<table>
<thead>
<tr>
<th>Title</th>
<th>Combined diversity sequence estimation receiver for wideband digital mobile radio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Lam, WH; Chang, KC; Lo, CM</td>
</tr>
<tr>
<td>Citation</td>
<td>Electronics Letters, 1999, v. 35 n. 5, p. 374-375</td>
</tr>
<tr>
<td>Issued Date</td>
<td>1999</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/42814</td>
</tr>
<tr>
<td>Rights</td>
<td>Creative Commons: Attribution 3.0 Hong Kong License</td>
</tr>
</tbody>
</table>
Combined diversity sequence estimation receiver for wideband digital mobile radio

W.H. Lam, K.C. Chang and C.M. Lo

An investigation is presented into the performance of a novel type of sequence estimation equaliser receiver. The receiver incorporates space diversity to further enhance the signal reception in multipath fading environments. It is shown that the receiver complexity is reduced by 90% with virtually no performance loss compared to that of the MLSE.

Introduction: Efforts have been made to increase the data rate over radio links to enable the provision of advanced wideband mobile radio services. Maximum likelihood sequence estimation (MLSE) implemented by the Viterbi algorithm (VA) is an optimum detection technique for digital signalling over ISI-corrupted channels. Adaptive MLSE can thus be obtained when a channel sounder is used for the periodical acquisition of the time varying channel impulse response. In this Letter, a novel type of combined space diversity and sequence estimation equaliser receiver is proposed. The proposed equaliser, which is equipped with a least sum of squared-error (LSSE) channel sounder [1], employs a combined version of two low complexity algorithms, namely, the decision feedback sequence estimation (DFSE) algorithm [2] and the T-algorithm [3]. In addition, maximal-ratio combining (MRC) and equal-gain combining (EGC) schemes [4] have been investigated.

Fig 1 BER performance of DFSE(m,k,t) and EDFSE(m,k,t) receiver over HTS0 channel at three different bit rates

Table 1: Excess delays, mean delays, delay spreads and normalised delay spreads of two different GSM specified radio channels

Transmission system: In our study, the radio channel was assumed to be wide-sense stationary and we adopted the GSM specified mobile radio channel COST 207 models [5], including the badly urban (BU) and hilly terrain (HT) models. As shown in Table 1, the root-mean-square (RMS) delay spread τ_{RMS} is the mean excess delay τ and the normalised delay spread τ_{NRM} of the time varying channel. Without loss of generality, we adopted the GSM data signalling format but with different transmission bit rate. Each TDMA timeslot consists of $L = 148$ binary data bits α arranged as

$$\alpha = (\alpha_0, \alpha_1, ... ,\alpha_{L-1}) = (\alpha_{L-1}, \alpha_{L-2}, ... ,\alpha_0)^T$$

where the superscript T signifies the transpose operator. The binary data sequence α is 0.3 GMSK modulated and has a modulation index h_i of 0.5. Notice that LSSE channel sounding could provide an estimated channel impulse response of up to 10 bit periods, i.e. $L' = 10$.

Combined diversity sequence estimation: The maximum likelihood (ML) detector is used to estimate an ML sequence α from every possible transmitted sequence $\hat{\alpha} = (\hat{\alpha}_0, \hat{\alpha}_1, ... ,\hat{\alpha}_{L-1})$. Each of the possible transmitted sequences is assigned a metric to indicate the degree of likelihood to the transmitted sequence α. The VA utilises a trellis state diagram to implement the MLSE (VA-MLSE). At any time instant, the path metric corresponding to state S_i can be written in recursive form as

$$\Gamma_i(S_i) = \Gamma_{i-1}(S_{i-1}) + \gamma_i(S_{i-1} \rightarrow S_i)$$

where $\Gamma_i(\cdot)$ is the accumulated path metric for state S_i, $\gamma_i(\cdot)$ is the branch transition metric, a function of the state transition from S_{i-1} to S_i given the input of $\hat{\alpha}_i$, defined by

$$\gamma_i(S_{i-1} \rightarrow S_i) = |r_i - \hat{r}_i(S_{i-1}, \hat{\alpha}_i)|^2$$

where r_i is the baseband received signal, \hat{r}_i is the estimated channel impulse response of h and $S_i = (s_i, s_{i-1}, ... , s_1)^T$ is the transmitted signal vector corresponding to the hypothetical transmitting sequence. When two or more transmitted sequences converge to the same state S_i, only the survivor having the best metric value (i.e. of the smallest value) is retained. As the number of trellis states increases exponentially with the total length of the system memory L_L, the implementation is thus prohibitive for large L_L. The complexity of the VA-MLSE can be reduced by adopting a smaller number of trellis states. The DFSE achieves this goal by transmitting the Viterbi equaliser's channel memory L_DFSE and incorporating a DFSE-like feedback mechanism into the structure of the Viterbi equaliser. The trellis state of a DFSE can be obtained by removing k of the state variables from the ML state as follows:

$$S_{i-k} = S_{i-k} - 1 \rightarrow S_i$$

is given by

$$\gamma_i(S_{i-k} \rightarrow S_i) = |r_i - \hat{r}_i(S_{i-k}, \hat{\alpha}_i)|^2$$

