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Abstract. We consider analytic maps fj : D → D of a domain D into itself and ask when
does the sequence f1 ◦· · ·◦fn converge locally uniformly on D to a constant. In the case of
one complex variable, we are able to show that this is so if there is a sequence {w1, w2, . . . }
in D whose values are not taken by any fj in D, and which is homogeneous in the sense
that it comes within a fixed hyperbolic distance of any point of D. The situation for several
complex variables is also discussed.

1. Introduction
Given a mapping f : X → X one can study the iterates f n : X → X of f . More
generally, if F is a family of maps of X into itself, one can study the behaviour of the
sequences f1 ◦ · · · ◦ fn as n → ∞, where the fj are chosen from F . This process is often
referred to as an iterated function system or, if the fj are chosen with certain probabilities,
as random iteration. The sequences f1 ◦ · · · ◦ fn arise naturally in dynamical systems,
in continued fraction theory (where the fn are Möbius transformations), and in certain
questions in complex analysis. We are concerned here with finding conditions that imply
that if f1, f2, . . . are maps of a metric space X into itself, then every sequence f1 ◦ · · · ◦fn

converges locally uniformly on X to some constant function. Although we shall briefly
consider the general problem, our main concern is the application of these ideas to analytic
functions of one or more complex variables.

We begin with a modest generalization of the well-known contraction mapping theorem
in a form that is applicable to random iteration and that includes the contraction mapping
theorem as a special case (when fj = f for all j ).
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THEOREM 1.1. Suppose that (X, d) is a complete metric space, and that 0 < k < 1, and
let f1, f2, . . . be a sequence of maps of X into itself each of which satisfies the uniform
Lipschitz condition d(fj (x), fj (y)) ≤ k d(x, y) for all x and y in X. Suppose also that
there exists some x0 in X such that the sequence f1(x0), f2(x0), . . . is bounded. Then the
sequence f1 ◦ · · · ◦ fn converges locally uniformly on X to a constant function.

The proof of this follows shortly. Our aim is to find criteria that will enable us to apply
Theorem 1.1 and so obtain the convergence of each sequence f1 ◦ · · · ◦ fn to a constant.
As many complex analytic maps are contractions (with respect to hyperbolic metrics) it
is natural to focus on analyticity, and we begin by considering analytic functions of one
complex variable. Later we consider functions of several complex variables. First, we
recall the well known Denjoy–Wolff Theorem on the iteration of analytic maps; in this the
iterates converge to a constant limit without any assumption of a Lipschitz condition.

THE DENJOY–WOLFF THEOREM. Let D be the open unit disc in the complex plane C,
and let f be any analytic map of D into itself that is not a conformal automorphism of D.
Then the iterates f n of f converge locally uniformly in D to a constant value ζ , where
|ζ | ≤ 1.

A few remarks may be helpful. First, whereas Theorem 1.1 will necessarily produce
constant limit functions whose value lies in X, the Denjoy–Wolff Theorem allows the
constant values to lie on the boundary of D, and it is here that the hyperbolic nature of D

is crucial. Briefly, the disc D is equipped with the hyperbolic metric 2 |dz|/(1 − |z|2), and
the resulting metric space with metric ρD, where

ρD(z,w) = 2 tanh−1
∣∣∣∣ z − w

1 − w̄z

∣∣∣∣ ,
is complete. An informal explanation of the Denjoy–Wolff Theorem is that the negative
curvature of ρD means that the space D is ‘expanding’ rapidly near the circle at infinity,
and the Schwarz–Pick lemma implies that any analytic map f : D → D is contracting in
the sense that for all z and w in D,

ρD(f (z), f (w)) < ρD(z,w)

(unless f is an isometry, and hence a Möbius map of D onto itself). Together these facts
force the convergence (in the Euclidean metric) of f n to a constant. In fact, this result
has nothing to do with analyticity for it is equally valid for any map f : D → D that is
contracting with respect to ρD. For more information on the Denjoy–Wolff Theorem, see
[1, 7, 10] and references therein. For other results that are indirectly related to the general
problem considered here see [6–10, 19]. Generalizations of the Denjoy–Wolff Theorem to
other spaces are contained in [7, 10], and [6, 8, 9] discuss the iterates of an analytic map
f of a domain D into itself that is a Euclidean contraction; that is, a map f that satisfies
|f (z) − f (w)| < |z − w| in D.

Let us now turn to questions concerning the random iteration of analytic functions of one
variable. In recent years several papers have appeared on this question (see, for example,
[2, 3, 11], which are concerned with ergodic questions, and also [5, 15, 16, 18] and [19],
which gives a survey of such results in the context of continued fractions). These latter
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papers are closer to the work in this paper, but only apply to the case in which the fj

are analytic maps of a plane domain D into a compact subset K of D (this is also used
in [2, p. 1387]), and D is (essentially) assumed to be simply connected. To be specific,
we have the following result [18, Theorem 1] which generalizes an earlier result due to
Gill [15].

THEOREM A. Suppose that D and D0 are domains in C, and that K ⊂ D0 ⊂ D ⊂ C,
where D0 is simply connected, and K is a compact subset of D0. Suppose also that
f1, f2, . . . are analytic maps of D into K . Then f1 ◦ · · · ◦ fn converges to a constant
locally uniformly in D.

