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Interface Properties of NO-Annealed
N O-Grown Oxynitride

P. T. Lai, J. P. Xu, and Y. C. Cheng,Member, IEEE

Abstract—The oxide/Si interface properties of gate dielectric
prepared by annealing N2O-grown oxide in an NO ambient
are intensively investigated and compared to those of O2-grown
oxide with the same annealing conditions. Hot-carrier stressings
show that the former has a harder oxide/Si interface and near-
interface oxide than the latter. As confirmed by SIMS analysis,
this is associated with a higher nitrogen peak concentration near
the oxide/Si interface and a larger total nitrogen content in the
former, both arising from the initial oxidation in N 2O instead
of O2:

Index Terms—Gate dielectrics, hot-carrier stress, MOS devices,
MOSFET’s, nitridation, oxide/Si interface, oxynitrides.

I. INTRODUCTION

CURRENTLY, for satisfying the needs of scaled MOS-
FET’s, a high-quality thin gate dielectric is desired

because the properties of conventional SiOfilms are not
acceptable for these very small-sized transistors [1]–[3]. As an
alternative gate dielectric, oxynitrides have drawn considerable
attention due to their superior performance and reliability
properties over conventional SiO[4]–[8]. However, NH -
nitrided oxides suffer from hydrogen-related electron trapping
problems [5], [6] while NO-based oxides require a much
higher thermal budget for sufficient nitrogen incorporation [9],
[10]. To avoid these disadvantages of NHand N O, nitric
oxide (NO) has been proposed as a dielectric-growth/anneal
ambient to obtain high-quality ultra-thin dielectric films [8],
[11]–[16]. Furthermore, NO annealing of an initial oxide
grown in pure oxygen is preferred to prepare oxynitride with
sufficient thickness in a reasonable growth time, considering
the self-limiting nature of the growth process in an NO
ambient. Recent studies show that if the initial oxide is
grown in N O instead of O and then annealed in an NO
ambient, suppressed boron penetration and poly-gate depletion
can be achieved [17]. In this work, by studying its hard-
ness against various kinds of hot-carrier bombardments, it is
further demonstrated that oxide/Si interface properties of the
NO-annealed NO-grown oxynitride are also superior. The
physical mechanisms involved are analyzed by considering
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interfacial nitrogen profile determined by secondary ion mass
spectroscopy (SIMS).

II. EXPERIMENTAL

The n-channel MOSFET’s and MOS capacitors used in this
study were fabricated on p-type (100) silicon wafers with a
resistivity of 6–8 -cm by a self-aligned n polysilicon gate
process. Gate oxides were grown in a conventional horizontal
furnace in either dry O or pure N O ambient at 950 C to
the same thickness of 70̊A. Then, they were annealed in a
pure NO ambient at 950C for 30 min (denoted as ONO
for O growth and N2ONO for NO growth, respectively)
to achieve better oxide/Si interface qualities. Final oxide
thickness measured by C-V technique was 82Å for ONO
sample and 74̊A for N2ONO sample. Control sample with a
film thickness of 80Å was thermally grown also at 850C in
dry O (denoted as OX). All gate oxides finally received anin
situ N anneal at 950C for 20 min. Several kinds of stresses
were applied on the transistors and capacitors to study their
interface and charge trapping characteristics:

1) maximum-substrate-current stress at V,
V;

2) Fowler–Nordheim (FN) constant-current stress with
electron injection at 10 mA/cmfrom the substrate;

3) low- hot-hole stress at V, V on the
transistors;

4) FN constant-current stress with electron injection at
10 mA/cm from the gate of the capacitors, and the

oxide/Si interface as the collecting electrode and the
site of heavier damage.

Device performances were characterized by the changes
of peak linear transconductance threshold voltage

and subthreshold slope of the nMOSFET’s,
and increase in mid-gap interface-state density
and change in gate voltage during stressing with a
constant current density on the MOS capacitors. Two channel
length/width (L/W) ratios of the MOSFET’s (1.2m/24 m
and 100 m/100 m) were used with the latter for the stress
(2) to eliminate edge effects, while the area of the capacitors
was 10 cm All measurements were carried out under
light-tight and electrically shielded condition.

III. RESULTS AND DISCUSSIONS

Firstly, the hardness of the oxide/Si interface is evaluated
by the increase of the mid-gap interface-state density obtained
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Fig. 1. Increase in midgap interface-state density(�Ditm) of MOS ca-
pacitors with different gate dielectrics under a constant-current stress of
�10 mA/cm2:

Fig. 2. Degradation ofGm after the maximum substrate-current stress at
VD = 8 V andVG = 3:5 V for 2000 s (at zero injection time) and subsequent
recovery of�Gm with hole injection atVD = 8 V and VG = 1 V on the
transistors with W/L= 24/1.2�m.

from high-low frequency C-V measurements, after a constant-
current stress at 10 mA/cm on the capacitors for different
injection times. of fresh device is 4 10 cm eV
for OX sample and 7 10 cm eV for the two nitrided
samples. As shown clearly in Fig. 1, the two nitrided samples
exhibit greatly suppressed creation of oxide/Si interface states
as compared to OX sample due to interfacial nitrogen incorpo-
ration, with N2ONO sample slightly better than ONO sample.
Furthermore, a maximum-substrate-current stress ( V
and V for 2000 s) is used to characterize the
oxide/Si interface of the transistors (W/L 24/1.2 m). Since
both electrons and holes are injected during this stress, a
subsequent hole injection at V and V is
employed to eliminate the effects of electron trapping near
the interface on Fig. 2 shows the post-stress (at
zero injection time) and the change of with subsequent
hole injection. It can be seen that both post-stress and
its recovery due to the neutralization of near-interface trapped

Fig. 3. Degradation of subthreshold slope(�S) under channel-hot-electron
stress with a constant current density (10 mA/cm2) and source/drain grounded,
on the transistors with W/L= 100/100�m.

