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NONSTATIONARY FRACTIONALLY
INTEGRATED AUTOREGRESSIVE
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This paper considers nonstationary fractional autoregressive integrated moving-
average p, d,q) models with the fractionally differencing parametee (—3,3)

and the autoregression function with roots on or outside the unit cikshemp-

totic inference is based on the conditional sum of sqUEE&ES estimation Un-

der some suitable condition# is shown that CSS estimators exist and are
consistentThe asymptotic distributions of CSS estimators are expressed as func-
tions of stochastic integrals of usual Brownian motiodslike results available

in the literature the limiting distributions of various unit roots are independent
of the parameted over the entire rangd € (—3,3). This allows the unit roots
andd to be estimated and tested separately without loss of efficieDay re-

sults are quite different from the current asymptotic theories on nonstationary
long memory time serie§ he finite sample properties are examined for two spe-
cial cases through simulations

1. INTRODUCTION

Consider the nonstationary fractional autoregressive integrated moving-average
(FARIMA) model

$0(B) (1~ B)®y, = ¢i(B) g, (1.1)

where{eq} is a sequence of independently and identically distributedl.)
random variables with mean Qariance 1andE|eq |2 < oo for somea > 0;
$o(B) =1 = 0B — -+ = ¢popBP With ¢op # 0, Yo(B) =1 + pnB + -+ +
0B With ¢roq # 0, |do| < 3, (1 — B)% is defined by the binomial series
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(k= dy— D!

1-B)% = BX =
( ) goa()k > Aok KI(—dp— 1)1

(1.2)

B is the backward-shift operatorpy(z) includes unit roots and has the
decomposition

I
$o(2) = (1- 221+ 2)° [] (1 - 2 cosbyz+ 2%)*¢;5(2), (1.3)
k=1

wherea, b, I, andd, are nonnegative integerg, € (0,7), and ¢§(z) is ap*
order polynomial withp* = p — (a+ b + 2d; + --- + 2d,); and¢§(B) and
o(B) have no common root with all roots outside the unit circle

When¢o(B) has no unit rogt{y,} defined by(1.1) is stationary and invert-
ible with the autocorrelation functiop(k) ~ ck®®~* ask — co, wherec is
some constant depending a. Whend, € (0,0.5) {y;} possesses the so-
called long-memory characteristic becaygé&) decreases at a hyperbolic rate
that is slower than the exponential rate that characterizes ARMA procdsees
stationary FARIMA model was proposed by McLeod and Hi{i€l78, Granger
and Joyeux1980, and Hosking(1981J). It has been widely applied in model-
ing long memory behavior in hydrology and economi&sme recent reviews
on this topic can be found in Robins@h9944a, Baillie (1996, and Phillips
and Xiao(1998 Sect 6), and the references therein

When ¢,(B) includes unit rootsmodel (1.1) is nonstationaryUnlike the
stationary casethere are two different data generating mechani$D&M)
for model (1.1) because the ARp) part includes a nonstationary component
The first one namely DGM1, is to generatay, throughu, = (1 — B) %g,
and then generatg througheo(B)Y; = ¢o(B)u;. The secondnamely DGM2,
is to generatay; through ¢o(B)u; = #o(B)eo; and then generatg through
(1 — B)%y, = u,. It is the preceding different DGMs that result in some dif-
ferent research and conclusions

To understand the difference between the two DGMs consider the sim-
ple FARIMA(1, do, 0) model i.e., (1 — B)(1 — B)%y, = go with initial values
y; = 0 ast = 0. From DGM1, it follows that

Y = Y1 T Uy, U = kE 8ok Eot—ks (1.4)
-0

wheredy = (k + dy — D!/[kl(dy — D)!], i.e., the coefficient of thekth term
in the expansion ofl — B) %. From DGM2 becausey; = 0 ast = 0, y; is
actually generated through the recursion formd& §ag Yk = U, Where
(1-B)ui=¢,t=12,..., andug = 0. Thus we have

t-1
Vi = Vi1 U, U = ) dokEork (1.5)
k=0
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(see Appendix B for the proof ofL.5)). Now, it is clear that observationg
from model (1.4) are generated by shocks starting at timeo, whereasy,
from model (1.5) are generated by shocks starting at timeHenceu, is a
long memory time series defined as in Hoskifi®81), whereasu; is not
From Theorem (d) in Hosking (1981), it is not difficult to show thatfor any
t,k =1, E(uu,) = E(UUpy) + O(t7%) = O(k?% 1 + t~«) wherea > 0.
Thus u; still have the long memory featurg/e call ui” a semi—long memory
time series

Model (1.1) from DGM1, with ¢o(B) = (1 — B)"¢§(B), is investigated
by Beran(1995. His method is to merge the unit root into the fractional dif-
ferencing parameted,, i.e., writing ¢o(B)(1 — B)% as¢g(B)(1 — B)Y, where
d = m + do. He develops an approximate estimation procedure that can esti-
mated directly. Ling and Li (19973 extend Beran’s method to permit the noise
gor 1o follow a GARCH procesdlt is shown that the estimator afis asymp-
totically normal Other approaches to modgl4) and its general case are con-
sidered by Sowel{1990 and Chan and Terrifl1996), respectively They treat
U, nonparametrically and investigate the least squares estirtla®d) of unit
roots Their results indicate that the convergent rates and asymptotic distribu-
tions of the LSE of the unit roots on the left hand ramiges (—3,0) and on the
right hand rangel, € (0,3) are different In particulay their asymptotic distri-
butions depend od, and involve a sequence of fractional Brownian motions

Model (1.5), i.e., a special case of modé€l.1) under DGM2 is investigated
by Robinson(19940). Because the autocorrelation structure of the series in model
(1.5) has the semi-long memaory properBickey—Fuller test$see Fuller1976
Dickey and Fuller1979 and Schmidt—Phillips tes{see Schmidt and Phillips
1992 are invalid for testing the unit root in modél.5) unlessd, = 0. Simu-
lation results in Robinso1994h show that even whend, = 0.05, Dickey—
Fuller tests and Schmidt—Phillips tests may reject the unit root null hypothesis
in model (1.4) with quite a high probabilityAs in Beran (1995, Robinson
(1994h also merges the unit root intl, and he proposes Lagrange multiplier
(LM) tests for the unit root against fractional alternatives