Although D may be multiply connected here, the assumption that such a simply
connected D0 exists prevents the application of this result to a compact subset K of
D that separates the complement of D. Moreover, if we know that the corresponding
result holds for any simply connected domain, the assumptions imply that the sequence
f1 ◦ · · · ◦ fn converges locally uniformly on D0 to a constant function, and it now follows
(from the theory of normal families, provided only that C\D contains at least two points)
that f1 ◦ · · · ◦ fn converges locally uniformly on D to a constant function. We remark that
there is a similar result for several variables in [25] (Theorem C in this paper) which, when
specialized to one variable, applies to bounded (possibly multiply connected) domains but
still with the fj mapping into a compact subset of D.

Theorem A also occurs, with the assumption that D is simply connected (and hence no
mention of D0), as Corollary 2.3 in [5], where it is derived from a result of a quite different
nature concerning the possible limits of sequences of the form fnj ◦ · · · ◦ fnk . On p. 186
of [5], Baker and Rippon comment that the hypothesis that the fj map D into a compact
set K ‘seems stringent when compared with the original Denjoy–Wolff Theorem’, and
that ‘It is tempting to hope that some weaker condition on K will yield the conclusion
of the corollary’. They then state that ‘the illusory nature of this hope . . . is shown by
the following example’ [5, Example 2.6, p. 186]. Our results here show that considerable
progress can be made in weakening the assumption that K is compact.

We turn now to the main results in this paper. First, we recall that a subdomain D of C is
hyperbolic if it supports a complete Riemannian metric of constant curvature −1, namely
the (unique) hyperbolic metric λD(z) |dz|, and it is well known that this is so if and only
if its complement in C contains at least two points. We use ρD for the induced hyperbolic
distance in D. Now the general form of the Schwarz–Pick lemma states that any analytic
map f : D1 → D2 between two hyperbolic domains D1 and D2 is contracting in the
weak sense that ρ2(f (z), f (w)) ≤ ρ1(z,w), where ρj is the hyperbolic metric on Dj .
It is not difficult to see that if f maps D into a compact subset K of D, then f satisfies
the stronger contractive property that is required in the contraction mapping theorem and,
as the scaling factor k depends only on D and K , this enables us to apply Theorem 1.1
and so derive results on random iteration. The essential ideas in this paper are: (1) that
these arguments remain valid for maps f of D into an arbitrary subset E of D provided
only that the geometry of E guarantees this strong contractive property of f ; and (2) that
there is a simple geometric condition on E that guarantees this strong contractive property,
and which is satisfied by many more subsets of D than just the compact subsets of D.
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To the best of our knowledge, this is the first time that non-compact subsets of D have
been considered in this context. The introduction of the hyperbolic metric is crucial here
because we want to use Theorem 1.1 and one of the major deficiencies of the Euclidean
metric is that its restriction to a proper subdomain of C is not complete.

Suppose that � is a subdomain of a hyperbolic domain D. Then � is also
hyperbolic, and the Schwarz–Pick lemma applied to the identity (inclusion) map yields
the monotonicity principle for the hyperbolic metric, namely that λD ≤ λ� on � with a
strict inequality at each point of � when � �= D. It is convenient to write

µ(�,D) = sup
w∈�

λD(w)

λ�(w)
;

thus µ(�,D) ≤ 1. Of course, it may be that λD(z) < λ�(z) for each z in �, yet
µ(�,D) = 1, and this suggests the next definition.

Definition 1.2. The subdomain � is a Lipschitz subdomain of D if µ(�,D) < 1.

We shall see later that this leads easily to the next result.

THEOREM 1.3. Suppose that f1, f2, . . . are analytic maps of a hyperbolic plane domain
D into a Lipschitz subdomain � of D. Then every limit function of the sequence f1◦· · ·◦fn

is constant. Suppose that, in addition, for some z0 in D the sequence fn(z0) lies in a
compact subset of D; then f1 ◦ · · · ◦ fn converges locally uniformly on D to a constant
function.

It is easy to see that if � lies in a compact subset of D then � is a Lipschitz domain,
and later we shall give many examples of Lipschitz subdomains that are not relatively
compact in D. Thus Theorem 1.3 is a very significant strengthening of the earlier results
of this type. It gives a very general condition under which all limit functions are constant,
and here the domain D may be multiply connected, and the fj (D) may lie in a ‘large’
(i.e. non-compact) subset of D. In fact, the proof of Theorem 1.3 will show that a similar
result holds in the more general circumstances in which each fj is an analytic map of D

into �j providing only that there is some constant k such that for all j , µ(�j ,D) ≤ k < 1.
Theorem 1.3 is the case when �j = � for all j .

In order to be able to apply Theorem 1.3, we need a criterion that enables us to recognize
when a subdomain of D is a Lipschitz subdomain, and before we can state our criterion
we need to introduce the idea of a Bloch domain. We recall that a subdomain � of C is a
Bloch domain if and only if there is a finite upper bound on the radii of the Euclidean discs
that lie in �. We now introduce the analogous definition for the hyperbolic metric.

