms and the coherence bandwidth is around 2

Lemma 6 (Achievability): The channel capacity)¢ (in MHz. We choose the symbol rate, to be 40 ksym/s and the
b|ts/symbo|) of a Ray|e|gh fad|ng ChanneL with feedbacﬁystem bandwidth to be 800 kHz. Hence, the SyStem bandwidth
of channel states to the transmitter using variable rafe smaller than the coherence bandwidth and the average
transmission, is lower bounded Ig. symbol duration {/E; = 0.025 ms) is much smaller than

Proof: Assume thatC < Cp and letC < R < Co. For the coherence time. These justify the flat-fading assumption
thevariable durationscheme, by Theorem 1, there is at least®@ade in the channel model. Siné¥ = 800 kHz, 7; = 5 us
code of rateR that has asymptotically zero error probability aés sufficient to ensureWZ; > 2. For a fixed-duration system,

N — oo. However, this contradicts the definition of channdhe symbol duratiori’(z) is constant and is equal ty E.
capacity which states that no such code exists Vith- . Hence, T, = 1/E; is taken to be the reference symbol
For the variable input scheme, by Theorem 2, there is agluration. The channel normalized fading rate fisl, =
least a code of average rafé that has asymtopically zero2-5 x 1072,

error probability asN — oo. However, this contradicts the

definition of channel capacity which states that no such coge variable Rate Channel Capacity

exists withR > C. Hence, the result follows.

Combining the above two lemmas, we have the followin%
theorem.

Theorem 3: For any symbol duration control la®(z) or
rate control lawR (%), the channel capacity of a Rayleigh fad
ing channel with feedback of channel states to the transmit
using variable rate transmission is equalCtpin (48).

It is shown in Section IV that channel capacity is not
creased by variable rate control. This is intuitively correct
since in a large block, we have either the total block duration
approaches a constant value 8f £y [refer to (13)] for the
veariable durationscheme or the total number of information
E)l{s transmitted in a large block approaches the average code
rate, R for the variable input scheme. Hence, there is no
7The unknowns arg*, %;, and . difference with fixed-rate coding schemes asymptotically. The

8Code rate is expressed as number of information bits per channel symﬁaannel capacity in the example is equal to 616 kb/s at
and is given byR in our system. reference SNRE; /1o = 3 dB.



1352 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 47, NO. 9, SEPTEMBER 1999

0-8 T T T T T T T T T 0.8 |
07k i NN | 07 i
06L- i of‘dbak, ........... n 0.6 i
= N =Y £
2 =9 2
§0.5, SN N N N B . 8_0.5 4
= B >
L : ]
g =0: 8
1 0.4 - 7 5o4
o
8 g
E 0.3 R g O0.8F i N e NN e
5 £
z 2
0.2» ........... - 0-2 4
0.1 e N e R R . o 1 N
0 L i | | 1 1 t 1 0 | L | ¢ l | | l = L
6 or 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 08 1

Normalized bit rate Normalized Bit Rate

Fig. 4. Error exponent ofariable durationscheme for various feedback Fig. 6. Error exponent ofariable inputscheme atvarious feedback delays

delays. Delays are expressed as number of reference symbols. A (in number of symbols).
09 T T T T T . .
feedback delay is 18 symbols and 23 symbols respectively. At
0.8 . a feedback delay of 100 symbols, error exponentvariable
o7bo o NN | input scheme approaches the fixed-rate error exponent because

the optimal rate control rule would be a fixed rate control at
g such large feedback delay. The bandwidth expansion used in
the above calculation i$¥/R, = 1.3. Note that a 2-time
increase in error exponent means a 2-time reduction in coding
._ complexity (e.g. block lengthV) to achieve the same error
probability.

Normalized Error Exponent
o o ol o
w » wn (2]
T T T T

o
n
T

C. Bandwidth Expansion Consideration

o
HN
T

o We consider two extreme cases, a bandwidth expansion of
. . ; . ; 0.25 which models TDMA systems and a bandwidth expansion
0 0.2 04 i o oe 1 1.2 of 20 _vvhich models CDMA systems. Error exponent; of
the variable durationscheme for small and large bandwidth
Fig. 5. Error exponent ofariable durationscheme for various peak time expansion systems are shown in Fig. 7(a) and (b). For the
constraints. system with small bandwidth expansion (TDMA), there is a
significant 5.62-time increase in error exponenRat= 0.8C.
For the system with large bandwidth expansion (CDMA), there
is only a 1.5-time improvement in error exponent relative to
Although channel capacity is not increased by variable raf@ed-duration scheme at the sarf.
channel coding, the error exponent is increased significantlyThe error exponents for theariable input scheme with
compared with the fixed-duration error exponent. For thgnall (0.25) and large bandwidth expansion (20) systems
variable durationscheme from Fig. 4, the improvement ingre shown in Fig. 8(a) and (b). For systems with small
error exponent is three times the fixed-duration casBat  pandwidth expansion (TDMA), there is a significant 5-time
0.5C = 308 kb/s under ideal situationsX( = 0, 7}, = oo, increase in error exponent &, = 0.8C. For systems with
1; = 5 ps). The performance improvement is degraded to 2drge bandwidth expansion (CDMA), there is only a 1.1-time
times and 1.13 times if the feedback delay is 18 symbols apfprovement in error exponent relative to fixed-rate schemes
25 symbols, respectively. The effect of peak time constraigf the sameR,,.