For the T-algorithm receiver, it is essentially the same as the VA-MLSE with the insertion of a rejection test after each trellis update. The rule will reject a path if its path metric Γ_i exceeds the best-valued metric Γ_k by a certain threshold value t. To cope with the dynamic nature of the channel, a time-varying threshold parameter t_i is proposed [6] and given by $t_i = (\Gamma_k - \Gamma_\text{L}) \times t$, where Γ_L is the worst-case (largest-valued) metric and t is a weighting parameter in the range (0,1). Without loss of generality, the DFSE and the T-algorithm can therefore be combined and specified as a class of generalised DFSE receivers denoted as DFSE(k,i). Furthermore, the proposed receiver which incorporates a space diversity branch into the Viterbi equaliser is also investigated. The notation DFSE(m, k, t) signifies the nth order space diversity DFSE(k,i) receiver and the prefix 'E' is added, EDFSE(m,k,t), to denote the deployment of the enhanced channel estimate of $L' = 10$ instead of $L' = 5$. When MRC space diversity is employed, the branch transition metric γ_i^{MRC} is given by

$$\gamma_i^{\text{MRC}}(S_{i-k} \rightarrow S_i) = \sum_{m=1}^{L_\text{M}} E_{b_m} \gamma_m(S_{i-k} \rightarrow S_i)$$

where L_M is the number of diversity branches, γ_m is the branch metric γ at the mth antenna and E_{b_m} is the estimated channel energy. When EGC space diversity is employed, estimation of the
channel energy is not required and the resultant state transition metric \(\gamma_m \) is simply equal to the sum of all the transition metrics in the space diversity branches, i.e.

\[
\gamma_m(S_{m-1} \rightarrow S_m) = \sum_{n=1}^{L_m} \gamma_m(S_{m-1} \rightarrow S_n)
\]

Table 2: \(E_b/N_0 \) at BER = 10^-4 and average number of survivors for DFSE\((m,k,t)\) receivers over BU50 channel at transmission bit rate of 500kb/s.

<table>
<thead>
<tr>
<th>(m)</th>
<th>(\tau = 0.2)</th>
<th>(\tau = 0.4)</th>
<th>(\tau = 0.6)</th>
<th>(\tau = 0.8)</th>
<th>(\tau = 1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>145</td>
<td>120</td>
<td>118</td>
<td>118</td>
<td>118</td>
</tr>
<tr>
<td>1</td>
<td>152</td>
<td>120</td>
<td>118</td>
<td>118</td>
<td>118</td>
</tr>
</tbody>
</table>

Average number of survivors for DFSE\((m,k,t)\)

<table>
<thead>
<tr>
<th>(m)</th>
<th>(\tau = 0.2)</th>
<th>(\tau = 0.4)</th>
<th>(\tau = 0.6)</th>
<th>(\tau = 0.8)</th>
<th>(\tau = 1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>70</td>
<td>71</td>
<td>71</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>1</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
</tbody>
</table>

Results and conclusion: The BU50 and the HT50 GSM-GSM channel models with a maximum Doppler shift frequency of 42Hz were employed for the transmission bit rates \(R \), ranging from 271kb/s to 1Mb/s. The severity of the resultant time dispersion varies for different bit rates is specified by the normalised delay spread \(\tau \), as shown in Table 1. The memory for all the Viterbi equalisers remains at \(2L_2 \) kbit/s to 1 Mbit/s. The severity of the resultant time dispersion increases with increasing transmission bit rate. Despite the second-order space diversity gain of 8.5dB at a BER of 10^-4 and \(R \approx 271 \) kbit/s, irreducible BER floors appear at higher transmission bit rates due to the relative increase in excess delay. For instance, the BER floors for the DFSE\((1,0,1)\) are equal to \(0.2 \times 10^{-2} \) and \(0.4 \times 10^{-2} \) for transmission bit rates of 500kbit/s (i.e. \(\tau = 3.3 \)) and 1Mb/s (i.e. \(\tau = 6.7 \)), respectively. When \(R \approx 500 \) kbit/s, the deployment of EDFSE\((1,1)\) reduces the BER floor to \(0.4 \times 10^{-2} \). The use of second-order space diversity reception further reduces the BER floor by an order of magnitude over that of the DFSE\((1,0,1)\) receiver. When the BER is further increased to 1Mbit/s, the introduction of space diversity reduces the error floor from \(4 \times 10^{-2} \) to \(5 \times 10^{-3} \) for the DFSE\((1,0,1)\) equaliser. As shown in Table 2, the receiver complexity can be reduced by using the DFSE algorithm and the T-algorithm specified by the parameters \(k \) and \(t \), respectively. Observe that the DFSE\((2.0.2)\) requires 11.6dB in \(E_b/N_0 \) to achieve a BER of 10^-4 compared to that of 7.0dB for the DFSE\((2.0.1)\). However, the complexity of the receiver is reduced by \(\approx 90\% \) compared to that of the MLSE receiver with virtually no performance degradation when \(k = 1 \) and \(t = 0.6 \).