Definition 1.4. A subdomain � of a hyperbolic domain D in C is a Bloch subdomain of D

if and only if there is a finite upper bound on the radii of the discs (in the metric ρD) lying
in �.

Suppose now that � is a subdomain of D, and consider the collection D of open discs
in the metric space (D, ρD). We denote the radius (as measured by ρD) of the open disc �

in D by r�. Now let
R(�,D) = sup{r� : � ∈ D,� ⊂ �}, (1.1)
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where, of course, we allow R(�,D) to be +∞. Clearly, � is a Bloch subdomain of
D if and only if R(�,D) < +∞. The following theorem shows (quantitatively) that a
subdomain of D is a Lipschitz subdomain if and only if it is a Bloch subdomain.

THEOREM 1.5. Suppose that � is a subdomain of a hyperbolic plane domain D; then

tanh 1
2R(�,D) ≤ µ(�,D) ≤ tanh R(�,D).

In particular, � is a Lipschitz subdomain of D if and only if R(�,D) < +∞.

We can now rewrite Theorem 1.3 in the following form, and this is the main result in
this paper.

THEOREM 1.6. Suppose that � is a Bloch subdomain of a hyperbolic domain D and that
f1, f2, . . . are analytic maps of D into �. Then any limit function of f1 ◦ · · · ◦ fn is
constant. Further, if there is some z0 in D such that the sequence fn(z0) lies in a compact
subset of D, then f1 ◦ · · · ◦ fn converges locally uniformly on D to a constant function.

As a special case of Theorem 1.6, we have the following result.

THEOREM 1.7. Suppose that D is a hyperbolic subdomain of C, and let zn be a sequence
in D that accumulates only on ∂D, and meets every hyperbolic disc in D of some given
radius d , say. Let � = D\{z1, z2, . . . }. Then for any collection of analytic maps fj of D

into �, any limit function of f1 ◦ · · · ◦ fn is constant. Further, if there is some z0 in D such
that the sequence fn(z0) lies in a compact subset of D, then f1 ◦ · · · ◦ fn converges locally
uniformly on D to a constant function.

There are several straightforward but interesting consequences of Theorem 1.6, and in
describing these we assume a modest familiarity with hyperbolic geometry. Of course,
the most striking example is that described in Theorem 1.7. The existence of such a
sequence zn in Theorem 1.7 (indeed, of many such sequences) is easily established.
We choose any point a in D, and let Un and Kn be the open disc and closed disc,
respectively, with centre a and radius n (measured with respect to ρD). Now cover the
compact set K1 by a finite number of discs of radius one. Next, cover the compact set
K2\U1 by a finite number of discs of radius one, then K3\U2 and so on. The set of centres
of all of these discs, for all n, may now be taken as the sequence zj as this sequence clearly
accumulates only on ∂D and D\{z1, z2, . . . } is a Bloch domain. A similar construction
shows that for each compact subset K there is a positive d and a sequence zn of points
in D\K , that accumulates only on ∂D, and that meets every hyperbolic disc in D with
radius d .

We briefly mention some other examples of Lipschitz subdomains of the unit disc D.
A horodisc (an open Euclidean disc that is internally tangent to the unit circle ∂D) is
not a Lipschitz subdomain of D as it contains arbitrarily large ρD-discs. In contrast, the
region lying between two circles that are tangent to ∂D at the same point is a Lipschitz
subdomain of D. Next, a hyperbolic Stolz region (the region formed by taking the union
of all hyperbolic discs of a fixed radius whose centres lie on a hyperbolic geodesic in D)
is a Lipschitz domain. Finally, a hyperbolic polygon in D (the hyperbolic convex hull of a
finite set of points in the closed unit disc) is also a Lipschitz subdomain of D.
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We now turn to discuss the results for several complex variables. Throughout this
discussion X and Y are complex Banach spaces and H(X, Y ) denotes the space of
holomorphic (i.e. analytic) maps of X into Y . We follow the customary terminology (in this
area) by calling a metric (in the sense of metric spaces) a distance, and by using metric for
the infinitesimal version of this. A pseudo-distance d satisfies the usual requirements of
a distance except that d(x, y) = 0 does not imply that x = y. For more details about
this section, we refer the reader to [12, 14, 17, 24] (and in particular to chapters IV and V
in [14]). We remark that most of these ideas can be discussed for holomorphic maps
between complex manifolds (including Riemann surfaces), but as we have no new ideas to
introduce in this context we confine our discussion to Banach spaces.

We begin with the following fixed point theorem of Earle and Hamilton, which is
another modification of the contraction mapping theorem (see [13] and [14, pp. 91,
137–139]).

THEOREM B. Let K be a compact subset of a bounded domain D in a complex Banach
space, and suppose that f : D → D is holomorphic and that f (D) ⊂ K . Then f has a
unique fixed point, say ζ , in D, and f n → ζ in D.

This result has been extended by Zhang and Ren [25] to a result that applies to random
iteration.

THEOREM C. Let D be a bounded domain in a complex Banach space X, and suppose
that K is a compact subset of D. Suppose also that f1, f2, . . . are holomorphic self-maps
of D, and that for each j , fj (D) ⊂ K . Then f1 ◦ · · · ◦ fn converges uniformly on D to a
constant.

