
ASYMPTOTIC INFERENCE FOR
NONSTATIONARY FRACTIONALLY
INTEGRATED AUTOREGRESSIVE

MOVING-AVERAGE MODELS

SHHHIIIQQQIIINNNGGG LIIINNNGGG
Hong Kong University of Science and Technology

W.K. LIII
University of Hong Kong

This paper considers nonstationary fractional autoregressive integrated moving-
average~ p,d,q! models with the fractionally differencing parameterd [ ~2 1

2
_ , 12_!

and the autoregression function with roots on or outside the unit circle+ Asymp-
totic inference is based on the conditional sum of squares~CSS! estimation+ Un-
der some suitable conditions, it is shown that CSS estimators exist and are
consistent+ The asymptotic distributions of CSS estimators are expressed as func-
tions of stochastic integrals of usual Brownian motions+ Unlike results available
in the literature, the limiting distributions of various unit roots are independent
of the parameterd over the entire ranged [ ~2 1

2
_ , 12_!+ This allows the unit roots

and d to be estimated and tested separately without loss of efficiency+ Our re-
sults are quite different from the current asymptotic theories on nonstationary
long memory time series+ The finite sample properties are examined for two spe-
cial cases through simulations+

1. INTRODUCTION

Consider the nonstationary fractional autoregressive integrated moving-average
~FARIMA ! model

f0~B!~12 B!d0yt 5 c0~B!«0t , (1.1)

where $«0t % is a sequence of independently and identically distributed~i+i+d+!
random variables with mean 0, variance 1, andE6«0t 621a , ` for somea . 0;
f0~B! 5 1 2 f01B 2 {{{ 2 f0pB p with f0p Þ 0, c0~B! 5 1 1 c01B 1 {{{ 1
c0qBq with c0q Þ 0, 6d06 ,

1
2
_ , ~1 2 B!d0 is defined by the binomial series

The authors thank a referee and the co-editor for helpful comments, which led to improvements of this paper+
The research of S+ Ling was supported in part by a Direct Allocation Grant from the Hong Kong University of
Science and Technology+ The research of W+K+ Li was supported by the Hong Kong Research Grants Council+
Address correspondence to: W+K+ Li , Department of Statistics and Actuarial Science, The University of Hong
Kong, Pokfulam Road, Hong Kong; e-mail: hrntlwk@hku+hk+

Econometric Theory, 17, 2001, 738–764+ Printed in the United States of America+

738 © 2001 Cambridge University Press 0266-4666001 $9+50



~12 B!d0 5 (
k50

`

a0k Bk, a0k 5
~k 2 d0 2 1!!

k!~2d0 2 1!!
, (1.2)

B is the backward-shift operator; f0~z! includes unit roots and has the
decomposition

f0~z! 5 ~12 z!a~11 z!b )
k51

l

~12 2 cosuk z1 z2!dkf0
*~z!, (1.3)

wherea, b, l, anddk are nonnegative integers, uk [ ~0,p!, andf0
*~z! is a p*

order polynomial withp* 5 p 2 ~a 1 b 1 2d1 1 {{{ 1 2dl !; andf0
*~B! and

c0~B! have no common root with all roots outside the unit circle+
Whenf0~B! has no unit root, $ yt % defined by~1+1! is stationary and invert-

ible with the autocorrelation functionr~k! ; ck2d021 as k r `, wherec is
some constant depending ond0+ When d0 [ ~0,0+5! $ yt % possesses the so-
called long-memory characteristic becauser~k! decreases at a hyperbolic rate
that is slower than the exponential rate that characterizes ARMA processes+ The
stationary FARIMA model was proposed by McLeod and Hipel~1978!, Granger
and Joyeux~1980!, and Hosking~1981!+ It has been widely applied in model-
ing long memory behavior in hydrology and economics+ Some recent reviews
on this topic can be found in Robinson~1994a!, Baillie ~1996!, and Phillips
and Xiao~1998, Sect+ 6!, and the references therein+

When f0~B! includes unit roots, model ~1+1! is nonstationary+ Unlike the
stationary case, there are two different data generating mechanisms~DGM!
for model ~1+1! because the AR~ p! part includes a nonstationary component+
The first one, namely, DGM1, is to generateut throughut 5 ~1 2 B!2d0«0t

and then generateyt throughf0~B!yt 5 c0~B!ut + The second, namely, DGM2,
is to generateut through f0~B!ut 5 c0~B!«0t and then generateyt through
~1 2 B!d0yt 5 ut + It is the preceding different DGMs that result in some dif-
ferent research and conclusions+