In this paperwe investigate moddll.1) under DGM2 The conditional sum
of squaregCS9 estimation procedure is used fdy and other parameterdn-
der the general nonstationary framework given by Chan and (188, we
derive the asymptotic distribution of the CSS estimat&escause modd[1.1)
from DGM2 has only the semi—-long memory featutiee asymptotic results
are quite different from those in the literatuigee the Remarks in Section. 2
Our results may be seen as an extension of Chan and(18818, and their
results and techniques will be used in our papwwever our approach needs
to estimated, and to solve a nonlinear equatiof technical difficulty is to
prove that the estimators of unit roots are independent of the estimatlyr of
Our asymptotic theory is examined through simulatidhe results illustrate
that our method is feasible and applicable for the nonstationary FARIMA model

Jeganathari1999 considers cointegrating time series with fractional inte-
grated errors(Our main results were obtained in 1996 and appeared in Ling
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and Li[19971. We are grateful to NH. Chan for providing us with a copy of
Jeganathan’s1999 technical report after this paper was completdthe DGM

of his model is principally the same as that of mod&K), and hence his
model includes modell.4) as a special cas@s a result of the different for-
mulations his results and ours are differeror y, from the FARIMA(L, dy,

0) model both Jeganathafl999 and the current paper use the transforma-
tion X, = Sk_baoYe_k. Under DGM1 (1 — B)x, # o, Jeganathar{1999
shows thatn~madl/2.1/2+diy, . converges toF(7), a functional of the frac-
tional Brownian motion However under DGM2 we have(l — B)x; = &,
and hencen"/2x,,) converges to the usual Brownian motidrhis is the ba-
sic reason for the difference between the results in this paper and those of
Jeganathai1999.

This paper proceeds as followSection 2 presents the main resulBec-
tion 3 reports some simulation resul8ection 4 gives the proof of the main
results Throughout the papewe use the following notationd)’ denotes the
transpose of the vectdd; o(1)(0,(1)) denotes a series of numbemsndom
number$ converging to zerdin probability); O(1)(Oy(1)) denotes a series of
numbergrandom numbepsthat are boundefn probability); — denotes con-
vergence in distributiorD = D[0,1] denotes the space of functib(s) on[0,1],
which is defined and equipped with the Skorokhod topol@@jilingsley, 1968;
D¥=D X D X -.- X D (k factorg; and|-| denotes the Euclidean norm

2. CSS ESTIMATION AND MAIN RESULTS

We are given observationg, t = 1,...,n, with initial valuesy, =y_1 = --- =
0, which are generated throudh.1) with DGM2. Denotey = (¢4, 5, dg)’
with ¢ = (10, ..., Ppo)" @Ndehg = (10,...,Pq0)". Note thati, is the true pa-
rameter that together witfeq,} generatey, through(1.1) with DGM2. To es-
timate Ao, we need the unknown parameter model

$(B)(1—B)%y; = ¢(B)ey, (2.1)

where ¢(B), ¢(B), and (1 — B)Y are defined similarly ag(B), 1(B), and
(1— B)%, respectivelyand the unknown parameteris= (¢’,¢',d)’ with ¢ =
(d)l? ey ¢p)’ and(p = (wl’ LR ¢q),~

We assume that, and A are the interior points of the compact $&t|d| <
1 and all the roots ofs(z) are outside the unit circl@he CSS estimator is the
parameten in © that minimizes the objective function

S(A) = > &, (2.2)

whereg, =y “1(B)¢(B)(1 — B)%,, a function ofA and the observed dafg,}.
Note thateg = &;[,—,,- When{eq} is normally distributedminimizing the
CSS function is asymptotically equivalent to maximizing the likelihood func-
tion. Box and Jenking1976 adopt this method for stationary autoregressive
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moving-averagéARMA) models Hosking (1984 considers the CSS method
for stationary FARIMA modelsA similar method is also used by Li and McLeod
(1986 for stationary FARIMA modelsMore recently Chung and Bailli1 993
and Chung1996 use the CSS estimation for some general long memory frac-
tional ARIMA models

In the following expressions we show the first-order and second-order par-
tial derivatives ofS(\).

aS(A) N9 aS(A)
e "2 6—2 e, oo =2501slogL- B, (2.3)
S\ ds 92S(A) 9, ds,
o 2;1 oy g 22 L0 39" @
92S(A) dey ast noo92%,
=2 , 25
oriny’ tZl o a2 gy (2-5)
2 n
0 ;(2)‘) =23 {[log(1— B)&, ]2 + & log?(1— B)s,, (2.6)
t=1
wherede/dp = —ip H(B)(1 — B)%y_q, Vi = (Yor--s Yipr1), and de /oy =
— "1 (B)ei, i = 1,...,09. Let Dy(A) = 9S(A)/0A and1,(A) = 92S(A)/dAdN'.

Denote D, = Dn(Ag) and I, = I4(Ao). Let J, = diag(Ny, Ny, Ly pye-es
Li.ns N2 550,

Gn = \]r:lG* and Gn = dlag(én, n*l/ZI(q+l)><(q+l))’

where N, = diag(n,...,n?), N, = diag(n,...,n®), Ly, = diag(nlyxs,--,
n%l,..,), k=1,...,1, andG* is defined as in4.8) in Section 4
Now, it is convenient to introduce the unobserved procgg8:t = 0,
+1,...} with 20 = (29,29, 28,
— #—1 = 0 _— -1 = 0 _ - 1
Zd>t = ~¢o (B)%*t, Zl/lt = —ig (B)Sz//b Ly = _Z Esovk»

k=1

whereé -« = (sOt,...,sOt,p*+_1)’ andéy, = (&o,...,&ot—q+1)’- OUr main results
can be stated by the following theorem

THEOREM 21. Under the assumptions of model (1.1), it follows that

(a) there exists a sequence of solutions satisfying the equaBon)/dA = 0 such
that

N 1/2G, (A, = Ao) = 0,(D);
(b) for such a sequence,

Gn H(An— Ag) = (F7H),(F 1), (H 0, (HTHG) L (E7IN)))
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where0 < a < 3, the limiting distributions F¢, F, &, Hy, and/, are defined in
Appendix A3 = E(Z°2%), N is a(p* + q + 1)-dimensional standard normal
vector, and(F, &), (F, &), (Hq,{1), ..., (Hi, &), and N are independent.

Remark The preceding results have three different features from those in
Sowell (1990 and Chan and Terrif1996. First, the estimators of unit roots
andd, are asymptotically independerithis makes it possible to estimate and
specify separately the unit roots and the paramégexithout loss of asymp-
totic efficiency Secondthe asymptotic distributions of unit roots do not de-
pend ondy, and hence unit root tests based on these distributions can be
conducted as those for the nonstationary ARMA modéird, the convergent
rates and asymptotic distributions of the estimators of unit roots are invariant
over the entire rangd, € (—3,3). This ensures that the unit root tests based
on our asymptotic results are robust for differelgt

For various unit rootsthe limiting distributions given in Theorem2 have
the same form as those given by Chan and V¥8i88 for an unstable auto-
regressive modelTheorem 21 also implies that the limiting distribution of the
maximum likelihood estimation for unstable ARMA models is the same as that
given by Ling and Li(1998. It is easy to show that

 [E@Z%z8) E<z%za’t>)
E(Z% th) 772/6

whereZ$, = (zg;t,zg;)'. Thus the limiting distribution for the stationary com-

ponent is the same as that in Li and McLed®86 for a stationary FARIMA

(p*,d,q) model The preceding result can be extended to the near unit root case
which can be found in the University of Hong Kong.Blthesis by Ling(1997).