The proof of Theorem C follows closely from the proof of Theorem B that is given
in [14], but see also [25] (in particular Remark 2.1 on p. 35). The crucial role of the
hyperbolic metric in one complex dimension is taken over in the proof of Theorem C by
the Kobayashi metric, and we now give a brief description of this. For each x and y in a
domain D in a complex Banach space X, let

δD(x, y) = inf{ρD(u, v) : f ∈ H(D,D), f (u) = x, f (v) = y}.
The set on the right-hand side is non-empty (so that δD is defined), and it is clear that δD

is symmetric. However, δD need not satisfy the triangle inequality, and to overcome this
Kobayashi introduced the Kobayashi pseudo-distance kD by

kD(u, v) = inf
n∑

j=1

δD(wj ,wj+1),

where this infimum is taken over all finite sequences w1, . . . , wn+1 (for any n) in D such
that w1 = u and wn+1 = v. It is known that kD is a pseudo-distance on D. The essential
role of the Schwarz–Pick lemma remains true in these circumstances, that is holomorphic
maps are (weak) contractions with respect to the Kobayashi pseudo-distances; explicitly,
if f ∈ H(D,D′), then

kD′(f (x), f (y)) ≤ kD(x, y).
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By taking the holomorphic map to be the identity, the monotonicity property of the pseudo-
distance follows; that is, if D1 ⊂ D, then kD ≤ kD1 .

Next, we consider the infinitesimal Kobayashi metric on a domain D in a Banach
space X; this is the generalization of the infinitesimal hyperbolic metric λD(z) |dz|.
The Kobayashi seminorm KD is defined at each point (p, v) of the tangent bundle T (X)

by

KD(p, v) = inf{x > 0 : there exists f in H(D,D), f (0) = p, df (0)(x) = v},
and Royden [24] proved that

kD(p, q) = inf
γ

∫ 1

0
KD(γ (t), γ ′(t)) dt,

where the infimum is taken over all smooth paths γ : [0, 1] → X joining p to q . We say
that the domain D is Kobayashi hyperbolic if kD is a distance (that is, if kD(x, y) > 0 when
x �= y), and in this case KD(p, v) > 0 (see [17, Theorem 2, p. 133]). We remark that the
Kobayashi metric on even a bounded subdomain of CN may not be complete, and this fact
highlights one of the major differences between the theory of one and several variables.

Clearly, KD is contracting with respect to holomorphic maps; explicitly, if f ∈
H(D,D′), then for all x in D and all v in X, KD′(f (x), df (x)(v)) ≤ KD(x, v). As before,
this implies that if D ⊂ D′, then KD′(x, v) ≤ KD(x, v). In view of our earlier discussion,
it is now natural to make the following definition.

Definition 1.8. A subdomain � of a domain D in a Banach space X is a Lipschitz
subdomain of D if D is Kobayashi hyperbolic, and if

µ(�,D) = sup

{
KD(p, v)

K�(p, v)
: (p, v) ∈ T (�), v �= 0

}
< 1.

The next result follows easily from this.

THEOREM 1.9. Suppose that X is a complex Banach space, and that f1, f2, . . . are
holomorphic maps from a bounded, Kobayashi hyperbolic subdomain D of X into a
Lipschitz subdomain � of D. Then f1 ◦ · · · ◦ fn converges locally uniformly on D to
a constant.

In this result the constant limit may lie on the boundary of D, and if we take f1 = f2 =
· · · = f here, we obtain a type of Denjoy–Wolff Theorem for bounded subdomains of
complex Banach spaces.

It is easy to see that if � is a relatively compact subdomain of a bounded domain D in a
complex Banach space, then � is a Lipschitz subdomain of D (this is essentially the proof
of Theorem C); thus (in a rather trivial sense) Theorem 1.9 contains Theorem C.

Of course, these results raise the obvious question, namely is there a characterization of
Lipschitz subdomains in a Banach space that corresponds to the notion of a Bloch domain
described earlier? We show that the answer here is ‘no’ as we give an example of a
bounded subdomain of C

2 that is (in the obvious sense) a Bloch domain but not a Lipschitz
subdomain. In short, Theorem 1.5 does not generalize to more than one variable and as
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this lies at the heart of our geometric recognition of Lipschitz domains in C, there are still
open questions about what these look like in CN , where N ≥ 2.

We give the proof of Theorem 1.1 in §2. In §3 we study the random iteration of a family
of analytic maps which is assumed to satisfy a uniform Lipschitz condition and we prove
Theorem 1.3. The proof of Theorem 1.5 is given in §§4 and 5. We prove Theorem 1.9
in §6 and, finally, in §7 we give an example of a Bloch subdomain of D × D that is not a
Lipschitz subdomain.