1T}, is shown in Fig. 5. Define the ratio of peak to average Therefore, variable rate channel coding is more effective
symbol duratiort as¢ def T,/(E[T]) = E¢T,. With £ = 2.98 in high bandwidth-efficiency systems. This means that only
and¢ = 1.21, the improvement in the error exponent is 2.4@ limited gain can be achieved in high bandwidth-expansion
and 1.40 times, respectively. systems when very powerful capacity achieving codes are used
For thevariable inputscheme from Fig. 6, the improvementas the component codes in the construction of variable rate
in error exponent is 2.67 times &, = 0.5C = 308 kb/s with adaptive codes. However, a significant gain should be expected
negligible feedback delay compared with fixed-rate code. Thehigh bandwidth-efficiency systems even when very powerful

performance is degraded to 2.27 times and 1.73 times if tbemponent codes are used.

B. Variable Rate Error Exponent
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Fig. 7. Error exponents ofariable durationscheme in large and small Fig. 8. Error exponents ofariable inputscheme in large and small band-
bandwidth expansion. width expansion.
SUMMARY variable rate channel coding schemes have limited intrinsic

In this paper, we have evaluated the channel capacity #ins in CDMA systems compared with TDMA systems.
the error exponent of variable rate Rayleigh fading channel
using variable durationand variable inputschemes. Optimal APPENDIX A .
symbol duration control law and optimal input rate control law INDUCED PROBABILITY DENSITY ON Zx
are derived taking into account of feedback delay. Performance ) i
degradation w.r.t. feedback delay is also investigated. e One Dimension
found that channel capacity was not increased by variableWe first prove (4) in Section Il.
rate coding schemes for any control law. On the other hand, Proof: Define the induced probability densif(z) as
there was a significant increase in error exponent for both def
schemes. This means that less complex codes can be found P(2)6 = 11_1)00 /\/
to achieve the samé&, using variable rate adaptive coding.

Hence, instead of aiming at maximizing the channel capacégerejv‘% is the number of symbols witlt € (2,2 + 6] in a

by previous approaches, we should aim at maximizin gt;)ence%!\isymbols,l andSt_ls adsmatl_l lrr;f:resment ”i‘Zt
the error exponent with variable rate adaptive channel Serve _( ) over a long time duratiorf. SupposeZ(t)
s an ergodic random process, we have

coding.
For the dependence of the improvement on bandwidth lim 7: = f(2)6
expansion, we found that improvement was limited at large To—oo I

bandwidth expansion. On the contrary, significant gain result@ghere 7; is the total time thatZ(t) €[22 +6)and f(2) is
when bandwidth expansion was small. This suggests thaé fading density. HenceV: = 7:/T(%) = Tof(2)8/T(2)
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where T'(2) is the symbol duration (a function of) and where

N = [[N:dz =1 [, f(2)/T(%)dz. Therefore,

P+l
. f(®) Q(p* 7_[/</Q | )p+1d> d]
5y — 1 Jou> 2)poly | 2 fiy Yyl .
P(2) E/T(3) (51)
where ) By the Calculus of Variations [24], the necessary condition
Ey :/T—Af(é) dz. (52) for T;(%;) to be the optimal control |s% = 0 for all
: T(2) i € [1,N]. This implies
We shall show thaf; is the average symbol rate. Suppose G(p*, 2) i logy (G(p*, %) T = Ko

we observeZ() over a very long time intervally, then

= f(2)67o and there areZ:/T'(%) symbols during this where K, is a constant independent éf. This means that
t|me duration. By definition, the average symbol rate is th@(p*, 2,)2"*?* must be a constant for every Hence, the
number of symbols transmitted per unit time and is given yptimal 7'(2) is given by

J. T:/T(%) dz which is equal toE;.

We shall illustrate the use of this induced probability densnyT

in the following example.
Example 1: Suppose the symbol error probabiliB(2) is
conditioned org. To obtain the unconditional error probability,

we have to use thimduced densityn the integration given by whereK is determined by substituting back into the constraints
(24)—(26).