© IEE 1999 Electronics Letters No. 19990288

DOI: 10.1049/el:19990288

W.H. Lam, K.C. Chang and C.M. Lo (Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong)

E-mail: whlam@eee.polyu.edu.hk

References

Design of coded FPM with lower modulation index for fading channels

Q. Zhang, V.K. Dubey and E. Gunawan

The design of coded frequency and phase modulation (FPM) with lower modulation index for fading channels is discussed. An asymmetric constellation is introduced to improve its performance. The proposed trellis coded modulation scheme is particularly advantageous in Rician fading channels with less severe fading conditions.

Introduction: It is well known that the design criterion for trellis coded modulation (TCM) systems over additive white Gaussian noise (AWGNN) channels is the maximisation of the Euclidean distance of the shortest error event path \(d_{\min} \). However, in a Rayleigh fading channel, the criteria for optimum code design are the length \(L_{\min} \) of the shortest error event path and the product \(P \) of branch distance along that path [1]. For Ricean fading channels where stronger direct signal paths exist, the performance is affected by all the time quantities, i.e. \(d_{\min}, L_{\min}, \) and \(P \). Therefore, in mobile communications environments, the optimum trellis codes are those which are optimised with respect to these three quantities.

Padovani and Wolf [2] integrated TCM with combined frequency and phase modulation (FPM) and showed that TCM/FPM can achieve additional gains over conventional TCM/PSK modulation. Moreover, Pertotalvar and Fleischer [3] showed that MTCM/FPM with a comparatively higher modulation index \(h \geq 0.5 \) can be optimised with respect to all three quantities and is optimum for both AWGNN channels and fading channels. However, for the case of lower modulation index, MTCM/FPM does not perform well.

In [4], it is shown that coded FPM can be optimised by introducing asymmetric constellations and the optimisation is more efficient for lower modulation index. In this Letter we aim to investigate the design of coded FPM with small modulation index over fading channels. An asymmetric constellation is exploited to improve the performance of TCM/FPM over fading channels. It will be shown that coded TCM/FPM as well as MTCM/FPM with a asymmetric constellation can be optimised to satisfy the design criteria for all the three quantities.

Coded FPM with asymmetric constellation for fading channels: As in [4], the asymmetric constellation can be composed of two signal subsets with rotation angle \(\alpha \). For example, the combined two frequency and four phase constellation is plotted in Fig. 1, where \(\phi \) represents the twisted angle of two frequency planes. The resulting constellation is incorporated into the trellis code in accordance with a mapping rule.

The design of TCM/PSK and MTCM/PSK schemes for fading channels has been studied in depth [3]. Optimum TCM codes for fading channels have been exhaustively investigated. Here, these TCM optimum codes are employed for TC-FPM. Similarly, the set partitioning methods [2, 3] developed for MTCM/PSK over fading channels are also employed for MTCM/FPM:

\[
E = \begin{bmatrix}
0 & 0 \\
1 & 5 \\
2 & 2 \\
3 & 7 \\
4 & 4 \\
5 & 1 \\
6 & 6 \\
7 & 3 \\
\end{bmatrix}, \quad F = \begin{bmatrix}
1 & 0 & 1 & 4 \\
1 & 1 & 7 \\
2 & 6 \\
3 & 3 \\
4 & 0 \\
5 & 5 \\
6 & 2 \\
7 & 7 \\
\end{bmatrix}, \quad G = \begin{bmatrix}
0 & 2 & 6 \\
1 & 7 & 3 \\
2 & 8 & 0 \\
3 & 1 & 5 \\
4 & 6 & 1 \\
5 & 5 & 7 \\
6 & 0 & 4 \\
7 & 7 & 1 \\
\end{bmatrix}
\]

The resulting TCM/FPM and MTCM/FPM schemes are both optimised by maximising the values of \(P \) and \(d_{\min} \) with respect to \(\alpha \) and \(\phi \).