2. The proof of Theorem 1.1
This section is devoted to the proof of Theorem 1.1. As the sequence fn(x0) is bounded,
the sequence d(x0, fj (x0)), j = 1, 2, . . . , is also bounded, say by A. Now for any x in X,

d(x, fj (x)) ≤ d(x, x0) + d(x0, fj (x0)) + d(fj (x0), fj (x)) < 2d(x0, x) + A,

so that for each x, the sequence d(x, fj (x)) is bounded. Take any x in X and, for brevity,
write yn = f1 ◦ · · · ◦ fn(x). Then, for any natural numbers m and n,

d(yn, yn+m) ≤
n+m−1∑

j=n

d(yj , yj+1) ≤
n+m−1∑

j=n

kjd(x, fj+1(x)) ≤ kn

1 − k
(2d(x, x0) + A).

As (X, d) is complete, this shows that the sequence yn converges, and hence that the
sequence f1 ◦ · · · ◦ fn converges pointwise on X, say to the function g. As

d(f1 ◦ · · · ◦ fn(x), f1 ◦ · · · ◦ fn(y)) ≤ knd(x, y) → 0

as n → ∞, we see that g is constant on X, with a value of ζ , say. Now take any a in X

and any compact subset K of X, and let da = supx∈K d(a, x) (which is finite). Then for
all x in K we have

d(f1 ◦ · · · ◦ fn(a), f1 ◦ · · · ◦ fn(x)) ≤ knd(a, x) ≤ knda,

so that f1 ◦ · · · ◦ fn → ζ locally uniformly on X. The proof is complete. �

Of course, the extent to which Theorem 1.1 is useful depends on our ability to find
(preferably geometric) conditions under which a family of maps from X to itself is
uniformly Lipschitz. The rest of the paper is concerned with this problem.

Remark. Given any sequence f1, f2, . . . of self-maps of (X, d), we say that g is a limit
function of the sequence fn if there is a subsequence of this sequence that converges locally
uniformly on X to g. This paper is about the possible limit functions of the sequence
f1 ◦ · · · ◦ fn. We note that the last part of the proof of Theorem 1.1 shows that even when
(X, d) is not complete, if the sequence f1 ◦ · · · ◦ fn converges pointwise on X, then it
converges locally uniformly on X to a constant. Thus if (X, d) is any metric space and
if the family {fj } of self-maps of X is uniformly Lipschitz in the sense of Theorem 1.1,
then the sequence f1 ◦ · · · ◦ fn can only have constant limit functions. Situations such as
these are common in the study of dynamical systems; for example, if X = [0, 1] with the
Euclidean metric, and F = {f1, f2}, where f1(x) = x/3 and f2(x) = (2 + x)/3, then the
possible constant limit functions are those whose value lies in the classical Cantor set.
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3. Random iteration of uniformly Lipschitz families of analytic maps
In this section we explain our terminology in Definition 1.2 and prove Theorem 1.3.

We begin by noting that µ(�,D) is conformally invariant (and this is another reason
for using the hyperbolic rather than the Euclidean metric). Indeed, if f is any conformal
map of D onto the domain f (D) (so that f is also a conformal map of � onto f (�)) then,
for every z in �,

λf (D)(f (z))|f ′(z)| = λD(z),

λf (�)(f (z))|f ′(z)| = λ�(z),

and hence
µ(f (�), f (D)) = µ(�,D) (3.1)

(we generalize this result to covering maps later). It follows that the relationship of � being
a Lipschitz subdomain of D is also conformally invariant. In addition, it is immediate
from the definition of a Lipschitz subdomain and the monotonicity principle that any
subdomain of a Lipschitz subdomain is also Lipschitz; indeed, if �′ ⊂ � ⊂ D, then
µ(�′,D) ≤ µ(�,D). The following lemma allows us to apply Theorem 1.1.

LEMMA 3.1. Suppose that � is a Lipschitz subdomain of D. Then the family of analytic
maps from (D, ρD) to (�, ρD) is uniformly Lipschitz with Lipschitz constant µ(�,D);
that is, for each analytic f : D → � and each z and w in D, ρD(f (z), f (w)) ≤
µ(�,D)ρD(z,w).

Proof. Suppose that � is a Lipschitz subdomain of D, and that f : D → � is any analytic
map. Let z and w be any two points in D, and let γ be the geodesic in the metric ρ� that
joins f (z) to f (w) in �. Then

ρD(f (z), f (w)) ≤
∫

γ

λD(ζ )|dζ |

≤ µ(�,D)

∫
γ

λ�(ζ )|dζ |

= µ(�,D)ρ�(f (z), f (w))

≤ µ(�,D)ρD(z,w)

as required, the last inequality following directly from the general form of the Schwarz–
Pick lemma. The proof of Lemma 3.1 is complete. �

If we combine Theorem 1.1 and the Remark at the end of §2 with Lemma 3.1, we
immediately obtain Theorem 1.3.

4. Universal cover maps
Throughout this short section we suppose that D is a hyperbolic domain in C, and that � is
a proper subdomain of D. We take any point a in �, let π : D → D be a universal covering
projection with π(0) = a, and let 
 be the component of π−1(�) that contains the origin.
The next result generalizes (3.1) and, in effect, implies that when proving Theorem 1.5 we
may assume that D = D.
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LEMMA 4.1. In the notation above, µ(�,D) = µ(
, D).