Fig. 4. Threshold voltage shift after a hot-hole stress atVD = 8 V and
VG = 1 V for 2000 s (curve A) and subsequent short electron injection
phase atVD = VG = 8 V for 20 s (curve B) on the transistors with W/L
= 24/1.2 �m.

electrons by injected holes are smaller for N2ONO than ONO
sample. This, on one hand, indicates that the oxide/Si interface
of the former is harder than that of the latter, and on the
other hand, electron trapping near the interface is also less
for the former. In addition, a FN constant-current stress at
10 mA/cm with source and drain grounded is also carried
out on the transistors with W/L 100/100 m. As distinct
from the above hot-carrier stress, which results in nonuniform
degradation along the channel direction, FN electron-injection
stress leads to a uniform damage in the gate oxide. Fig. 3
gives the degradations of subthreshold slope of the three
devices under the FN stress with electron injection from the
substrate Once again, a smaller for N2ONO
sample than ONO sample is found.

Moreover, generation of neutral electron traps in N2ONO
oxynitride is also greatly suppressed. Fig. 4 shows the
threshold-voltage shift after a hot-hole stress at V
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(a)

(b)

Fig. 5. SIMS profiles of nitrogen for two oxynitrides: (a) N2ONO oxynitride,
and (b) ONO oxynitride.

and V for 2000 s (curve A) and a subsequent short
electron-injection phase at V for 20 s (curve B)
on the transistors with W/L 24/1.2 m. Shifting of curve
A to curve B is due to the compensation of trapped holes and
filling of neutral electron traps by injected electrons. Thus the
smallest for N2ONO sample implies the least neutral-
electron-trap generation and hole trapping in the gate oxide
of this device.

The above facts unanimously suggest that a double nitri-
dation with N O oxidation followed by NO annealing can
lead to a harder oxide/Si interface and near-interface oxide
than a single NO nitridation. This is certainly related to their
different nitridation mechanisms and thus different nitrogen
distributions near the oxide/Si interface because it is believed
that excellent endurance of oxynitride is due to the pile-up
of nitrogen at the oxide/Si interface [18], [19]. The SIMS
profiles of nitrogen for the two oxynitrides are shown in Fig. 5.
It can be clearly seen that there is a higher nitrogen peak
concentration for N2ONO sample than ONO sample.

Fig. 6. Change in gate voltage of MOS capacitors under a constant-current
stress of�10 mA/cm2:

Moreover, the location of is almost at the interface
for N2ONO sample, while it is inside the Si substrate for
ONO sample. Thus the total nitrogen content in N2ONO
oxynitride is more than that in ONO oxynitride since the
two nitrogen profiles have almost identical width at half of
the peak value (30Å for N2ONO oxynitride and 32̊A
for ONO oxynitride). This results in the formation of more
strong Si-N and N-O bonds in N2ONO oxynitride than in
ONO oxynitride, and thus a harder interface and near-interface
oxide. For N2ONO oxynitride, the higher is due to
additional incorporation of nitrogen during the NO oxidation
and the position is determined by the combined effect of
N O and NO nitridations, with resulting of N O nitridation
inside the oxide [20] while subsequent NO nitridation moving
the peak toward the oxide/Si interface by depleting nitrogen
in the oxide bulk and accumulating nitrogen at the oxide/Si
interface. Also the smaller thickness increase of N2ONO
oxynitride (4 Å) than that of ONO oxynitride (12Å) after
NO annealing implies that better oxidation resistance can be
obtained when the initial oxide is grown in NO ambient,
which is also one of reasons for its higher

Finally, as a supplemental evaluation, electron trapping
properties of the three samples are characterized by the change
in gate voltage to maintain a constant-current density
of 10 mA/cm on the capacitors. As shown in Fig. 6, the
electron trapping property of N2ONO oxynitride is slightly
poorer than that of ONO oxynitride. This is associated with
more nitrogen in the bulk of N2ONO oxynitride than ONO
oxynitride, because bulk nitrogen degrades the breakdown
characteristics of oxynitrides which are related to electron
trapping [20]. The more bulk nitrogen in N2ONO oxynitride
should come from the NO furnace oxidation, which results
in nitrogen incorporation throughout almost the whole oxide
[20]. Fortunately, the bulk nitrogen can be reduced by the NO
annealing through a possible reaction [21]:

Si-N-Si NO Si-O-Si N

As demonstrated in Fig. 5(a), nitrogen concentration is indeed
rather low in a large portion of the oxide after the NO
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annealing. It is expected that if the NO-annealing time is
properly optimized, the remaining bulk nitrogen can become
negligible.

IV. SUMMARY

Compared to NO-annealed O-grown oxide, NO-annealed
N O-grown oxynitride shows better oxide/Si interface and
near-interface oxide qualities. As a result, longer endurance
of the latter against hot-carrier stresses is observed. This is
attributed to higher interfacial nitrogen concentration and total
nitrogen content resulting from the double-nitridation process.
On the other hand, more nitrogen in the bulk of the former is
responsible for its slightly poorer electron-trapping properties,
which can be removed by optimizing the NO-annealing step,
and thus minimizing the bulk nitrogen content without de-
creasing the interfacial nitrogen concentration. Higher nitrogen
concentration at the interface is also beneficial to resist dopant
penetration through the gate oxide, especially in ppoly-gate
p-MOSFET’s of dual-gate CMOS technologies. Therefore,
NO-annealed NO-grown oxynitride could be a highly reliable
gate dielectric for future-generation MOS devices.
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