To understand the difference between the two DGMs, we consider the sim-
ple FARIMA~1, d0, 0! model, i+e+, ~1 2 B!~1 2 B!d0yt 5 «0t with initial values
yt 5 0 ast # 0+ From DGM1, it follows that

yt 5 yt21 1 ut , ut 5 (
k50

`

Ia0k«0t2k, (1.4)

where Ia0k 5 ~k 1 d0 2 1!!0@k!~d0 2 1!!# , i+e+, the coefficient of thekth term
in the expansion of~1 2 B!2d0+ From DGM2, becauseyt 5 0 as t # 0, yt is
actually generated through the recursion formula(k50

t21 a0k yt2k 5 ut , where
~1 2 B!ut 5 «t , t 5 1,2, + + + , andu0 5 0+ Thus, we have

yt 5 yt21 1 ut
*, ut

*5 (
k50

t21

Ia0k«0t2k (1.5)
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~see Appendix B for the proof of~1+5!!+ Now, it is clear that observationsyt

from model ~1+4! are generated by shocks starting at time2`, whereasyt

from model ~1+5! are generated by shocks starting at time 0+ Henceut is a
long memory time series defined as in Hosking~1981!, whereasut

* is not+
From Theorem 1~d! in Hosking~1981!, it is not difficult to show that, for any
t, k $ 1, E~ut

*ut1k
* ! 5 E~ut ut1k! 1 O~t2a! 5 O~k2d021 1 t2a!, wherea . 0+

Thus, ut
* still have the long memory feature+ We call ut

* a semi–long memory
time series+

Model ~1+1! from DGM1, with f0~B! 5 ~1 2 B!mf0
*~B!, is investigated

by Beran~1995!+ His method is to merge the unit root into the fractional dif-
ferencing parameterd0, i+e+, writing f0~B!~1 2 B!d0 asf0

*~B!~1 2 B!d, where
d 5 m 1 d0+ He develops an approximate estimation procedure that can esti-
mated directly+ Ling and Li ~1997a! extend Beran’s method to permit the noise
«0t to follow a GARCH process+ It is shown that the estimator ofd is asymp-
totically normal+ Other approaches to model~1+4! and its general case are con-
sidered by Sowell~1990! and Chan and Terrin~1996!, respectively+ They treat
ut nonparametrically and investigate the least squares estimator~LSE! of unit
roots+ Their results indicate that the convergent rates and asymptotic distribu-
tions of the LSE of the unit roots on the left hand ranged0 [ ~2 1

2
_ ,0! and on the

right hand ranged0 [ ~0, 12_! are different+ In particular, their asymptotic distri-
butions depend ond0 and involve a sequence of fractional Brownian motions+

Model ~1+5!, i+e+, a special case of model~1+1! under DGM2, is investigated
by Robinson~1994b!+ Because the autocorrelation structure of the series in model
~1+5! has the semi–long memory property, Dickey–Fuller tests~see Fuller, 1976;
Dickey and Fuller, 1979! and Schmidt–Phillips tests~see Schmidt and Phillips,
1992! are invalid for testing the unit root in model~1+5! unlessd0 5 0+ Simu-
lation results in Robinson~1994b! show that, even whend0 5 0+05, Dickey–
Fuller tests and Schmidt–Phillips tests may reject the unit root null hypothesis
in model ~1+4! with quite a high probability+ As in Beran ~1995!, Robinson
~1994b! also merges the unit root intod0, and he proposes Lagrange multiplier
~LM ! tests for the unit root against fractional alternatives+

In this paper, we investigate model~1+1! under DGM2+ The conditional sum
of squares~CSS! estimation procedure is used ford0 and other parameters+ Un-
der the general nonstationary framework given by Chan and Wei~1988!, we
derive the asymptotic distribution of the CSS estimators+ Because model~1+1!
from DGM2 has only the semi–long memory feature, the asymptotic results
are quite different from those in the literature~see the Remarks in Section 2!+
Our results may be seen as an extension of Chan and Wei~1988!, and their
results and techniques will be used in our paper+ However, our approach needs
to estimated0 and to solve a nonlinear equation+ A technical difficulty is to
prove that the estimators of unit roots are independent of the estimator ofd0+
Our asymptotic theory is examined through simulation+ The results illustrate
that our method is feasible and applicable for the nonstationary FARIMA model+