Proof. As π : D → D is a universal covering projection, λD(π(z))|π ′(z)| = λD(z), and
as π |
 is a covering projection of 
 onto �, we have λ�(π(z))|π ′(z)| = λ
(z). Thus

λD(π(z))

λ�(π(z))
= λD(z)

λ
(z)
,

and because π maps 
 onto �, this implies that µ(�,D) = µ(
, D) as required. �

Next, given any pair � and D, and z in �, let R(z; �,D) be the radius of the largest
open disc (relative to the hyperbolic metric on D) with centre z that is contained in �; thus
(see (1.1))

R(�,D) = sup{R(z; �, D) : z ∈ �}. (4.1)

We now show that this too is invariant under a cover map.

LEMMA 4.2. In the notation above, R(�,D) = R(
, D).

Proof. It is convenient to use the notation �D(z, r) to denote the open disc (relative to the
hyperbolic metric on D) with centre z and radius r . As any point of �D(z, r) can be joined
to z by an arc of length less than r , and as π is a local isometry, it is immediate that

π(�D(z, r)) ⊂ �D(π(z), r).

A similar argument holds for π−1 (as all curves lift under π−1), so we find that

π(�D(z, r)) = �D(π(z), r). (4.2)

Suppose now that �D(z, r) ⊂ 
. Then, from (4.2), �D(π(z), r) ⊂ �, and this implies
that

R(z; 
, D) ≤ R(π(z); �,D). (4.3)

On the other hand, if �D(π(z), r) ⊂ �, then π(�D(z, r)) ⊂ �, so that �D(z, r) ⊂
π−1(�). As z ∈ 
, 
 is a component of π−1(�), and �D(z, r) is connected, we conclude
that �D(z, r) ⊂ 
. This gives the reverse inequality to (4.3), and consequently

R(z; 
, D) = R(π(z); �,D).

The conclusion of Lemma 4.2 now follows directly from (4.1). �

5. The proof of Theorem 1.5
We recall that a subdomain � of C is a Bloch domain if and only if there is a finite upper
bound, say Re(�, C), on the radii of the Euclidean discs lying in �. If the supremum of
the quotient of the Euclidean metric |dz| on the larger domain C by the hyperbolic metric
on the smaller domain � is µe(�, C), that is

µe(�, C) = sup
z∈�

|dz|
λ�(z)|dz| ,

then
1
2Re(�, C) ≤ µe(�, C) ≤ Re(�, C),
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(see [23]) so that � is a Bloch domain if and only if µe(�, C) < ∞. Theorem 1.5 gives
the hyperbolic analogue of these inequalities (for related ideas, see [20, 21]). We break the
proof of Theorem 1.5 into four lemmas, the first of which gives the left-hand inequality in
Theorem 1.5.

LEMMA 5.1. Suppose that � is a subdomain of a hyperbolic domain D. Then, for z in �,

tanh
1

2
R(z; �,D) ≤ λD(z)

λ�(z)
≤ µ(�,D).

Proof. By Lemmas 4.1 and 4.2, we may assume that D = D and � ⊂ D. Take any z0

in �; let g be an automorphism of D with g(z0) = 0 and let g(�) = �′. Then from
Lemmas 4.1 and 4.2 again, µ(�, D) = µ(�′, D) and R(�, D) = R(�′, D). Suppose now
that �D(0, t) ⊂ �′. Then

λD(0)

λ�′(0)
= 2

λ�′(0)
≥ r,

where r is the Euclidean radius of �D(0, t). Thus r = tanh 1
2 t , and (after taking the

supremum over all admissible t) we conclude that

λD(0)

λ�′(0)
≥ tanh

1

2
R(0; �′, D).

The conformal invariance (under g−1) now gives

λD(z0)

λ�(z0)
≥ tanh

1

2
R(z0; �, D),

and this is the first inequality in Lemma 5.1. The second inequality follows immediately
from the definition of µ(�,D). �

In order to prove the second inequality in Theorem 1.5 we need two preliminary results.
The first of these is an explicit example of a hyperbolic metric, and in this it is convenient
to focus on the pseudohyperbolic distance between z and w in D, namely

p(z,w) =
∣∣∣∣ z − w

1 − w̄z

∣∣∣∣ = tanh
1

2
ρD(z,w).

LEMMA 5.2. Suppose that c ∈ D and let �∗
D
(c, R) = �D(c, R)\{c} (this is the hyperbolic

disc in D with centre c and radius R that is punctured at c). Then

λ�∗
D
(c,R)(z) = 1 − p(z, c)2

2p(z, c) log(r/p(z, c))
λD(z), (5.1)

where r = tanh 1
2R.

Proof. For brevity, we write �∗(c, R) instead of �∗
D
(c, R). The function T (z) = (z − c)/

(1 − c̄z) is a conformal automorphism of D that maps �∗(c, R) onto �∗(0, R). As

�∗(0, R) = {z : 0 < |z| < r}, r = tanh 1
2R,
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we see that g defined by g(z) = r−1T (z) maps �∗(c, R) conformally onto D\{0}.
Thus (see [4, p. 17])

λ�∗(c,R)(z) = λD\{0}(g(z))|g′(z)|
= |g′(z)|

|g(z)|log(1/|g(z)|)
= |T ′(z)|

|T (z)|log(r/|T (z)|) ,

and the result follows as p(z, c) = |T (z)| and |T ′(z)| = 1
2 (1 − |T (z)|2)λD(z). �

The second result that we need is motivated by the function in (5.1), and its proof
(which we omit) is a simple exercise in calculus.

