<table>
<thead>
<tr>
<th>Title</th>
<th>Dynamic behavior of double-tapered-waveguide distributed feedback lasers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yu, SF</td>
</tr>
<tr>
<td>Citation</td>
<td>IEEE Journal of Quantum Electronics, 1997, v. 33 n. 8, p. 1260-1267</td>
</tr>
<tr>
<td>Issued Date</td>
<td>1997</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/42766</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.; ©1997 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.</td>
</tr>
</tbody>
</table>
Dynamic Behavior of Double-Tapered-Waveguide Distributed Feedback Lasers

S. F. Yu

Abstract—Dynamic behavior of a double-tapered-waveguide (DTWG) distributed feedback (DFB) semiconductor laser is analyzed theoretically. It is found that the relaxation oscillation frequency can be enhanced by the DTWG structure especially for DFB lasers with large coupling-length product.

Index Terms—Distributed feedback lasers, double-tapered waveguide, modeling, semiconductor lasers.

I. INTRODUCTION

RECENTLY, double-tapered-waveguide (DTWG) distributed feedback (DFB) semiconductor lasers with buried heterostructure (BH) is proposed: 1) to reduce the influence of longitudinal spatial hole burning (SHB); 2) to maintain single-mode operation; 3) to minimize power density at facets; and 4) to reduce threshold current density [1], [2]. Extensive studies have verified that stable single-mode and high-power operation can be achieved in DTWG-DFB lasers with large coupling-length product ($\kappa L > 2\Omega$) [2]. However, the relative important characteristics of DTWG-DFB lasers, the dynamic response under direct electrical modulation, has not been considered in their investigation.

In the rate-equation analysis, it has been shown that the square of relaxation oscillation frequency is directly proportional to the magnitude of lateral confinement factor [3]. Furthermore, the damping rate and relaxation oscillation period can be reduced significantly by the combined longitudinal and lateral effects especially for devices with strong lateral optical confinement and large coupling-length product ($\kappa L > 2\Omega$) [4]. This is due to the induced gain compression [5] and the nonuniform distribution of refractive index profile [6]. Therefore, it is expected that the relaxation oscillation frequency of DTWG-DFB lasers exhibits differently to the uniform waveguide DFB lasers. This is because: 1) the longitudinal distribution of lateral confinement factor as well as 2) the combined longitudinal and lateral SHB effects are dependent on the waveguide dimension (i.e., length and width of the tapered and phase-adjustment region) of DTWG-DFB lasers. The above paragraph has explained that: 1) the longitudinal variation of lateral confinement factor; 2) the lateral SHB and carrier diffusion; and 3) the longitudinal SHB and refractive index distribution can have influence on the dynamic response of the DTWG-DFB lasers. However, in order to improve the dynamic behavior of the lasers, it is necessary to clarify their connection with the relaxation oscillation frequency of the devices and this forms the objective of this paper. In Section II, a self-consistent model including the combined longitudinal and lateral SHB effects as well as carrier diffusion is utilized to study the dynamic behavior of DTWG-DFB lasers. The spatial filtering effects of the tapered waveguide sections are also taken into account by using the effective index method [7]. Using the steady-state approximation, relaxation oscillation frequency of DTWG-DFB lasers is derived analytically. In Section III, the influence of double-tapered geometry on the modulation response of DFB lasers is studied numerically. Finally, a brief conclusion is given in Section IV.

II. NUMERICAL AND ANALYTICAL ANALYSIS OF DTWG-DFB LASERS

A. Numerical Model of DTWG-DFB Lasers

The propagation of forward and reverse fields, $F(z,t)$ and $R(z,t)$, along the laser cavity with tapered waveguide can be described by the modified coupled wave equations as follows:

$$
\left(\frac{1}{v_g} \frac{\partial}{\partial t} \mp \frac{\partial}{\partial z} \right) \begin{bmatrix} F \\ R \end{bmatrix} = \frac{1}{2} \left(\Gamma_e g(z,t) - \alpha_s \right) + i \delta\beta(z,t) \begin{bmatrix} F \\ R \end{bmatrix} + \hat{\rho}(z) \begin{bmatrix} F \\ R \end{bmatrix}
$$