Example 2.1
Consider the model
(1— ¢oB)(1— B)%y, = &g, (2.7)

whereg, = 1. Suppose that,d) is the CSS estimator dfpo,do). Then by
Theorem 21,

p=n(¢—1) -, f W(T)dW(T)/U WZ(T)dT}, =¢ (2.8)
0 0
n 1/2 1 1 1/2
= <2 u51> (¢ —1) —>£f W(T)dW(T)/U WZ(T)dT} , (2.9)
t=2 0 0
and
vVn(d - dy) =, N(0,6/72), (2.10)

wherAeut,l =(1- B)ayt,l, W(7) is a standard Brownian motipmand p and
\Vn(d — dy) are asymptotically independent
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Remark The limiting distributions ofp and r are the same as those of
Dickey—Fuller testsand hence the critical values given in Tablés3and 85.3
of Fuller (1976 can be usedThe distribution ofd is the same as that in Li and
McLeod (1986.

Example 2.2

Consider mode(1.1) with only a unit root+1, i.e,

$o(B) (1 — B)®y, = (B) &g (2.11)

and ¢o(B) = (1 — B)¢5(B) with all roots of ¢§(B) outside the unit circle
Reparameterizing?.11) as

p
(1-B)%|y, — Yor Y1 — E Yoi (Yi—is1 — Yeei) | = ¥o(B) &gy,
i=2

whereyo, = 3P o andyg; = =3P doi, | = 2,...,p. Suppose thab is the
CSS estimator of the parametgp = (¢o1,...,Pop) . Define y, = SP L é,
Y= —2 i, ] =2,...,p, and Ao = (Yoo, --+» Yops You - - -» Pogs o). Similarly
define A}. In a similar manner to that given by Ling and [1998, we can
show that

[n($; — D,VN(A; — A5)'] 5> diag(cé,N), (2.12)

wherec =1/(1 — 2P, v0), £ is defined by the right-hand side 2.8), N is a
normal random vector with mean zero and variaBi¢cevhich is independent of
£. The asymptotic distribution ofi(y; — 1) has the same form as those given
by Dickey and Fuller(1979 and Yap and Reinsdll995, and hence similar
test procedures can be established for tesfing= 1.

3. SOME SIMULATION RESULTS

In this sectionwe report some simulation results for two special nonstationary
FARIMA models The first one is the following FARIMAL, dy, 0) model

(1-¢oB)(1— B)doyt = &ot»

whereg, = 1, |do| < %, andeg ~ iid N(0,1).

We first investigate the finite sample properties of the CSS estimalion
the simulation the true parameted, is taken as @, +0.1, and £0.3, and
¢o = 1.0. For various parameter pairs 0y, ¢o) and each of the 000 repli-
cations samples of series lengttims= 200 and 300 are usedespectivelyIn
the estimationthe LS estimator ofp, is taken as the initial value of. To
obtain an initial value ofi such that it satisfies the condition in Lemm& 4n
Section 4 we may takel, = (1 — ¢B)y, as artificial observations of the model
(1 — B)%u, = gy and then use the estimation procedure of Li and McLeod
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TaBLE 1. The empirical mean and standard deviation of CSS estimators for
the nonstationary FARIMAL, dy,0) model

n =200 n = 300

Mean VMSE Mean \VMSE

~ ~ A ~

o ¢ d 6 4 6 4 & 4 $

03 10 0303 Q991 Q071 Q023 0301 Q995 Q053 Q012
01 10 0105 Q989 Q072 Q029 0101 Q994 (0052 Q013
00 10 -—-0.002 Q989 Q073 Q024 Q000 Q994 Q053 Q013
-01 10 -—-0.099 Q990 Q071 Q020 -—0.100 Q994 Q053 Q012
—-03 10 -0296 Q991 Q072 Q026 —0.299 Q995 Q053 Q014

Notes:Replications= 1,000

(1986 to do this However to save CPU timehere we taked, + n~%° as
the initial value ofd. The optimization algorithm from Fortran subroutine
DBCOAH in the IMSL library is used by constrainingl| < 3. The results
are summarized in Table. We can see that the biases of the estimatodqof
are very small and the empirical standard errors are very close to the asymp-
totic standard errorf6/(72 X 200]%% = 0.0551 forn = 200 and[6/(w2 X
300]°%° = 0.0450 forn = 300 For the estimator of,, all biases and empir-
ical standard errors are smadind they are almost constant for different val-
ues ofd,. This is especially the case with= 300 These findings are consistent
with our asymptotic theoryThe simulation results indicate that the CSS esti-
mation is feasible and applicable for the nonstationary FARIMA model

To examine the empirical size and power of the Dickey—Fuller tesaad
7 in Example 21 and the parameterd, = 0.0, £0.1, £0.3 and ¢o = 0.8,
0.90, 0.95, 0.99, 1.0 are usedFor different pairs of the parametéd,, ¢,) and
each of the 00 replicationssamples of series lengtms= 200 and 300 are
consideredThe critical values ofp and 7 given in Tables &.2 and 85.3 of
Fuller (1976 are usedThe results for the lower 5% Dickey—Fuller tests are
reported in Table 2It is seen that for each cadaoth size and power are quite
satisfactory In particulay when the sample size = 300 the empirical sizes
are very close to the nominal value 0f08 and powers are reasonablée
results in Table 2 indicate that Dickey—Fuller tests are robust for different val-
ues ofd,.