LEMMA 5.3. The function

A(k) = k exp

(
1 − k2

1 + k2

)

is increasing on (0, 1) and satisfies A(k) > k there. For 0 < t < A(k), let

h(t) = 1 − t2

2t log(A(k)/t)
.

Then h is decreasing on (0, k], increasing on [k,A(k)), and satisfies h(k) = (1 + k2)/2k.
In particular, if k = tanh y, then h(tanh y) = 1/ tanh(2y).

We now give our final lemma, and this will enable us to complete the proof of
Theorem 1.5.

LEMMA 5.4. Suppose that � is a Lipschitz subdomain of a hyperbolic domain D and that
z ∈ �. For brevity, write τ (z) = tanh 1

2R(z; �, D). Then

1 − τ (z)2

2τ (z) log(A0/τ(z))
λD(z) ≤ λ�(z), (5.2)

where

A0 =
(

tanh
1

2
R(�,D)

)
exp

1 − tanh2 1
2R(�,D)

1 + tanh2 1
2R(�,D)

= A

(
tanh

1

2
R(�,D)

)
.

Consequently, µ(�,D) ≤ tanh R(�,D).

Proof. As � is a Lipschitz subdomain, µ(�,D) < 1 and so, from Lemma 5.1, R(�,D) <

+∞. As before, we may assume that D = D and that � ⊂ D. Our proof uses Ahlfors’
lemma concerning ultrahyperbolic metrics (see [4, p. 13] and [22]), and the example in
Lemma 5.2 is used to construct a supporting metric.

We choose k so that
0 < tanh 1

2R(�,D) < k < 1,

and then (recall that D = D) define

σ(z) = h(τ(z))λD(z) = 1 − τ (z)2

2τ (z) log(A(k)/τ(z))
λD(z). (5.3)
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The idea of the proof is to show that σ(z)|dz| is an ultrahyperbolic metric on �. Ahlfors’
lemma then implies that σ ≤ λ�, and as this inequality is preserved as we let k decrease
to tanh 1

2R(�,D), this gives (5.2). Assuming this for the moment, we then have

λD(z)

λ�(z)
≤ 2τ (z) log(A0/τ(z))

1 − τ (z)2

= 1

h(τ(z))

≤ 1

h(tanh 1
2R(�,D))

= tanh R(�,D)

which yields the final inequality in Lemma 5.4 (which coincides with the second inequality
in Theorem 1.5). It only remains to prove that σ(z)|dz| is ultrahyperbolic on �.

Select a point a in �. We need to demonstrate that σ(z)|dz| defined in (5.3) has a
supporting metric in a neighborhood of a. Choose c in D∩∂� with ρD(a, c) = R(a; �, D).
Then for z in � with

ρD(z, a) < 2 tanh−1 k − ρD(a, c)

(the upper bound here is positive) we have

R(z; �, D) ≤ ρD(z, c) ≤ ρD(z, a) + ρD(a, c) < 2 tanh−1 k,

or equivalently,
τ (z) ≤ tanh 1

2ρD(z, c) < k,

with equality when z = a. This implies that

σ(z) = h(τ(z))λD(z)

≥ h(tanh 1
2ρD(z, c)) λD(z)

= h(p(z, c)) λD(z)

= λ�∗(c,A(k))(z),

with equality at a. Thus λ�∗(c,A(k))(z)|dz| is a supporting metric for σ(z)|dz| at a and our
proof of Theorem 1.5 is finally complete. �

6. Several complex variables
We begin by showing that Theorem 1.9 does contain Theorem C, and for this it is sufficient
to prove the following lemma.

LEMMA 6.1. Let D be a bounded domain in a complex Banach space X, and suppose that
� is a relatively compact subdomain of D. Then � is a Lipschitz subdomain of D.

Proof. Let

ε = dist(�, ∂D)

2 diam(�)
,

where these terms are computed in the norm ‖·‖ on X. Now take any (p, v) ∈ T (�) with
v �= 0, and let f : D → � be any holomorphic map such that f (0) = p and df (0)(x) = v,
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where x > 0. Next, define g : D → X by g(w) = f (w) + ε(f (w) − p). As f (w) ∈ �,
and

‖g(w) − f (w)‖ ≤ ε diam(�) < dist(�, ∂D),

we see that g maps D into D; thus g ∈ H(D,D). Clearly g(0) = p, and if λ = 1/(1 + ε),
then

dg(0)(λx) = (1 + ε) df (0)(λx) = df (0)(x) = v,

so we can deduce that
KD(p, v) ≤ λx = x/(1 + ε).

As f is arbitrary, and ε is independent of f , this implies that

KD(p, v) ≤ 1

1 + ε
K�(p, v).

As (p, v) is any point in T (�) and v �= 0, we deduce that µ(�,D) ≤ 1/(1 + ε) < 1 as
required. �

Next, we give the proof of Theorem 1.9, and this follows much as before except that the
metric space (D, kD) need not be complete (see [12, p. 81]). Note that in the case of one
complex variable, kD = ρD and completeness is assured. This difficulty is overcome by
following the ideas in the proof of Theorem B in [14] which is based on [14, Lemma V.5.1,
p. 137].