where v_g is the group velocity, Γ_e is the transverse confinement factor, and α_s is the absorption and scattering loss in the waveguide and is assumed uniformly distributed along the lateral direction. g is the field gain given by

$$
g(z,t) = \int_{active} a_N(N(y,z,t) - N_0)\psi^2(y) \, dy
$$

where N is the carrier concentration distribution in the lateral and longitudinal directions, a_N is the differential gain, and ψ is the lateral field distribution. The deviation from the Bragg condition $\delta\beta$ is given as

$$
\delta\beta(z,t) = \frac{2\pi}{\lambda_0} n_{eff}(z,t) - \frac{\pi}{\Lambda}
$$

where c is the speed of light and Λ is the pitch of the grating. n_{eff} is the effective refractive index in the longitudinal direction. The change of effective refractive index can be calculated by using the method given in [7] and [8].

Manuscript received December 16, 1996; revised April 10, 1997. This work was supported by HKU CRCG.

The author is with the Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong.
The time-dependent rate equation of carrier concentration is given by

\[
\frac{dN(y, z, t)}{dt} = \frac{J(y, z, t)}{qd} - \frac{N(y, z, t)}{\tau} - v_g a_N \times \left(N(y, z, t) - N_0 \right)P(y, z, t) \]

\[
+ D_f \frac{\partial^2 N(y, z, t)}{\partial y^2} \]

(4)

where \(J \) is the injection current density profile, \(d \) is the thickness of the active layer, \(D_f \) is the diffusion constant, \(\tau \) is the carrier lifetime, and \(q \) is the electron charge. The photon density distribution \(P \) is given as

\[
P(y, z, t) = \left| P(z, t) \right|^2 + |R(z, t)|^2 \psi_o^2(y) = P(z, t) \psi_o^2(y). \]

(5)

To simplify our calculation, the inhomogeneous carrier distribution in the lateral direction is expanded in a Fourier series. The first-order approximation of carrier distribution is then given by [9]

\[
g(z, t) = \frac{a_N\{\n_0(z)N_p(z, t) - N_0 - \xi_1(z)N_1(z, t)\}}{1 + \epsilon_1P(z, t)} \]

and the rate equations of carrier densities given as

\[
\frac{dN_p(y, z, t)}{dt} = \frac{J(y, z, t)}{qd} - \frac{N_p(y, z, t)}{\tau} \]

\[
\times \left(N_p(y, z, t) - N_0 - \xi_1(z)N_1(y, z, t) \right) \frac{1 + \epsilon_1P(z, t)}{1 + \epsilon_2P(z, t)} \]

\[
\times P(z, t) \]

(7a)

(7b)

(7c)

where \(\xi_1 \) and \(\xi_2 \) are the first- and second-order coupling parameters of the carriers and the optical field \(\psi_o \). Their definitions are given in Appendix A. The parameter \(\gamma \) is given by

\[
\gamma = 4\pi^2\tau D_f/w^2. \]

A self-consistent large-signal calculation can be obtained by solving (1) and (7) simultaneously.

It must be noted that the round-trip conditions of DTWG-DFB lasers are affected by their waveguide dimension. This is because the longitudinal propagation constant is changed according to the stripe width of waveguide, such that the deviation in propagation constant from Bragg constant is also dependent on the waveguide dimension. Therefore, the values of \(\Gamma _y, \kappa , \delta f, \xi_1, \) and \(\xi_2 \) are dependent on the stripe width of the waveguide and can be evaluated by the effective index method [7]. Detailed calculation of these parameters can be found in Appendix A.

B. Relaxation Oscillation Frequency of DTWG-DFB Lasers: Analytical Analysis

It is believed that the lateral and longitudinal effects (including waveguide structure and SHB profile) will have effect on the relaxation oscillation frequency of DTWG-DFB lasers. In order to investigate the influence of lateral and longitudinal effects, the analytical expression of relaxation oscillation frequency is derived from the time-dependent rate equations of photon density and carrier concentration. Therefore, the requirement for the enhancement of relaxation oscillation frequency of DTWG-DFB lasers can be clarified.