Jeganathan~1999! considers cointegrating time series with fractional inte-
grated errors+ ~Our main results were obtained in 1996 and appeared in Ling
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and Li @1997b# + We are grateful to N+H+ Chan for providing us with a copy of
Jeganathan’s@1999# technical report after this paper was completed+! The DGM
of his model is principally the same as that of model~1+4!, and hence his
model includes model~1+4! as a special case+ As a result of the different for-
mulations, his results and ours are different+ For yt from the FARIMA~1, d0,
0! model, both Jeganathan~1999! and the current paper use the transforma-
tion xt 5 (k50

t21 a0k yt2k+ Under DGM1, ~1 2 B!xt Þ «0t , Jeganathan~1999!
shows thatn2max$102,1021d0%x@nt# converges toF~t!, a functional of the frac-
tional Brownian motion+ However, under DGM2, we have~1 2 B!xt 5 «0t ,
and hencen2102x@nt# converges to the usual Brownian motion+ This is the ba-
sic reason for the difference between the results in this paper and those of
Jeganathan~1999!+

This paper proceeds as follows+ Section 2 presents the main results+ Sec-
tion 3 reports some simulation results+ Section 4 gives the proof of the main
results+ Throughout the paper, we use the following notations: U ' denotes the
transpose of the vectorU; o~1!~op~1!! denotes a series of numbers~random
numbers! converging to zero~in probability!; O~1!~Op~1!! denotes a series of
numbers~random numbers! that are bounded~in probability!;rL denotes con-
vergence in distribution; D 5 D@0,1# denotes the space of functionf ~s! on @0,1# ,
which is defined and equipped with the Skorokhod topology~Billingsley, 1968!;
Dk 5 D 3 D 3 {{{ 3 D ~k factors!; and7{7 denotes the Euclidean norm+

2. CSS ESTIMATION AND MAIN RESULTS

We are given observationsyt , t 5 1, + + + , n, with initial valuesy0 5 y21 5 {{{ 5
0, which are generated through~1+1! with DGM2+ Denotel0 5 ~f0

' ,c0
' ,d0!'

with f0 5 ~f10, + + + ,fp0!' andc0 5 ~c10, + + + ,cq0!' + Note thatl0 is the true pa-
rameter that together with$«0t % generatesyt through~1+1! with DGM2+ To es-
timatel0, we need the unknown parameter model

f~B!~12 B!dyt 5 c~B!«t , (2.1)

wheref~B!, c~B!, and ~1 2 B!d are defined similarly asf0~B!, c0~B!, and
~12 B!d0, respectively, and the unknown parameter isl 5 ~f ',c ',d!' with f 5
~f1, + + + ,fp!' andc 5 ~c1, + + + ,cq!' +

We assume thatl0 andl are the interior points of the compact setQ, 6d6 ,
1
2
_ and all the roots ofc~z! are outside the unit circle+ The CSS estimator is the
parameterl in Q that minimizes the objective function,

S~l! 5 (
t51

n

«t
2, (2.2)

where«t 5 c21~B!f~B!~12 B!dyt , a function ofl and the observed data$ yt % +
Note that«0t 5 «t 6l5l0

+ When $«0t % is normally distributed, minimizing the
CSS function is asymptotically equivalent to maximizing the likelihood func-
tion+ Box and Jenkins~1976! adopt this method for stationary autoregressive
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moving-average~ARMA ! models+ Hosking ~1984! considers the CSS method
for stationary FARIMA models+A similar method is also used by Li and McLeod
~1986! for stationary FARIMA models+ More recently Chung and Baillie~1993!
and Chung~1996! use the CSS estimation for some general long memory frac-
tional ARIMA models+

In the following expressions we show the first-order and second-order par-
tial derivatives ofS~l!+

]S~l!

]f
5 2 (

t51

n ]«t

]f
«t ,

]S~l!

]d
5 2(t51

n «t log~12 B!«t , (2.3)

]S~l!

]c
5 2 (

t51

n ]«t

]c
«t ,

]2S~l!