E:/g@m@&

Proof: The average number of symbol errors given that
Z € [3,2+6] is given byN: P.(%). By definition, the average
error probability is the total number of symbol errors divided
by the total number of symbols transmitted and is given byA

LR G [rere e

P, = lim
N
O

B. N Dimensions
For the ideal interleaved channg),andz; are independent.
Hence, theV-dimensional induced probability density N

is the product ofV one-dimensional induced densities
s s o L fRO) () f(3N)
Pn(21,22,-++,2N8) = EN TGOT () T(on) (53)

Extending Example 1 to theN dimensional and ideal in-
terleaving case, the unconditioned error probability is given

by

_ Sz Ne o NeyPe(31,- 00 2n) d2n
Fo= Jim G
= | Pn(Z1,--, An) (21, -+, 2N) dzn
ZN
APPENDIX B

OPTIMAL CONTROL RULE FOR VARIABLE DURATION SCHEME

The problem is to choosg!l (21),- -+, Tn(2n)} that mini-
mize P. under the constraints of (24), (25), and (26). We form
the ith Lagrange multiplier as

Np* Ry N
2 CE ,
Li(T) = = {/ 1) p* 2,2V d;:«j}
J#z
f(&) 5 \2WT; 1 (7/3)
X Gl A) b1 69

K

P+l
Eylog, [J [J Q*(x)poly | ©2)7 7T da?} dy}

(2) =

APPENDIX C
PROOF OF LEMMAS FOR VARIABLE DURATION SCHEME

. Proof of Lemma 1

Proof: From (16) and (7)£(p,

» — ¢,z f(cvé) s
E(pvQ):_EflogQ |:/c/22 En(p@Qe, )m dedz

(55)
0)
OFE N
_ [En(p.Q,c,2)] YZN
OF f L T 2 ap ——dcdz
— =E;
ap f f 2 [En(pQ,c,2)] dedz

Since dEN /9p > 0 [22], [1], we havedE/dp > 0.

Since
aET - A
N (X;Y |C=c,2=5%)
I |,=
and En(0,Q, ¢, 2) = 0, we have
/ fC7 _’;57|C':cZ:5)dcd7
ap p=0 cJz v

=E;I(X;Y | CZ)
(i) Since [22], [1]

E]\T(alpl + a2, Q7 &) 7:’)
> OélEN(pla Qa c, 73) + OéQEN(pQ, Q’ G, 73)

(7) can be expressed as
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for any «; + a2 = 1, we have we have
1. - L4 o=
E(a1p1 + azp2, Q R < Iy, Yy | Cy, Zy) +e (59)
> —Eylog, [//7’ () f(c|2) wheree = £ [1+P.NR]. Given any particula€y = &y and

ZN = gN, we have? — {Xl,---,XAf} — {Yi,---,f}v}

x 27l En(pn)tecEn(r)] ge di‘} and by the data processing inequality [18], we have

=K 1032{// 5y2- B0l Iy Yy, Yy | Cy =y, Oy =28)
S I(Xl, M -,XAf;Yl,- --,Y_:N CN = 6]\f,ZN = QN).
x [P(é)f(c | 7:3)2_[EN(/72) ]"2 de d;?} Hence .
a1 I( Yy, -+, YN | Cn,Zy)
[En(p1)] - o .
> —F; logQ{ [// (c] z)271Fvim dcd;«} _ [ ) Pa(zn, )Y, -, Yy
g CN,ZN
E; 2 — = — -
|:/c/~77 2)27 [En(p2)] dcd7:| } Cy =2y, Zy = 2y) din dzn
=aE pl,Q)‘f‘OéQE(P%Q) < / B PN(QN,EN I(X -XN Yi,"',?]\r
where the last inequality follows from the Holder's eviEn
inequality. Hence,E(p, Q) is a convex function inp Cy =2y, Zy =2y) dén dzy
and the result follows. O o S5 L L oz
== I(Xl,---,XN;Yi,---,YN CN,ZN)
B. Proof of Lemma 2 =NI(X;Y | C, 2). (60)
Proof: The necessary condition far= p* to maximize Substituting (60) into (59) and maximizing w. QX | A),
[E( Q) — pr] 6[E pr | ,—p» = 0. This gives we found that iflimx_,.. P. = 0, we havee — 0 and
8E - R <Cy= max I(XY|CZ) (61)
= =Ry. (56) QX17)
dp |, Assume that > Cy. By deflnition of channel capacity a
By Lemma 1(ii), we havea L I—oo £ = 0.

the stationary point obtalne¢, : corresponds to the absolute"'oWever this contradicts (61) which states that
maximum andR,; in (56) is a strictly decreasing function of A}un P.=0=R <.
p*. Hence, ap* increases from 0 to 1}, decreases fronk, o