Now, we simulate the FARIMAL, dy, 1) model

(1-¢oB)(1— B)doyt = &0t — Yo&i-1,

wheregy =1, |dg| < 3, |tho] < 1, andey ~ iid N(0,1). We choose the sample
sizen = 400 with 1,000 replicationsand taked, = +0.3 andyy, = +0.5,
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TABLE 2. Power and size of lower tail Dickey—Fuller test based on the 5% significance level for the nonstationary
FARIMA (1, dp,0) model

n =200 n = 300

do bo 0.8 0.9 0.95 099 10 0.8 0.9 0.95 099 10
0.3 10 p 0.992 0898 0624 Q151 Q066 1000 Q985 Q0840 Q164 Q049
T 0.992 0898 0627 Q0156 Q067 Q999 0986 0846 Q0160 Q049
0.1 10 p 1.000 Q964 0688 Q176 Q067 1000 1000 0888 Q221 Q068
T 1.000 Q959 0688 Q0182 Q065 1000 0999 0890 0216 Q067
0.0 10 p 0.994 Q926 0682 Q171 Q073 1000 Q986 Q879 Q222 Q066
T 0.993 Q927 0682 0171 Q073 1000 0988 0874 0223 Q062
-0.1 10 p 0.993 Q930 0689 0162 Q070 1000 0986 Q0873 0220 Q062
T 0.992 0929 0688 0164 Q069 Q999 0986 Q0870 0215 Q060
-03 10 p 0.999 Q917 0639 Q142 Q063 1000 0981 Q0842 Q0180 Q050
T 0.998 Q919 0634 0141 Q063 1000 0982 0843 Q175 Q054

Note: Replications= 1,000
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TaBLE 3. The empirical mean and standard deviation of CSS estimators for
the nonstationary FARIMAL, dy,1) Model

Mean VMSE
do o o d ) ¥ d ) i

0.3 10 0.5 0.290 Q985 0484 Q064 Q013 Q045
-03 10 0.5 -0311 Q995 0482 Q060 Q010 Q049
0.3 10 0.3 0.291 Q985 0286 Q060 Q013 Q042
-03 10 0.3 —0.308 Q995 0283 Q053 Q009 Q042
0.3 10 -03 0.297 Q984  —0.310 Q050 Q013 Q027
-03 10 -03 —0.300 Q995  —0.309 Q043 Q009 0026
0.3 10 -05 0.299 Q984  —0.507 Q048 Q013 0021
-03 10 —-05 —0.299 Q994  —-0.507 Q044 Q009 0021

Note: Sample sizen = 400 and replications: 1,000

+0.3. Various combinations of valuek, andy, are usedThe means and the
standard errors of the estimatorsdgf ¢, andis, are reported in Table. 2gain,
all biases and empirical standard errors of the estimators are almost constant
for differentd,.

From Example 2, the statistics for testing the unit root in the FARINA
do, 1) model are

R n 1/2 N
p=n(¢—-1) and T:<§:2utzl> (¢ —1),
t=

whereu,_; = (9g(/3) (4, y,a)=(4,4,4)- Here p andr have the same asymptotic
distributions as those if2.8) and (2.9). To examine the power and size pf
andr, we takeg, = 0.8, 0.9, 0.95, 1.0 with (¢, dy) having the same values as
in Table 3 Again, we choose the sample sine= 400 with 1000 replications
The critical values given in Tables®2 and 85.3 of Fuller (1976 are used
The powers and sizes based on the 5% significance level are reported in Table 4
All tests have quite satisfactory powgasid the sizes are also close to the nom-
inal 0.05, except the casd, = —0.3 with ¢y = —0.3 and—0.5, which is a bit
sensitive To assess the large sample behgwar perform a simulation for the
casedy = —0.3 andy, = —0.5 with sample sizen = 1,000 and ]000 replica-
tions in which case the sizes gfandr are 0053 and 0054, respectivelyThis
means that we can obtain almost the exact sizes ahdr when the sample
size becomes larg& hese results further indicate that the theory and method
developed in this paper are potentially useful for the nonstationary FARIMA
model
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TABLE 4. Power and size of lower tail Dickey—Fuller test based on the 5% significance level for the nonstationary
FARIMA (1, dy,1) model

do =0.3 do =-03

Yo 0.8 0.9 0.95 099 10 0.8 0.9 0.95 099 10
0.5 p 1.000 Q995 Q955 0251 Q057 1000 1000 Q960 Q0255 Q060
T 1.000 Q0994 Q958 0253 Q053 1000 Q999 Q962 Q0260 Q058

0.3 p 1.000 Q994 Q937 0254 Q053 1000 1000 Q943 Q0253 Q059
T 1.000 Q993 Q937 0260 Q051 1000 Q999 Q944 Q247 Q061

-0.3 p 1.000 1000 Q968 0253 Q052 1000 1000 Q968 0251 Q073
T 1.000 Q999 Q966 Q247 Q054 1000 Q999 0966 0253 Q070

-0.5 p 1.000 1000 Q970 Q0255 Q051 1000 1000 Q970 Q255 Q072
T 1.000 1000 Q969 0255 Q052 1000 1000 Q969 0255 Q071

Note: Sample sizen = 400 and replications- 1,000
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4. THE PROOF OF MAIN RESULTS

We begin by introducing an invariance principies., Theorem 41. This theo-

rem serves a purpose similar to that of Theore21i@ Chan and We{1988

and will be used to establish Lemma64in Theorem 41, the elements of§

will be basic processes corresponding to the componentwise argument in
Theorem 21.

THEOREM 41. Suppose thafz} is generated by
b6(B)z; = 1ho(B) eoy (4.1)

with z = 0 as t= 0, where¢i(B) =1 — Ei";l ¢ B andyip(B) and ey, are de-
fined as in model (1.1). Denotg % = —(deq, /™, deo /O, deo /0d)’, Where

b6 = (Do1s--»Pop)s Yo = (You, - .-, og)"s Ieqy /og* = de, /o™ (68,0, 6)» AN
similarly definedeq, /0y and deq, /0d. Let

S = (eor, (—1)'eq, V2 sintd, eo, V2 COStO; £y, ...,V 2 COSE,, Z{_1 801,
where6; # 0; if i # j. Then

1 [n7] .
2S5 WIN(r) inDARar, (4.2)
t=1

where W) is a (2| + 2)-dimensional standard Brownian motion and# is a
(p* + g+ 1)-dimensional Brownian motion, which is independent ¢fWand
has mean zero and covariane® defined as in Theorem 2.1.

The random elements i are the same as those in Theorer 8f Chan
and Wei(1988, except forZ{_,&,. We need some special arguments because
of this different random elementhe following two lemmas are essential for
the proof of Theorem 4. The first ensures that/(7) andN(7) are asymptoti-
cally independentand the second implies that the Lindeberg condition given
in Helland (1982 is satisfied The proofs of the two lemmas can be found in
Appendix G which includes some arguments different from those for Theo-
rem 22 in Chan and We{1988.

LEMMA 4.1. n 3" e E(s3,Z_1| Fi_1) = 0,(1), where i= V=1, 7 €
[0,1], and A = o{eg1, ..., &0}, the o-field generated bygs, ..., gq.