The derivation is started from the coupled wave equations. The rate equation of photon density can be deduced by multiplying (1) with its complex conjugate of the forward and reverse propagation fields and adding the two equations and their conjugates to obtain

\[
\frac{\partial P}{\partial t} = \left(\Gamma_y G_r(N_p) - v_g a_N \xi_1 N_1 \right) - v_g a_p P \]

(9)

where \(P = |F|^2 + |R|^2, \alpha_p = \alpha + (|F|^2 + |R|^2/\partial z)/(|F|^2 + |R|^2) \) and \(G_r(N_p) = v_g a_N (N_p - N_0) \).

Rewriting (7b) and (7c) in terms of \(G_r(N_p) \), we obtain

\[
\frac{dN_p}{dt} = \frac{J}{qd} - \frac{N_p}{\tau} - \left(\Gamma_y G_r(N_p) - v_g a_N \xi_1 N_1 \right)P \]

(10)

\[
\frac{dN_1}{dt} = 2\xi_1 G_r(N_p) - v_g a_N \xi_2 N_1 \}

P - \frac{1 + \gamma}{\tau}N_1 \]

(11)

In the derivation of (9)–(11), gain compression has been ignored. In (11), if the frequency of the modulation signal is less than the effective electron lifetime \(\tau/(1 + \gamma) \), it is possible to obtain an approximate solution to \(N_1 \) by setting the derivative to zero [9]. We have

\[
N_1(z, t) = \xi_1 G_r(N_p)P/(1 + \epsilon_2 P) \approx \xi_1 G_r(N_p)(1 - \epsilon_2 P) \]

(12)

where \(\gamma' = 2\gamma/(1 + \gamma) \) and \(\epsilon_2 = \gamma' v_g a_N \xi_2 \). The rate equations can be simplified by substituting (12) into (9) and (10). We have

\[
\frac{\partial P}{\partial t} = \left(\Gamma_y G_r(N_p)(1 - \epsilon^2/\Gamma_y) \right)P \]

\[
+ (\epsilon^2 \xi_2/\Gamma_y) P^2 - v_g a_p P \]

(13a)

\[
\frac{dN_p}{dt} = \frac{J}{qd} - \frac{N_p}{\tau} - \Gamma_y G_r(N_p)(1 - \epsilon^2/\Gamma_y)P \]

\[
+ (\epsilon_2/\Gamma_y) P^2 \]

(13b)

where \(\epsilon^2 = \gamma' v_g a_N \xi_2^2 \) and \(\epsilon_1 \) and \(\epsilon_2 \) can be considered to be the effective gain compression factors arisen from the lateral effects.

We separate the dynamic average photon density and carrier concentration by writing the local photon density and carrier
concentration as
\[P(z,t) = P(t)(1 + f(z)) \]
\[N_P(z,t) = N_P(t) + \delta N(t)f(z) \]
where \(\delta N \ll N_P \), \(f(z) \) being a function that is smaller than unity and for which
\[\int_0^L f(z) dz = 0 \]
(15)
where \(L \) is the cavity length. Substituting (14) into (13) and ignoring the effective gain compression factor in (13), as the gain saturation parameters \(\varepsilon_1 \) and \(\varepsilon_2 \) due to the lateral effects have less influence on the damping rate of lasers, we obtain
\[\frac{dP}{dt} = (\Gamma_y G_P(N_P) + \Gamma_y \Omega v_R\alpha_N \delta N - v_R v_p) P \]
\[\frac{dN_P}{dt} = \frac{J}{\eta'} - \Gamma_y G_P(N_P) + \Gamma_y v_R \alpha_N \delta N \]
(16a)
(16b)
\[\delta N \] can be approximated by steady-state consideration [5] and is given by
\[\delta N = -\tau v_R \alpha_N \Gamma_y G_P / \eta'(1 + \chi_3 P) \]
(17)
where \(\chi_3 = \tau v_R \alpha_N \Gamma_y / \eta' \Gamma_y (\Gamma_y + \Gamma_{LP}) \), \(\Gamma_{LP} \), and \(\Gamma_y \) are defined as first-, second-, and third-order lateral confinement factors. \(\alpha_{LP} = \alpha_{LP} + \alpha_{LP} \) is the equivalent cavity loss, and \(\eta' \) is a normalizing factor. Their definitions are given in Appendix B.