]f]f '
5 2 (

t51

n ]«t

]f

]«t

]f '
, (2.4)

]2S~l!

]c]c '
5 2 (

t51

n ]«t

]c

]«t

]c '
1 2 (

t51

n ]2«t

]c]c '
«t , (2.5)

]2S~l!

]d2 5 2 (
t51

n

$@ log~12 B!«t #
2 1 «t log2~12 B!«t %, (2.6)

where]«t 0]f 5 2c21~B!~1 2 B!dyt21, yt 5 ~ yt , + + + , yt2p11!', and ]«t 0]ci 5
2c21~B!«t2i , i 5 1, + + + ,q+ Let Dn~l! 5 ]S~l!0]l and In~l! 5 ]2S~l!0]l]l' +
Denote Dn 5 Dn~l0! and In 5 In~l0!+ Let Jn 5 diag~Nn, ENn, L1, n, + + + ,
Ll, n, n102Ip*3p* !,

EGn 5 Jn
21G* and Gn 5 diag~ EGn, n2102I~q11!3~q11! !,

where Nn 5 diag~n, + + + , na!, ENn 5 diag~n, + + + , nb!, Lk, n 5 diag~nI232,{{{,
ndkI232!, k 5 1, + + + , l, andG* is defined as in~4+8! in Section 4+

Now, it is convenient to introduce the unobserved process$Zt
0 : t 5 0,

61, + + +% with Zt
0 5 ~Zf*t

0' ,Zct
0' ,Zdt

0 !' ,

Zft
0 5 2f0

*21~B! I«f*t , Zct
0 5 2c0

21~B! I«ct , Zdt
0 5 2(

k51

` 1

k
«0t2k,

where I«f*t 5 ~«0t , + + + ,«0t2p*11!' and I«ct 5 ~«0t , + + + ,«0t2q11!' + Our main results
can be stated by the following theorem+

THEOREM 2+1+ Under the assumptions of model (1.1), it follows that

(a) there exists a sequence of solutions satisfying the equation]S~l!0]l 5 0 such
that

na2102Gn
'21~ Zln 2 l0! 5 op~1!;

(b) for such a sequence,

Gn
'21~ Zln 2 l0! rL ~~F21j!', ~ EF21 Dj!', ~H1

21z1!', + + + , ~Hl
21zl !

', ~S21N!' !',
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where0 , a , 1
2
_, the limiting distributions F,j, EF, Dj, Hk, andzk are defined in

Appendix A,S 5 E~Zt
0Zt

0' !, N is a ~ p* 1 q 1 1!-dimensional standard normal
vector, and~F,j!, ~ EF, Dj!, ~H1,z1!, . . . , ~Hl ,zl !, and N are independent.

Remark+ The preceding results have three different features from those in
Sowell ~1990! and Chan and Terrin~1996!+ First, the estimators of unit roots
andd0 are asymptotically independent+ This makes it possible to estimate and
specify separately the unit roots and the parameterd0 without loss of asymp-
totic efficiency+ Second, the asymptotic distributions of unit roots do not de-
pend ond0, and hence unit root tests based on these distributions can be
conducted as those for the nonstationary ARMA model+ Third, the convergent
rates and asymptotic distributions of the estimators of unit roots are invariant
over the entire ranged0 [ ~2 1

2
_ , 12_!+ This ensures that the unit root tests based

on our asymptotic results are robust for differentd0+
For various unit roots, the limiting distributions given in Theorem 2+1 have

the same form as those given by Chan and Wei~1988! for an unstable auto-
regressive model+ Theorem 2+1 also implies that the limiting distribution of the
maximum likelihood estimation for unstable ARMA models is the same as that
given by Ling and Li~1998!+ It is easy to show that

S 5 SE~Z1t
0 Z1t

0' ! E~Z1t
0 Zdt

0 !