LEMMA 4.2. n~* SIS E[|Zkeo 12 (1 Zeeoks 1] > VN8| F)] = 0p(D).
Proof of Theorem 4. First,

1.0 880t 2 1. ® 1 2

= El — -2 | = — E — Enr_i

" <ad d‘) TR
121
=T33 5 =0,
nt=]_i=t|
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Similarly, we can show than X, Eldeq /0" — Z3-[? = o(1) and
N3, Elldee /oy — 23| = o(1). Thus

1 n

~ 22— 20 = 0,(1). (4.3)
Ni=1

BecauseZ? is strictly stationary and ergodic with(Z°Z?) < oo, by the ergo-
dic theoremn=* 3L, 20Z% = 5 + 0,(1). Furthermorgby (4.3), we can show
thatn™* X{_1(Z,Z{ — 22Z?) = 0,(1) and hence

1 [n7]

=3 21 Ziy = T3+ 0,(0). (4.4)
t=2

Foro, 8 € [0,27], observe that

1 [n7]

- > coskd sinks — 0, andif 6+,
k=2

1 [n7] 1 [n7]

— > coskd cosks = = >, sinkd sinks — 0.

Ny=2 N k=2

Now, by Lemmas 41 and 42, (4.4), and applying the standard functional cen-

tral limit theorem(Helland 1982 Theorem 33), we can complete the proof
[ ]

Letx, = i, 2(B)(1 — B)%y,. Becausey; are generated by modél.1) through
DGM2, {x,} satisfies the unstable autoregressive model

$o(B)X = o, (4.5)

with x, = 0 ast = 0.! Following Chan and We{1988, we may transform

{X;} into various componentwise arguments corresponding to the locations
of their roots Let u; = (1 — B) 2po(B)X;, vy = (1 + B) Po(B)X, z =

b5 1 (B)po(B)x;, and X x = (1 — 2costB + B?) %epy(B)x, k = 1,...,1.
Then

(1—-B)?u; = &g, (1+ B) v, = &g,
$0(B)z; = &qr,
(1—2cosh B + B2)%x, , = eq, k=1,...,1,
wherea, b, d,, and¢(B) are defined as i161.3). Define
Uy = (Ugyeeny U_arg)) Vi = (Vs Vi_ps1)s
2= (2.5 Zpri1)s

X’[,k: (Xt,k7"’7Xt—dk+l,k)’7 k:l,.,l
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As shown in Chan and W€iL988), there exists a nonsingular matiX* such
that

Q*Xt = (u{7V{’X{,la'--aX{,l’Z{),’ (46)

wherex; = (X¢,..., Xi—p+1)"-

Further defineu (j +1) = (1 - B)*Ju, forj =0,1,...,a— 1, U, = (u,(),...,
u(a), v(j+1) = (1L —=B)P Iy forj=01,...,b—1 V, = (v:(D),...,0(b)),
Xek(j +1) = (1 - 2Bcosty + B)%Ix,, fork=1,...,1,j = 0,1,...,d — 1,
Xik = (X k(1), X¢—1,k(1), ..., X k(dy), Xi—1.k(dk))". There exist nonsingular matri-
cesM, M, C,, k=1,...,1, which can be found in Chan and W&i988), such
that

Mu =U, Mv,=V,, CX=Xuw k=1.., 4.7)
DenoteG* = diag(M, M,C,,...,C;,1,)Q*. Then
G*Xt = (Ut/’\/t,a Xt/,l’ ey X{,IaZ{)/' (48)

Thus x; has been decomposed into some subvectors corresponding to various
unit roots and stationary componeritemmas 43 and 44, which follow, come
directly from Theorems 3.2, 3.2.1, and 33.4 of Chan and We(1988. In
Lemma 43, (a)—(c) show the limiting distributions corresponding to various
unit roots in the score functiopmnvhereagd)—(f) show the limiting distributions
corresponding to various unit roots in the information matiremma 44 shows

that the cross product terms between various nonstationary and stationary com-
ponents involvingpg in the information matrix converge to zero in probability

LEMMA 4.3.

(a) Nn_ltzizut—laot -ré,

(b) N;lévt—lsot -, &

(© Lﬂ,ﬁéxt—l,k%t —r ko

(d) N;lt:izut,lut’,lN;l -, F

(e) N;* izvt—lvt'—lﬂr;l -, F
=

n
(f) Lk %Xt—l,kX{—LkLE,:h =, Hy,
t=
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where k= 1,...,1, & F, €, F, &, and H, are defined in Appendix A, and F,
and H, are positive definite matrices in probability.

LEMMA 4 4. The following random variables converge to zero in probability:

n n
(Ul S U VARY [\ ZZUt—lxt,—l,kLﬁn
= t=

t=2

n
Nyt D Vioa X{_pkLichs k=1,...,1,

t=2

n
L > X Xivibictns kK#ky,  kkg=1...,1,

t=2

n n
Nyt > Uazi /NN, Not X Vieazi gV,
=2 t=2

n
Lich 2 Xe-1.kZi-1/vn, k=1,...,L
t=2

Now, we introduce two additional lemmakemma 45 is for the proof of
Lemma 46(b), which together with Theorem.2 ensures that the estimators of
various unit roots are asymptotically independent of the estimatody ahd
Jo. Lemma 46 shows the asymptotic distributions of the score function and
the information matrix

LEMMA 4 .5. Suppose tha, is one of the random vectors,NU,, N; 1V,
and L h X, k=1,...,1, then

n t—1 1 n t—1 1
(@ N2 s 4 ( >~ 80ti> +n Y2y (E = St—i ) ot = Op(1),

t=2 i=11 t=2\i=1|

n t—1 n t—1
(b) n-2 9x1<2 U¢0(i)801i> +nY2 E <E Uwo(i)gt—i > Eot = Op(l),

t=2 i=1 t=2 \i=1

whereys, 1(B) = 2721 v, (1)B'.