Using small-signal analysis technique, the relaxation oscillation frequency \(\omega_f \) of the DTWG-DFB lasers can be deduced and is given by
\[\omega_f^2 = v_R^2 \alpha_N \Gamma_y G_P / \eta'(1 + 2(\chi_3 - \chi_4) P) \approx v_R^2 \alpha_N \Gamma_y G_P / \eta' \]
(18)
where \(P_0 \) is the steady-state photon density and \(\chi_4 = \chi_3 + \tau v_R \alpha_N \Gamma_y^2 / \Gamma_y \eta' \). The influence of gain saturation due to longitudinal SHB of carrier concentration (i.e., \(\chi_3 \) and \(\chi_4 \)) is ignored in (18).

In the derivation of (18), the influence of gain compression due to combined lateral and longitudinal effects has been ignored and this assumption will be verified in the following numerical analysis. On the other hand, the simplified expression of \(\omega_f \) shows some important insights into how the tapered waveguide structure influences the relaxation oscillation frequency of DTWG-DFB lasers. As we can see, the first-order lateral confinement factor \(\Gamma_y \) is defined as the sum of \(\Gamma_y \) (i.e., average value of \(\Gamma_y \)) and \(\Gamma_{LP} \) (i.e., the overlapping integral of \(f(z) \) and \(\Gamma_y \)). The equivalent cavity loss \(\alpha_{LP} \) is equal to the sum of \(\alpha_{LP} \) (i.e., cavity loss) and \(\alpha_{LP} \) (i.e., the overlapping integral of \(\alpha_{LP} \) and \(\Gamma_y \)) (see Appendix B). These indicate that the terms \(\Gamma_y \), \(\Gamma_{LP} \), \(\alpha_{LP} \), and \(\alpha_{LP} \) should be optimized in order to enhance the value of \(\omega_f \).

The possibilities to maximize the value of \(\omega_f \) are discussed as follows.

1) In order to maximize the value of \(\Gamma_y \), a wide stripe-width design should be adopted provided that the suppression of high-order lateral modes can be maintained by the diffraction effects of the DTWG structure.

2) It is assumed that \(\alpha_\alpha \) is uniform along the active and blocking regions such that its magnitude will not be affected by the laser structure.

3) A positive value of \(\Gamma_{LP} \) with maximum magnitude can be obtained if the longitudinal distribution of \(\Gamma_y \) and the function \(f(z) \) are matched. It must be noted that the longitudinal profile of \(\Gamma_y \) is mainly determined by the waveguide design; however, the longitudinal distribution of \(f(z) \) is affected by the waveguide design as well as the \(kL \) of the lasers. In order to maximize the value of \(\Gamma_{LP} \), the profile of \(f(z) \) should be selected to match with \(\Gamma_y \).

4) In order to maximize the overlapping integral \(\alpha_{LP} \), it is required to study the relation between \(\partial |F|^2 / \partial z (\equiv q(z)) \) and \(f(z) \). It is expected that the longitudinal distribution function \(q(z) \) is affected by the waveguide design as well as the \(kL \) of the lasers. On the other hand, for devices with symmetric waveguide structure, it can be shown that the function \(q(z) \) has a symmetric distribution profile and its shape is close to the longitudinal distribution of carrier concentration. Let’s consider the laser with symmetric waveguide structure such that we can write
\[|F(z)|^2 + |R(z)|^2 = |F(z) - F(L - z)|^2 \]
and let \(\partial |F(z)|^2 / \partial z = |G(z)|^2 \). Then the function \(q(z) \) can be rewritten as
\[q(z) = \partial |F(z)|^2 - |R(z)|^2 / \partial z = \partial |F(z)|^2 - |F(L - z)|^2 / \partial z = |G(z)|^2 + |G(z - L)|^2. \]
(19b)