— o _ . Hence, the lemma follows. O
to Ry and £, maximizes atp*. For Ry, < Ro, p* > 1. Since
OF ; i ;
2~ is a decreasing function of, we have
Ip " 9 - of APPENDIX D
oF S oF Ry >0 PROOF OF LEMMAS AND THEOREM FOR
dp p—pr 8p VARIABLE INPUT SCHEME

for 0 < p; < p*. Since the error bound in (6) is valid I%nlyA Proof of Lemma 3

whenp € [0, 1], E,. maximizes atp; = 1.
Proof: Since [22], [1]

C. PI’OOf Of Lemma 5 E(alpl +CY2927 Q7 G, 7?) > alE(plv Q7 G, 7?)+CY2E(p2, Q7 G, 7?)
Proof: The estimated indef is given by for any oy + a2 = 1, we have
Q= gV, Vx, Ox, Zn) Brlcrpr+ azpn,Q
whereg(Y1, -+, Yn,Cn,Zy) is a general decoding function. > —log, [//f ¢, 2)
The average codeword error probabil® is given by
P. =Pr[2 # Q). (57) x 27 lenlEle)=mRIFeclBle)=r R} g dﬁ}
By Fano’s inequality
- I _ = —log // 2)2” [F(p1)— P1R1]
H(Q|Y,---,Yy,Cn,ZNy) <1+ P.NR.  (58) 2
SinceI(Q;Yi, -, Yy, Cy, Zn) = H(Q) — HSQ | Yy, x [f(c, g)z*[E(Pz)*Pzn]]az dcd;?}
Yn,Cn,Zy), H() = NR because of equiprobable input )
and _ —logQ{[//f ¢, 2)2 7 [Flp)=mR] dcd?}
I Y1, YN, Cn, Zy)
:I(Q§Y17"'7YAT é]\r,ZN)-l-I(Q;GN,ZN) [/ fle,2)27 [Ep2) = pzded’“} }
II(Q;Y_E,---,Y_:N (_jNZN) (I(Q;(_j]\r,ZN) = ) —OélET(pl,Q)—i-OéQET(pQ,Q)
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where the last inequality follows from the Holder’s inequalityand is given by the roots of the equation

Hence, E.(p, Q) is a convex function inp and the result 1

follows. O R
B. Proof of Theorem 2
Proof: Express the code ratB(%) as
R(2) = Rr(2) (62)

where [° r(2)f(2) d2 = 1. Let p; be the roots of (37). From
Lemma 4, ifp; > 1, the optimal parametes* = 1 and we
have

OEr f I (e, 2)r(z)2-1ECQue AR e ds (1]

oR [ [ (e 2)2 —[E<1:Q:c:z>—7’%r<z“>1 ded [2

(3]
(4]
(5]
(6]

if p1 € [0,1], the optimal parametep* = p;, and we have
oE; _
OR
o+ J. [z e, 2)27 B Qe = Rr)] [% - ﬁr(é)} deds
IR I f f ¢, )2 [E(.Qe )= Re(9)] de d?
f f f(e, 2)
g I f(e2)2 —[E(n*,Q,c,z)—p*Rr<z)] ded?
From Lemma 4, [, f(c ?) *[E</’*7Q7C7Z")*/’%”(Z")][gTFj -
Rr(2)]deds = 0. Hence, 2% < 0 and EX(Q, 7?) is strictly

' OR
decreasing w.r.tR. At p* = 0, from (37) R = I(X Y | CZ)

“B(0".Q.e.2) 0" R3] de ds (7]

(8]

El

and E* = 0. Therefore, ifo < R < I(X;Y | CZ), Ef > 0. [10]
Take N — oo, P. =0.
[11]
[12]
APPENDIX E
OPTIMAL CONTROL RULE FOR VARIABLE INPUT SCHEME
The optimization problem is to choog®,,---, Ry} that [13]

minimizes P. in (39) under the constraints of (40) and (41).

The ith Lagrange multiplier is given by [14]
N o - [15]
11 /0 Flej,2)2- 1@ Q ) =0R Gl o, s,
o [16]

26" Q" 20+p" Rei(Z) _ g (53, (63)

By the Calculus of Variations [24], the necessary conditio[r%n
for r;(2;) to minimize P. under the constraints of (40) andI18]

(41) is §& = 0 which is given by [19]
2lG(".Q" 2040 Rri 0l = constant (64) 120
This gives
. v oy s [21]
ri(%) = R[Ko— G(p*,Q", 2)]
[22]
WLOG, we drop the mdex Sincer(2) is an increasing func- 23]
tion of 2 and the constraint (41) requireso be nonnegative,
r(2) is given by [24]
7(7::): {ﬁ[G(p*vQ*vél)_G(p*vQ*vé)]v %Z%l
0, 0<2< 4

=1
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