E~Z1t
0'Zdt

0 ! p206
D,

whereZ1t
0 5 ~Zf*t

0' ,Zct
0' !' + Thus, the limiting distribution for the stationary com-

ponent is the same as that in Li and McLeod~1986! for a stationary FARIMA
~ p*,d,q! model+ The preceding result can be extended to the near unit root case,
which can be found in the University of Hong Kong Ph+D thesis by Ling~1997!+

Example 2.1

Consider the model,

~12 f0 B!~12 B!d0yt 5 «0t , (2.7)

wheref0 5 1+ Suppose that~ Zf, Zd! is the CSS estimator of~f0,d0!+ Then, by
Theorem 2+1,

r 5 n~ Zf 2 1! rL E
0

1

W~t!dW~t!YFE
0

1

W2~t!dtG , [ j (2.8)

t 5 S(
t52

n

ut21
2 D102

~ Zf 2 1! rL E
0

1

W~t!dW~t!YFE
0

1

W2~t!dtG102

, (2.9)

and

!n~ Zd 2 d0! rL N~0,60p2!, (2.10)

whereut21 5 ~1 2 B! Zdyt21, W~t! is a standard Brownian motion, and r and
!n~ Zd 2 d0! are asymptotically independent+

NONSTATIONARY FARIMA MODELS 743



Remark+ The limiting distributions ofr and t are the same as those of
Dickey–Fuller tests, and hence the critical values given in Tables 8+5+2 and 8+5+3
of Fuller ~1976! can be used+ The distribution of Zd is the same as that in Li and
McLeod ~1986!+

Example 2.2

Consider model~1+1! with only a unit root11, i+e+,

f0~B!~12 B!d0yt 5 c0~B!«0t (2.11)

and f0~B! 5 ~1 2 B!f0
*~B! with all roots of f0

*~B! outside the unit circle+
Reparameterizing~2+11! as

~12 B!d0Fyt 2 g01yt21 2 (
i52

p

g0i ~ yt2i11 2 yt2i !G 5 c0~B!«0t ,

whereg01 5 (i51
p f0i andg0j 5 2(i5j

p f0i , j 5 2, + + + ,p+ Suppose that Zf is the
CSS estimator of the parameterf0 5 ~f01, + + + ,f0p!' + Define [g1 5 (i51

p Zfi ,
[gj 5 2(i5j

p Zfi , j 5 2, + + + ,p, andl0
* 5 ~g02, + + + ,g0p,c01, + + + ,c0q,d0!' + Similarly

define Zln
* + In a similar manner to that given by Ling and Li~1998!, we can

show that

@n~ [g1 2 1!,!n~ Zln
* 2 l0

* !' # L
&& diag~cj,N ' !, (2.12)

wherec 5 10~1 2 (i52
p g0i !, j is defined by the right-hand side of~2+8!, N is a

normal random vector with mean zero and varianceS, which is independent of
j+ The asymptotic distribution ofn~ [g1 2 1! has the same form as those given
by Dickey and Fuller~1979! and Yap and Reinsel~1995!, and hence similar
test procedures can be established for testingg01 5 1+

3. SOME SIMULATION RESULTS

In this section, we report some simulation results for two special nonstationary
FARIMA models+ The first one is the following FARIMA~1, d0, 0! model:

~12 f0 B!~12 B!d0yt 5 «0t ,

wheref0 5 1, 6d06 ,
1
2
_ , and«0t ; iid N~0,1!+

We first investigate the finite sample properties of the CSS estimation+ In
the simulation, the true parameterd0 is taken as 0+0, 60+1, and 60+3, and
f0 5 1+0+ For various parameter pairs of~d0,f0! and each of the 1,000 repli-
cations, samples of series lengthsn 5 200 and 300 are used, respectively+ In
the estimation, the LS estimator off0 is taken as the initial value ofZf+ To
obtain an initial value of Zd such that it satisfies the condition in Lemma 4+7 in
Section 4, we may take [ut 5 ~1 2 ZfB!yt as artificial observations of the model
~1 2 B!d0ut 5 «0t and then use the estimation procedure of Li and McLeod
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~1986! to do this+ However to save CPU time, here we taked0 1 n2103 as
the initial value of Zd+ The optimization algorithm from Fortran subroutine
DBCOAH in the IMSL library is used by constraining6d6 , 1

2
_ + The results

are summarized in Table 1+ We can see that the biases of the estimator ofd0

are very small and the empirical standard errors are very close to the asymp-
totic standard errors@60~p2 3 200!# 0+5 5 0+0551 for n 5 200 and@60~p2 3
300!# 0+5 5 0+0450 forn 5 300+ For the estimator off0, all biases and empir-
ical standard errors are small, and they are almost constant for different val-
ues ofd0+ This is especially the case withn 5 300+ These findings are consistent
with our asymptotic theory+ The simulation results indicate that the CSS esti-
mation is feasible and applicable for the nonstationary FARIMA model+