Hence, the longitudinal profile of \(q(z) \) is inversely proportional to the longitudinal distribution of photon density (as well as \(f(z) \)) due to the partial differentiation terms. Therefore, the overlapping integral of \(\alpha_{LP} \) may give a negative value and is minimized for high \(kL \) devices because high \(kL \) devices accumulate more photon energy inside the cavity than low \(kL \) devices (i.e., severe longitudinal SHB for high \(kL \) devices).

5) It has been shown that high \(kL \) devices have relatively high \(\omega_f \). This is because the total energy stored inside the laser cavity, which is proportional to \(\omega_f \), is high for high \(kL \) devices [4]. Therefore, we expect \(\omega_f \) of DTWG-DFB lasers increases with \(kL \).

From the above prediction on the dynamic behavior of DTWG-DFB lasers, it is shown that \(\omega_f \) in general increases with stripe width and \(kL \); however, the variation of \(\Gamma_{LP} \) and \(\alpha_{LP} \) may work against the change of \(\omega_f \). In the following numerical analysis, we study the influence of stripe width and \(kL \) on the variation of \(\omega_f \) and the overlapping integrals (i.e., \(\Gamma_{LP} \) and \(\alpha_{LP} \)) separately.

III. Simulation Results

A. DTWG-DFB Lasers: Structure and Material Composition

The waveguide structure and the material composition of the lasers used in this paper are similar to that given in [2].
It is assumed that the waveguide geometry has a double-tapered structure with a phase-adjustment region (PAR) in between (see Fig. 1). The laser is composed of five layers of semiconductor materials: the p+GaAs cladding layer, p-InGaP guiding layer, the InGaAs–GaAs (0.98 µm) quantum well’s active region, the n-InGaP buffer layer and n+GaAs substrate. The BH is used to provide strong optical and electrical confinement along the lateral direction. Device parameters used in the model can be found in Table I.

In the following sections, it is assumed that the lasers have symmetric waveguide geometry with both facets antireflection-coated. The width of the PAR W_p and the tapered waveguide near facets W_e varies from 1 to 2 µm and from 2 to 6 µm, respectively. The corresponding length of the tapered section L_e is equal to 135 µm and that of PAR L_p is equal to 110 µm such that single-mode operation can be maintained. For the reason of comparison, the steady-state photon density at the facets is set to be around 2×10^{10} cm$^{-2}$.

B. Relaxation Oscillation Frequency of DTWG-DFB Lasers: Numerical Analysis

In the numerical analysis of BH-DFB lasers given in [4], it is shown that the magnitude of ω_f is affected by the magnitude of Γ_y, ξ_1, and ξ_2, especially for Γ_y, ξ_1, and ξ_2 approach their limited values (i.e., $\Gamma_y \to 1.00$, $\xi_1 \to 0.50$, $\xi_2 \to 0.50$). In DTWG-DFB lasers, these parameters are varied along the laser waveguide. Fig. 2 shows the general plot of ξ_1 and ξ_2 against Γ_y for a strong index-guided waveguide. The corresponding variation of stripe width with Γ_y is also shown in the diagram. As we can see for the stripe width larger than or equal to 4 µm, the magnitude of Γ_y, ξ_1, and ξ_2 approach their limited values. In the following paragraphs, the influence of Γ_y, ξ_1, and ξ_2 (due to the longitudinal variation of stripe width) on the dynamic behavior of DTWG-DFB lasers is analyzed numerically.