Proof We present the proof only fof, = N;1U,. Other cases are similar
For (a), denoten, = 3\_1(1/i )& —iandu = 372, (1/i)e ;. We first note that

t=1k=t

i—1 2 i—-1 1 2
SZE(E ,ut> +2E< EESOt—k>- (4.9)
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Furthermorewe have

i 2 i-1
E<E,U«t> =iEpf+2 2 (i — Epp,
t=1

r=1

* 1
=iEu? +22(| _r)<k2—:l k(k+r)>

] i—1 ) o0 1
=iEpZ+ > (i — r)rl/z(kz W)
=1

r=1
i—1

= iEp?+ o(E (i—nr -1/2) = o(j¥2+18), (4.10)
r=1

By Minkowski’s inequality

(800 [ ZielE3]

=0(i¥?), (4.11)
where 0< a < 3. By (4.9)—(4.11), we know that
i—1 2
E < > m) = 0(i¥/2+V8), (4.12)
t=1

Now we consider thejth element of the first term in(a), i.e,
n~ Y2 3%, u_4(j)n. By the definition ofu,(j), we have

t

ut(J)=Zui(J—1), (4.13)
and hence
n n n n t—1
t:Ezutfl(j)”’h = [;zutl(j - 1)}(21’%) - 2(2 77i>ut1(j -1
=1;,— |y, say (4.14)

By (4.12), n"' XL n, = 0,(n"1"¥4+1/18) = ¢,(1), and by Lemma 4&(d),
|n~0-D Sl (j — | = [niz(jil)HZ?:zutz—l(j - D]¥? = Op(nl/z)-
Thus we have

nv2),, = [n<J1>1/2un<j>]<n1 > m> = 0p(D). (4.15)
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Whenj =1, by (4.12),

n t—1 2 n
El =2 E(E ni> = 3 o(t¥2:18) = o(n¥2+ 1), (4.16)
t=2 i=1

t=2

Thus E(n~%21,,)? = o(n~¥#*V8) = 0(1), and hencen ¥?l,, = 0,(1). When
j>1,

Ell StEZEK_Zl”Ii)Utl(j _1)‘

) n t—1 2 ) 1/2
oo et -]
t=2 i=1
— O(nj—S/Z é t3/4+l/16> — O(nj+l/4+l/16), (417)
t=2

where the first equation holds b§2.17) in Ling (1998 (i.e, Eu?(j) =
O(t21~Y*1)) and(4.12). Hencen 1~ 2|, = 0,(1). Further by(4.14) and(4.15),
we can claim

n
n"Y2NG 1 Y Uy = 0p(1). (4.18)

t=2

Next, we consider thgth element of the second term if@), that is
N2 (32T MU (j))eo. By Minkowski's inequality and(2.17) in
Ling (1998, we have

oo (i)

=n2" 12E< Ut.(]))

33 oo (52
5
Thus

n t—1 1
nYANST Y (2 h Ui ) ot = Op(1). (4.19)
t=2\i=1

By (4.18) and (4.19), (a) holds For (b), becausev, (i) = O(p") with 0 =
p < 1, it can be more easily prove@nd hence the details are omittélthis
completes the proof [ ]

HM: ,U,Mj
HM\
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LEMMA 4.6.
(a) Gn Dn _>,C _2(§’3 é‘_:!,é‘i . "7§|’5 N,)’$
(b) G,1,G}, >, 2diag(F, E Hy,..., H,,3),

whereé, F, &, F, £, and H, i = 1,...,1 are defined in Appendix A, N is a
normal random vector with mean 0 and covariantedefined as in Theo-
rem 2.1, andF, ¢), (F, &), (Hy,{1), ..., (H,4), and N are independent.

Proof For (a), note that

G,D,=—-2>

t=2

- 1 '
((anut)’v (Nr;lvl)lv (Li]flxl,n),, ey (Lr,r];X|,n),7 ﬁ Zt’—180t>,

(4.20)

where Z, , is defined as in Theorem.t By Lemma 43(a)—(c) and Theo-
rem 41, (a) holds

For (b), by the definition ofz,, its elementz; satisfies
d6(B)z; = ho(B) ey,
with z, = 0 ast = 0, i.e,, model(4.1). By (4.4),

=y — — =E(2%.,2%.) +0,(1) (4.21)
N dp* ag prTe e
1 9°S(A 2 D 9ey de
197S) _ =3 = 2 40,1
n gy’ n< oy o’
Z325, 3.2,
=2E Cox? | o), (4.22)
thzgt ?

wherer = (i, ...,¢q,d). By Lemma 44, we have

9%S(A
iy £

G*’J'*l
3¢3¢'] "

n
=22 diag{anUt U/ NG NS VOV NG Lt Xy n X nLahs
t=2

e LEEX o XL = ;
Ln/N,nN,n%1,n n 3¢* a(b*

+ 0,(1). (4.23)

1 (980t 680t }
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By Lemma 45 and(4.4), we can show that

., 0%S(Ag) : ,

I G, “odad pod = 2[0,E(Z3+Z3)]" + 0,(1), (4.24)
., 0%S(Ag) -

J G —6¢>8¢" = 2[0,E(Z3-.Z5)'1" + 0,(1), (4.25)

wherei = 1,...,q. By (4.21)—(4.25) and Lemma 8(d)—(f), we know that(b)
holds

Note that the random vectors and matrices involveif0) and(4.23) are
functionals of the basic processes in Theorefi #he independence dF, ¢),
(E &), (Hy, ), ..., (H, &), andN follows (4.23) and Theorem 4. This com-
pletes the proof [ ]

The following is the final lemmalts proof can be found in Appendix.C
This lemma ensures that the remainder term of the Taylor expansi8Mmfs
small enough such that there is a local solutiond8¢A)/oA.

LEMMA 4.7. When|n*~Y2G/"1(A — Ao)| < 1,

Proof of Theorem 2. By Taylor’s expansion

aS(A) .
oA =Dy + 1y X (A = Ag) + [15(A") = 1,]1(A = A), (4.26)
whereX* = Ay + v(A — Ap) with v = v(n, A) satisfying|v| = 1. Multiplying
n%* (A — Ag)' to (4.26), we have

aS(A)

n2a—1)\_/\ r > 7
(A= 2o) =

= [na_l/zGr;_l(/\ - AO)],[na_l/ZGn Dn]

G H(A = A)

1
Gplln(A) — 1,]G; = Op( ‘ﬁ

where0 < o < 3.

+ [N772G, (A = 20)]'[Galn Gh + Ra(VI[N* 2G H(A = o),
(4.27)

whereR,(A) = G, [1,(A*) — |,]G]/. Denote the last term b¥l.

Let v ande be two given and sufficiently small positive numbers afite) =
{4z In*"2G (A — Ao)| = &}

Note thats > 0 (see Li and McLeod1986). By Lemma 43, the matrix diag
(F,F,Hy,...,H,,3) is positive definite in probabilityBy Lemma 46(b), there
are a constant; and an integeN; such thatasn > N,

P{G,1,G, < —Cilxm} > 1—v,
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wherem = p + g + 1 andl«, is them X midentity matrix By Lemma 47,
there exists a constaasuch thatfor small enougte, asn > N; andA € V,(¢),

P{[G,1,G/ + R,(M)] < —Clpsxmt > 1—v.
Hence as > N; and A € V,(g),
P{Il < —ce?} >1—». (4.28)

By Lemma 46(a), we know thatG,,D, = O,(1). Hence there exists an inte-
gerN, such that a; > Ny,

c
P{n“l/2 |G, D, < > g} >1—v. (4.29)
By (4.29), asn > N, and A € V,(g),
/ c
P{[n“l/anl(A — X))’ [N V2G, D, ] < > 82} >1—v. (4.30)

Thus by(4.27), (4.28), and(4.30), asn > max{N;, N,} andx € V,(&), with
at least probability - »,

dIS(A) _

n2a—1)\_/\ r 7
(A= xo) =

Cc
—ce? + > g2 <0. (4.31)

LetY = n® Y2G,"1(A — Ag)/e andg(A) = G,9S(A)/0A. Then by(4.31),
[Y| =1 and Y'g(n¥?2 eG.Y + Ay) <O.