To examine the empirical size and power of the Dickey–Fuller testsr and
t in Example 2+1 and the parametersd0 5 0+0, 60+1, 60+3 and f0 5 0+8,
0+90, 0+95, 0+99, 1+0 are used+ For different pairs of the parameter~d0,f0! and
each of the 1,000 replications, samples of series lengthsn 5 200 and 300 are
considered+ The critical values ofr and t given in Tables 8+5+2 and 8+5+3 of
Fuller ~1976! are used+ The results for the lower 5% Dickey–Fuller tests are
reported in Table 2+ It is seen that for each case, both size and power are quite
satisfactory+ In particular, when the sample sizen 5 300, the empirical sizes
are very close to the nominal value of 0+05 and powers are reasonable+ The
results in Table 2 indicate that Dickey–Fuller tests are robust for different val-
ues ofd0+

Now, we simulate the FARIMA~1, d0, 1! model

~12 f0 B!~12 B!d0yt 5 «0t 2 c0«t21,

wheref0 5 1, 6d06 ,
1
2
_ , 6c06 , 1, and«0t ; iid N~0,1!+ We choose the sample

size n 5 400, with 1,000 replications, and taked0 5 60+3 and c0 5 60+5,

Table 1. The empirical mean and standard deviation of CSS estimators for
the nonstationary FARIMA~1,d0,0! model

n 5 200 n 5 300

Mean !MSE Mean !MSE

d0 f0 Zd Zf Zd Zf Zd Zf Zd Zf

0+3 1+0 0+303 0+991 0+071 0+023 0+301 0+995 0+053 0+012
0+1 1+0 0+105 0+989 0+072 0+029 0+101 0+994 0+052 0+013
0+0 1+0 20+002 0+989 0+073 0+024 0+000 0+994 0+053 0+013

20+1 1+0 20+099 0+990 0+071 0+020 20+100 0+994 0+053 0+012
20+3 1+0 20+296 0+991 0+072 0+026 20+299 0+995 0+053 0+014

Notes:Replications5 1,000+
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Table 2. Power and size of lower tail Dickey–Fuller test based on the 5% significance level for the nonstationary
FARIMA ~1,d0,0! model

n 5 200 n 5 300

d0 f0 0+8 0+9 0+95 0+99 1+0 0+8 0+9 0+95 0+99 1+0

0+3 1+0 r 0+992 0+898 0+624 0+151 0+066 1+000 0+985 0+840 0+164 0+049
t 0+992 0+898 0+627 0+156 0+067 0+999 0+986 0+846 0+160 0+049

0+1 1+0 r 1+000 0+964 0+688 0+176 0+067 1+000 1+000 0+888 0+221 0+068
t 1+000 0+959 0+688 0+182 0+065 1+000 0+999 0+890 0+216 0+067

0+0 1+0 r 0+994 0+926 0+682 0+171 0+073 1+000 0+986 0+879 0+222 0+066
t 0+993 0+927 0+682 0+171 0+073 1+000 0+988 0+874 0+223 0+062

20+1 1+0 r 0+993 0+930 0+689 0+162 0+070 1+000 0+986 0+873 0+220 0+062
t 0+992 0+929 0+688 0+164 0+069 0+999 0+986 0+870 0+215 0+060

20+3 1+0 r 0+999 0+917 0+639 0+142 0+063 1+000 0+981 0+842 0+180 0+050
t 0+998 0+919 0+634 0+141 0+063 1+000 0+982 0+843 0+175 0+054

Note: Replications5 1,000+

7
4

6



60+3+ Various combinations of valuesd0 andc0 are used+ The means and the
standard errors of the estimators ofd0, f0, andc0 are reported in Table 3+Again,
all biases and empirical standard errors of the estimators are almost constant
for different d0+