Fig. 3 shows the variation of ω_f^2 as a function of W_e for devices with $D_f = 5 \text{ cm}^2 \text{s}^{-1}$ and $\kappa_0 = 30, 50$, and 80 cm$^{-1}$. As we can see, ω_f^2 increases with W_e and is high for the device with $W_e = 2 \mu$m and $\kappa_0 = 80 \text{ cm}^{-1}$. The influence of W_e on the transient response of the output power for device with $W_e = 2 \mu$m, $D_f = 5 \text{ cm}^2 \text{s}^{-1}$ and $\kappa_0 = 50 \text{ cm}^{-1}$ is shown in Fig. 4. The damping rate for devices with $W_e = 2$ and 5 µm exhibit similar magnitude such that our assumption used in the derivation of (16) (i.e., ignorance of gain compression due to lateral effects) is satisfied.

The influence of D_f on ω_f^2 of DTWG-DFB lasers with $\kappa_0 = 50 \text{ cm}^{-1}$ is shown in Fig. 5. As we can see, ω_f^2 increases with D_f from 0 to 5 cm$^2 \text{s}^{-1}$ and is saturated for $D_f \geq 5 \text{ cm}^2 \text{s}^{-1}$.

TABLE I

<table>
<thead>
<tr>
<th>Parameters (symbol)</th>
<th>Magnitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier lifetime (τ)</td>
<td>3×10^{-9}</td>
</tr>
<tr>
<td>Differential gain (α_p)</td>
<td>3×10^{-14} cm2</td>
</tr>
<tr>
<td>Transparency carrier density (N_c)</td>
<td>1.5×10^{10} cm$^{-3}$</td>
</tr>
<tr>
<td>Linewidth enhancement factor (β_0)</td>
<td>3.0</td>
</tr>
<tr>
<td>Absorption and scattering loss (α_s)</td>
<td>40 cm$^{-1}$</td>
</tr>
<tr>
<td>Effective group refractive index (n_e)</td>
<td>3.70</td>
</tr>
<tr>
<td>Thickness of the active layer (d)</td>
<td>0.2 µm</td>
</tr>
<tr>
<td>Approximate emission wavelength (λ_0)</td>
<td>0.98 µm</td>
</tr>
<tr>
<td>Transverse optical confinement factor (Γ_y)</td>
<td>0.35</td>
</tr>
<tr>
<td>Period of grating (Λ)</td>
<td>0.145 µm</td>
</tr>
<tr>
<td>Group velocity (v_g)</td>
<td>8×10^{14} cm/s</td>
</tr>
<tr>
<td>magnitude of Left facet reflectivity (r_l)</td>
<td>0</td>
</tr>
<tr>
<td>magnitude of Right facet reflectivity (r_r)</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. 1. Schematic of a buried structure DFB laser with double-tapered-waveguide structure.

Fig. 2. The variation of stripe width, first-order ξ_1 and second-order ξ_2 coupling parameters with the lateral confinement factor Γ_y.
The magnitude of ω_f^2 remains unchanged for further increase of D_f to 50 cm2s$^{-1}$. The influence of D_f on the transient response of the output power for devices with $W_p = 2 \mu$m, $W_e = 5 \text{cm}^2\text{s}^{-1}$ and $\kappa_o = 50 \text{ cm}^{-1}$ is also shown in Fig. 6. As we can see, the lateral carrier diffusion has less influence on the damping rate of the devices.

The dynamic behavior of DTWG-DFB lasers can be summarized as follows.

1) ω_f increases with W_e and W_p. This is because the increase of W_e and W_p increases the value of Γ_y, ξ_1, and ξ_2 (i.e., this is equivalent to increasing the value of Γ_p).

2) ω_f is saturated at a high magnitude for $D_f \geq 5 \text{ cm}^2\text{s}^{-1}$ and this characteristic is different to uniform-stripe BH-DFB lasers [4].

3) W_e, W_p, and D_f have less influence on the damping rate of DTWG-DFB lasers and this implies that the induced gain compression due to lateral effects can be ignored in our analysis.

4) ω_f increases with κ_o; however, κ_o has less influence on the damping rate of the lasers. This indicates that the induced gain compression due to longitudinal SHB has less contribution on the dynamic behavior of the devices.

The numerical results show that ω_f increases with stripe width (i.e., W_e and W_p) and κL, which partly verifies our analytical prediction on the dynamic behavior of DTWG-DFB lasers. Now, we further investigate the relation between the overlapping integrals (i.e., Γ_{lp} and α_{lp}) and the devices’ parameters (i.e., W_e, W_p, and κL).