Becaus&S(1)/0A is continuous and henggs also continuous o, by the fixed
point theorem(Aitchison and Silvey1958 there is a solutiom,, satisfying
g(nY272cGLY + Ao) = 0, i.e, 0S(A,)/dA = 0, and|n*~Y2G, (A, — Ao)| < &.
Consequentlythe proof of pari(a) is completed

For such a sequence af,, by (4.26) and Lemma 4 we have

1,
Hﬁ Gn ()\n - )‘0)
By part (a) of this theoremn®~¥2G/1(A,, — Ao) converges to zero in prob-
ability. By Theorem 23 of Chan and We{1988 and Lemma 41, all random
variables inG,D,, and G,1,G/, converge jointly Again by Lemma 4 and
(4.32), we complete the proof of paftb). |

G, (A, — Ag) = —[G,Jnerg + op< )]l(en D,). (4.32)

NOTE

1. Denotex;’ = (1 — B)%y,. Then ¢o(B)x; = o(B)eg. The termx; also has two different
DGMs. The first ong namely DGM1*, is to generates = io(B)eo: and then generate” through
bo(B)X = uy with x;* = 0 ast = 0. The second onenamely DGMZ, is to generatebo(B)u; = ot
with u; = 0 ast = 0 and then generatg' throughx;* = o(B)u;. Under DGMZ, (4.5) holds forx;,
and under DGM1, (4.5) does not holdHowever in the latter caseusing Theorems .4—43 in
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Ling and Li (1998 with h; being a constantve can show that the CSS estimators have the same
asymptotic distributions as those in this pafdris means that the effect of the DGKMand DGM2

in the nonstationary ARMA models is asymptotically ignorable for the CSS appr&actsimplic-

ity, we use DGM2 for x;" in this paper
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APPENDIX A: LIMITING DISTRIBUTIONS
Fo(r) = Wy(r),  Fy(r) = fo E.9ds  j=L...a

F=(0j)axas Oy :fOT Fi_i(9)F_i(s9)ds  i,j=1,...,4

1 1 ’

&= (fo FO(T)dVVl(T),...,L Fal(T)dV\&(T)>.
For) = Wo(r),  Fi(r) = f E (s j=1..b

'f = (&ij)r &ij :lefifl(S)lfjil(S)dS |,J = 1,...,b,

0]

1 1
&= —<f0 'fo(T)sz(T),---,fO lfbl(f)sz('r)>-
= (€100, 62q), H:(Uij)zdxzm

1 1 1
b+~ 5o ([] 200009 - [ g 0w ).

&(1) = {cosHUO fi_1(s) dWi(s) —fo g,-l(S)dV\é(S)]

2 sind

—sineUO fj,l(s)dvvl(s)+f0 g,-l(s)d\/\é(S)H,

O2k—1,2j—1 — O2k2j

1
4 sirt6

1 1
(f fk_l(S)fj_l(S)derf gk_l(S)g,-_l(S)dS),
0 [0]
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O2k—1,2) = 02j,2k—1

1 1 1
250 {cosa{ fo fa(9)fi_a(s)ds + fo g“(s)g;l(s)ds}

1 1
- sine[ j ()G a(9ds— f g,-l(s>fk1<s>ds]},

1 . T T
> sing (sm&fo fi_1(s)ds— cos@fo g,-l(s)ds>,

1 T ) 4
g(7) = m(cosej; fi_i(s)ds+ sm@fo gj_l(s)ds>,

fi(r) =

fo(r) =Wi(r)  and  go=Ws(7),

whereW (7) is theith element oMW(7) defined in Theorem 4. Finally, defineH, and
{ as earlier withd replaced byg, and (Wi (7),Wa(7)) replaced by(Way o(7), Way+3(7)).

APPENDIX B: THE PROOF OHR1.5)

First, we note that

1=(1-2%(1-2%

) k
=1+ kz (2 Qoj aO,ki>Zk'
=1 \i

i=0

Thus we have
k
Y agdoi =0 k=12.... (B.1)

i=0

BecauseE{;%, Aok Yi—k = Uy With (1 — B)uy = eo, t = 1,2,..., andug = O, it follows that
t—1

Z Aok(Yi—k = Yi—k—1) = U — U1 = &q.

k=0

Letu; = y; — yi—1. Theny, = y,_1 + U7, and

t—1
I(EOaOkUt*—k: €ot- (B.2)
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From (B.2), it follows that

t-1 t—k-1
2 dokBot—k = E aOk( E Ao Ufki)

i=0

-1/ k
=u’+ 2 (2 Ao aO,ki)”t*k- (B.3)

By (B.1), the second term iGB.3) is equal to zerpand hencg1.5) holds This com-
pletes the proof u

APPENDIX C THE REMAINING PROOFS

Proof of Lemma 4.1.

1 [n7] . [n7] aSOk 380k BSOk ¢
- e E(e2 Zi_1| Fe —= ( ,—,—) C.1
nZz (edkZx 1| 1) = k22 9™ oy od ( )
wheref € [0,1]. First, we show that
1 [n7] 88 k l [n7] _ k—1 1
—IY e X =N ek 3 S| =0,(0). (C.2)
Ng=2 ad Ny=2 j=1
Note that

1 [l k=14 1 [n7l-1 gijé [n7]—j
15 <2j—80k;>=- S g,

ny= i=1 nj=1 J k1

By the triangle inequality| S T elk0e,, | = IS sinkfeg,| + | Sk coskfeoy|.
It is easy to show that max;_,n 2|3\, sinkfsg| and max_;—,n *?|Z}_;
coskfeok| converge to mage,=1|B(7)| and maxy=,=1|Bak(7)| in distribution where
B (7) and B,(7) are Brownian motionsThus