Proof of Theorem 1.9. First, the obvious analogue of Lemma 3.1 holds in the circumstances
given here, but we cannot use Theorem 1.1 directly as the space (D, kD) might not be
complete. However, the argument used to prove Theorem 1.1 does show that, for any
x in D, the sequence f1 ◦ · · · ◦ fn(x) is a Cauchy sequence with respect to kD. As D is
bounded then there is some positive R such that for any x in D, D lies in the open ball
B(x,R), and using this and the monotonicity of the metric as a function of the domain, we
find that if x and y are in D, then

kD(x, y) ≥ kB(x,R)(x, y) = 2 tanh−1
(‖x − y‖

R

)
.

It follows that for any x in D, the sequence f1 ◦ · · · ◦ fn(x) is a Cauchy sequence with
respect to the norm of the underlying Banach space X and so converges in X to some value,
say g(x). Now take any x and y in a compact subset of D and observe that

kD(f1 ◦ · · · ◦ fn(x), f1 ◦ · · · ◦ fn(y)) ≤ µ(�,D)nkD(x, y) → 0

as n → ∞. Thus g(x) = g(y), and as this implies that g is constant on X, the proof is
complete. �

We remark that the proof of Theorem 1.9 shows that if f1, f2, . . . are holomorphic maps
from a bounded subdomain D of X into a Lipschitz subdomain � of D, then for each x in
D, the sequence f1 ◦ · · · ◦ fn(x) either converges to a point ζ in D, or it accumulates only
on ∂D. Moreover, the two possibilities here are independent of the choice of x and, in the
former case, ζ is also independent of x.
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7. An example
We end this paper with an example of a domain � in C2 that is a Bloch domain but not a
Lipschitz domain (both with respect to the Kobayashi metric). As our example is in C2, it
is convenient to begin with some general remarks about Lipschitz subdomains of product
spaces.

First, we note that if U and V are subdomains of the complex Banach spaces X and Y ,
respectively, then [14, Proposition V.1.6, p. 117]

KU×V ((z,w), (u, v)) = max{KU(z, u),KV (w, v)}.
Suppose now that �j is a Lipschitz subdomain of Dj , j = 1, 2, then

KD1×D2((p1, p2), (v1, v2))

K�1×�2((p1, p2), (v1, v2))
= max{KD1(p1, v1),KD2(p2, v2)}

max{K�1(p1, v1),K�2(p2, v2)} .

Now for any positive numbers ai and bj ,

max{a1, a2}
max{b1, b2} ≤ max

{
a1

b1
,
a2

b2

}
,

so the next result follows immediately.

THEOREM 7.1. Suppose that �j is a Lipschitz subdomain of Dj , j = 1, 2, and that each
Dj is Kobayashi hyperbolic. Then �1 × �2 is a Lipschitz subdomain of D1 × D2.

This lemma enables us to construct many Lipschitz subdomains of, for example, DN ,
and hence to provide many examples to which Theorem 1.9 is applicable.

Finally, given X and Y , let πj be the projections given by π1(z,w) = z and π2(z,w)

= w. Then we have the following result.

THEOREM 7.2. Suppose that � ⊂ D1 × D2, where each Dj is Kobayashi hyperbolic.
If πj (�) is a Lipschitz subdomain of Dj , j = 1, 2, then � is a Lipschitz subdomain of
D1 × D2.

Proof. First, � ⊂ π1(�)×π2(�). By Theorem 7.1 this product set is Lipschitz, and hence
so is any subdomain of it. �

We now construct our example. First, we construct a sequence zn in the unit disc D in
C such that |zn| → 1 and such that if E = {z1, z2, . . . }, then every point of D is within a
distance of one of E when measured in the hyperbolic metric ρD of D. We show that �

defined by
� = (D × D)\(E × E)

is a Bloch, but not a Lipschitz, domain. First, � is a Bloch domain in D × D because

kD×D((z,w), (zp, zq)) = max{kD(z, zp), kD(w, zq)}
= max{ρD(z, zp), ρD(w, zq)}
≤ 1

for a suitable choice of p and q (see [14, p. 136]).
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To show that � is not Lipschitz we use a result of Kobayashi [17, Proposition 3.5.35,
p. 96], which states that if A is a closed analytic subset of codimension two in a complex
manifold M , then

KM\A(p, v) = KM(p, v)

when p ∈ M\A. In particular, µ(M\A,M) = 1, so that M\A is certainly not Lipschitz.
We take M = D×D and A = E×E, and as E×E is obviously closed and of codimension
two in D×D, it is sufficient to show that it is an analytic subset of D×D. The assumptions
on the zn in D guarantee that there is an analytic function f : D → C that is zero on, and
only on, E [14, p. 295], so we may define functions f1(z,w) = f (z) and f2(z,w) = f (w)

that are analytic on D × D. As

E × E = f −1
1 ({0}) ∩ f −1

2 ({0}),
we see that E × E is indeed an analytic subset of D × D.
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