It is assumed in this study that devices have $W_p = 2 \mu$m and $D_f = 5 \text{ cm}^2\text{s}^{-1}$. As shown in Fig. 7, Γ_y exhibits a “U” shape with minimum at the PAR and maximum near the facets. Γ_y approaches its limited value (i.e., $\Gamma_y \approx 1.00$ near the facets region) as W_e approaches 4 μm. The function $f(z)$ defined in (14) can be obtained from the longitudinal distribution of optical density

$$f(z) = \left(|F(z)|^2 + |R(z)|^2 \right) / P_0 - 1. \quad (20)$$
Fig. 7. The variation longitudinal distribution of lateral confinement factor Γ_x with W_e. The other parameters are $D_f = 5$ cm2s$^{-1}$, $\kappa_o = 50$ cm$^{-1}$, and $W_p = 2 \, \mu$m.

Fig. 8. The variation of $f(z)$ with W_e for devices with (a) $\kappa_o = 30$ cm$^{-1}$ and (b) $\kappa_o = 80$ cm$^{-1}$. The other parameters are $D_f = 5$ cm2s$^{-1}$ and $W_p = 2 \, \mu$m.

Fig. 9. The longitudinal variation of $q(z)$ with κ_o. The other parameters are $D_f = 5$ cm2s$^{-1}$, $W_e = 5 \, \mu$m, and $W_p = 2 \, \mu$m.

IV. CONCLUSION

The influence of a DTWG structure on ω_f of DFB lasers is clarified. By using the first-order approximation on the combined lateral and longitudinal distribution of carrier concentration, the ω_f of DTWG-DFB lasers is deduced analytically. It is illustrated from (18) that the longitudinal SHB reduces ω_f through the terms Γ_{LP} and α_{LP}. Γ_{LP} is arisen from the DTWG structure and α_{LP} is an inherent property of DFB lasers. However, ω_f is an increasing function of stripe width because the influence of SHB is overcome by Γ_y. In addition, ω_f is increased with κL as well as the total energy stored inside the laser cavity. Hence, the value of ω_f can be enhanced for devices with wide stripe width and high κL.

Our analytical analysis on ω_f is also verified by our numerical results. It is found that the combined longitudinal and lateral effects have less influence on the damping rate of the lasers. Hence, the ignorance of the effective gain compression factors due to the combined longitudinal and lateral effects in the derivation of ω_f in Section II-B is satisfied.

In the design of DTWG-DFB lasers, a wide tapered region and high κL are required to enhance ω_f provided that
single-lateral-mode operation can still be maintained by the diffraction effects of the DTWG structure. Therefore, the DTWG structure gives a simple solution to maintain high ω_f and stable lateral mode operation, and this is the major advantage over the uniform stripe devices. This is because in order to enhance ω_f in uniform stripe BH-DFB lasers, it may require increasing the stripe width (i.e., Γ_y changes from ~0.7 to ~1.0) which will also excite high-order lateral modes.

The dynamic behavior of DTWG-DFB lasers is analyzed theoretically. It is shown that the modulation bandwidth DFB lasers, especially for large κL, can be enhanced with a DTWG structure. Apart from stable-single-mode and high power characteristics, DTWG-DFB lasers also have significant improvement in modulation speed over the conventional uniform stripe devices.

APPENDIX A

We assumed the field profiles in the transverse (x) and lateral (y) directions satisfy [7]

$$\left[\frac{\partial^2}{\partial x^2} + \varepsilon_f k_0^2 - \beta_{\text{eff}}^2\right] \psi_x = 0 \quad (A1)$$

where β_{eff} is the effective propagation coefficient in lateral direction and β is a propagation constant to be determined. ψ_{eff} and ψ_x are the fundamental transverse and lateral field distributions, respectively. ε_f is the effective permittivity and is given by [8]

$$\varepsilon_f(y,z,t) = \varepsilon_2(y) - \varepsilon_1(y) \Gamma_x \frac{\alpha_m \alpha_0}{2\pi} n_0 (N(y,z,t) - N_{\text{th}})$$

$$+ \frac{i}{2\pi} \frac{\alpha_m \alpha_0}{2\pi} n_0 \Gamma_x [N(y,z,t) - N_0 - \alpha_0] \quad (A3)$$

where α_0 is the built-in refractive index of the waveguide, α_m is the material linewidth enhancement factor, and N_{th} is the threshold carrier concentration.