1 [n7] ' k—1 1 1 [nr]—1 1
=2 e"“’(E j-80k1> = Op<nl/T pY [ A

where 0< « < 3, and the last equatlon holds becad3g ,j ' < oo

Note thatdeq /I = —i_ C¢(k)30t i and dsoy /s = — 243 1Cy* (K eg—i k>
with ¢, (k) = O(p*) andc,(k) = O(p*), where 0= p < 1. Similar to the proof of
(C.2), we have—(1/n) X} _,e""(deq /™) = 0p(1) and —(1/n) Zh_, €™ (e /) =
0p(1). This completes the proof [ |



762 SHIQING LING AND W.K. LI

Proof of Lemma 4.2. We first show that

1 [n7] de ok deg
HKEzE[Sokﬂ( 6(;) ) |< 8ok+1< ad > > \/_5|fk>] = Op(l)- (C.3)
Note thatdeq/0d = —3 eo,_; /i and
1N k—1 1 2 2N 2 n ® 1 2
_Z<Z-_80ki> S_ZZSE-’__Z(Z-_SOKi)
Ng=2\i=1 Ng=2 Ng=2\i=k!
= 2A, + 2A,, say, (C.4)

whereZ9, is defined before Theorem2

1.0 © 1 2 n oo.
il =23 e(S T 2250

—k
1 - —1+a < i—l1-a 1 - —1+a
=o(= Kkt =0o( = Ikt )=o), (C.5)
k=2 i=k Ny=2

where 0< a < 1. Becausc—Zdk is strictly stationary and ergodic witBZ3Z < o, by the
ergodic theoremA; = n™* >, Z%2 converges tar?/6 almost surely(as). Thus by
(C.4) and(C.5),

1N k—1 1 2
- k22<2 Eok-i > = 0,(1). (C.6)
Note that
k—1 1 2 o 1 2
(2 h 80ki> =278+ 2<2k|_ 8oki> . (C.7)
i=1 i=

By (C.5), for any smalle > 0,

1 > 1 2 n oo 1 2
P<E ZTka<Xn<;<i_80k_i> > g <|Ek| 80k—i> =o0(1),

i.e, N7t Madpoy=n (ki teok—i)® = 0p(1). Note thatn™? max_,,|Z3| = 0p(1)
(see Chung1968 p. 95). From (C.7), we have

k—1 2
1 max < > i—180ki> = 0,(1), (C.8)

N 2=k=n\ { =7

Now by the conditional Markov inequality(C.G), and(C.8),

1[nT] 2
EKZZE[<SOKZ Eok— |> < EOKE Eok— |‘ > \[_5>|f'k 1]

2+a
( Oki> n~/2Ks "

n 1 2 1 2\a/2
T Eoki - ma Ko™«
g ( | Bok I> (n ZSkan )

= 0,(D), (C.9)

=

—IH

\IM3
HMT _M\

k—1 1

E I_ €ok—i

i=1

I

3|H Sl
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whereK is some constanfhat is (C.3) holds Similarly we can show that

%%T:] E|:80k+l z¢* (80k+1| FYe )” > \/_Sl}—k } = Op(l), (C.10)
1 [n7] deor |12

EKZZE[SOkH 01,/1 <|80k+1|| o )| > \/né| F) ] = 0,(1). (C.11)
By (C.3), (C.10), and(C.11), we complete the proof |

Proof of Lemma 4.7. By a direct differentiation

93S(A n (8% 4 93
A _ 2( Lo 8‘), (C.12)

ad® =\ ad? od ad®

g, B

o #(B)y*(B)log(1— B)(1— B)%,, (C.13)
62at B
2 #(B)¢~*(B)log®(1— B)(1— B)%y,, (C.14)
e —1 3 d
PYEl $(B)¢*(B)log>(1— B)(1— B)%,. (C.15)

Note that

d[ = (¢ - ¢0)’¢_l(B)$o(B)|Og(l - B)(l — B)d_doxt
+ log(1— B)(1— B)9 g,

+ [ 1(B) — ¢ho *(B)]log(1 — B)(1— B)* “io(B) &g
=l + Iy + Ig, SAY (C.16)

wherex, is defined as in(4.6) with x, = 5 *(B)(1 — B)%y,. By the given condition
|d — do| < n~® and||n"Y2G(¢ — ¢o)| < N, whereG, is defined afte(2.6). Thus

[l = [[n"Y2G; X (¢ — )] log(1 — B)(L — B)* %y (B) “yo(B)[n*2Gpx ]|
=n"“[log(1—B)(1— B)* %[ *(B)¢(B)[n?G x,]]].

By Lemma 21(d) in Ling (1998, max—i=nE|G.X:|? = O(n~1). Furthermore by
Minkowski's inequality

i _ 1/2
> kdd°1>< max Enl/anxt2>

1=t=n

So(i Trar E kld=dol =2 “/2> o). (C.17)
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Now, we consider the second terty in (C.16). Let n; = (1 — B)deq:, whered =
d — do. By the given condition|d| < 3 for large enougm and hence by Theoremlld)
in Hosking (1981), En? = a constant and for large enoughE(n:n:_x) = O(k41).
Thus

K E(neimei—w)
[ee) o0 1
=01 + 22 >0 —,>

oo [ee] l
=001 + ,_21 21 (m) =0(). (C.18)
Similarly we can show that=* X[, EIZ = O(1). Further by(C.16)—(C.18), we know
that n™1 >, E(dg,/0d)? = O(1). Similarly n"1X,E(9%,/0d?)2 = O(1) and
n~1>1 , E(33%,/0d%)? = O(1). By the preceding discussipwe can show that

1 93S(X)

n od®

= 0,(1). (C.19)

Similarly we can show

% Zzsz(ai;,) =0,(1) and %[\/ﬁén ZZSZZ;)] = 0, (D). (C.20)
By (C.19) and(C.20),
%[aijﬁ) - 62532")} - %[\/ﬁGn i *)] [ 2G5 36 — o)l
1 03S(x%) 1 93S(X%)
n ad2ay’ W =) + 1 g (A~ do)
= O, (In" Y237 X(¢p — ¢o)) + Ol — thol)) + Op(|d — o)
= Op(In"2G, (A = Aql), (C.21)

whereA* is an intermediate point betweanand Aq. Similar to the proof of(C.21), we
can show that the following quantities are equalig|n~*2G;, *(A — Aq|):

“ [aZS(A) - aZS(AO)}G, 1 [ 2S(0) ZS(AO)]G,
apap’  apap’ | vn | adag’ adag’ v
1 [a2S()  97S(Ag) | , 2S(A)  92S(Ao)
T[&w’ Y ] " [6d8¢f aday’ ]
2S(1)  87S(Ao)
[&Mtﬂ oy’ ]

Thus Gn[ln(A) = 1,]G;, = O,([(1/VN)G, (A — Ao)). This completes the proof M