The effective refractive index n_{eff} given in (3) is defined as [7]

$$n_{\text{eff}} = \frac{\beta_{\text{eff}}}{k_0} \quad (A4)$$

where $k_0 = 2\pi/\lambda_0$. The transverse confinement factor Γ_x is expressed as

$$\Gamma_x = \int_{\text{active layer}} \psi_x^2 \, dx \quad (A5)$$

and the lateral confinement factor Γ_y is given by

$$\Gamma_y = \int_0^w \psi_y^2 \, dy \quad (A6)$$

where w is the width of waveguide. The longitudinal coupling coefficient κ is given by

$$\kappa = \frac{1}{2L_0} \int_{-w/2}^{w/2} \int_{-w/2}^{w/2} k_0^2 A_{-2\nu} \psi_y \, dx \, dy \approx \kappa_0 \Gamma_y \quad (A7)$$

where $A_{-2\nu}$ is the Fourier coefficient of the dielectric grating, β_0 is the propagation constant at Bragg frequency, and κ_0 is the coupling coefficient of PAR.

The first- and second-order coupling parameters are given by

$$\xi_1 = \int_{-w/2}^{w/2} \int_{-w/2}^{w/2} \cos^2(2\pi y/w) \psi_y^2 \, dy \, dy \quad (A8)$$

$$\xi_2 = \int_{-w/2}^{w/2} \int_{-w/2}^{w/2} \cos^2(2\pi y/w) \psi_y^2 \, dy \, dy \quad (A9)$$

APPENDIX B

The first-, second-, and third-order lateral confinement factor Γ_{y1}, Γ_{y2}, and Γ_{y3} are given by

$$\Gamma_{y1} = \frac{1}{L} \int_0^L \Gamma_y(z)(1 + f(z)) \, dz = \Gamma_y + \Gamma_{Lp} \quad (B1)$$

$$\Gamma_{y2} = \frac{1}{L} \int_0^L \Gamma_y(z)f(z)(1 + f(z)) \, dz \quad (B2)$$

$$\Gamma_{y3} = \frac{1}{L} \int_0^L \Gamma_y(z)f^2(z)(1 + f(z)) \, dz \quad (B3)$$
where \(\Gamma_y = \frac{1}{L} \int_0^L \Gamma(z) \, dz \) is the average value of \(\Gamma_y(z) \) and \(\Gamma_{LP} = \frac{1}{L} \int_0^L \gamma_y(z) f(z) \, dz \) is the overlapping integral of \(\gamma_y(z) \) and \(f(z) \).

The equivalent cavity loss \(\alpha'_p \) is given by

\[
\alpha'_p = \frac{1}{L} \int_0^L \alpha_p(z)(1 + f(z)) \, dz = \alpha_0 + \alpha_{LP}
\]

where \(\alpha_{LP} \) is given by

\[
\alpha_{LP} = \frac{1}{L} \int_0^L \frac{1}{|F|^2 + |R|^2} \left(\frac{\partial}{\partial z} |F|^2 - |R|^2 \right) f(z) \, dz
\]

\[
= \frac{1}{P_0 L} \int_0^L \frac{1}{(1 + f(z))} \left(\frac{\partial}{\partial z} |F|^2 - |R|^2 \right) f(z) \, dz,
\]

The normalization factor \(\eta \) is equal to

\[
\eta = \frac{1}{L} \int_0^L f^2(z) \, dz.
\]

REFERENCES

S. F. Yu, for photograph and biography, see p. 1008 of the June 1997 issue of this Journal.