From Example 2+2, the statistics for testing the unit root in the FARIMA~1,
d0, 1! model are

r 5 n~ Zf 2 1! and t 5S(
t52

n

ut21
2 D102

~ Zf 2 1!,

whereut21 5 ~]«t 0]f!~f,c,d!5~ Zf, Zc, Zd!+ Here, r andt have the same asymptotic
distributions as those in~2+8! and ~2+9!+ To examine the power and size ofr
andt, we takef0 5 0+8, 0+9, 0+95, 1+0 with ~c0,d0! having the same values as
in Table 3+ Again, we choose the sample sizen 5 400 with 1,000 replications+
The critical values given in Tables 8+5+2 and 8+5+3 of Fuller ~1976! are used+
The powers and sizes based on the 5% significance level are reported in Table 4+
All tests have quite satisfactory powers, and the sizes are also close to the nom-
inal 0+05, except the cased0 5 20+3 with c0 5 20+3 and20+5, which is a bit
sensitive+ To assess the large sample behavior, we perform a simulation for the
cased0 5 20+3 andc0 5 20+5 with sample sizen 5 1,000 and 1,000 replica-
tions, in which case the sizes ofr andt are 0+053 and 0+054, respectively+ This
means that we can obtain almost the exact sizes ofr andt when the sample
size becomes large+ These results further indicate that the theory and method
developed in this paper are potentially useful for the nonstationary FARIMA
model+

Table 3. The empirical mean and standard deviation of CSS estimators for
the nonstationary FARIMA~1,d0,1! Model

Mean !MSE

d0 f0 c0 Zd Zf Zc Zd Zf Zc

0+3 1+0 0+5 0+290 0+985 0+484 0+064 0+013 0+045
20+3 1+0 0+5 20+311 0+995 0+482 0+060 0+010 0+049

0+3 1+0 0+3 0+291 0+985 0+286 0+060 0+013 0+042
20+3 1+0 0+3 20+308 0+995 0+283 0+053 0+009 0+042

0+3 1+0 20+3 0+297 0+984 20+310 0+050 0+013 0+027
20+3 1+0 20+3 20+300 0+995 20+309 0+043 0+009 0+026

0+3 1+0 20+5 0+299 0+984 20+507 0+048 0+013 0+021
20+3 1+0 20+5 20+299 0+994 20+507 0+044 0+009 0+021

Note: Sample sizen 5 400 and replications5 1,000+
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Table 4. Power and size of lower tail Dickey–Fuller test based on the 5% significance level for the nonstationary
FARIMA ~1,d0,1! model

d0 5 0+3 d0 5 20+3

c0 0+8 0+9 0+95 0+99 1+0 0+8 0+9 0+95 0+99 1+0

0+5 r 1+000 0+995 0+955 0+251 0+057 1+000 1+000 0+960 0+255 0+060
t 1+000 0+994 0+958 0+253 0+053 1+000 0+999 0+962 0+260 0+058

0+3 r 1+000 0+994 0+937 0+254 0+053 1+000 1+000 0+943 0+253 0+059
t 1+000 0+993 0+937 0+260 0+051 1+000 0+999 0+944 0+247 0+061

20+3 r 1+000 1+000 0+968 0+253 0+052 1+000 1+000 0+968 0+251 0+073
t 1+000 0+999 0+966 0+247 0+054 1+000 0+999 0+966 0+253 0+070

20+5 r 1+000 1+000 0+970 0+255 0+051 1+000 1+000 0+970 0+255 0+072
t 1+000 1+000 0+969 0+255 0+052 1+000 1+000 0+969 0+255 0+071

Note: Sample sizen 5 400 and replications5 1,000+

7
4

8



4. THE PROOF OF MAIN RESULTS

We begin by introducing an invariance principle, i+e+, Theorem 4+1+ This theo-
rem serves a purpose similar to that of Theorem 2+2 in Chan and Wei~1988!
and will be used to establish Lemma 4+6+ In Theorem 4+1, the elements ofSt

will be basic processes corresponding to the componentwise argument in
Theorem 2+1+

THEOREM 4+1+ Suppose that$zt % is generated by

f0
*~B!zt 5 c0~B!«0t (4.1)

with zt 5 0 as t# 0, wheref0
*~B! 5 1 2 (i51

p* f0i
* Bi andc0~B! and«0t are de-

fined as in model (1.1). Denote Zt21 5 2~]«0t 0]f*
'
, ]«0t 0]c ', ]«0t 0]d!', where

f0
*5 ~f01

* , + + + ,f0p*
* !', c0 5 ~c01, + + + ,c0q!', ]«0t 0]f*

'
5 ]«t 0]f*

'
6~f0
*,c0,d0! , and

similarly define]«0t 0]c and]«0t 0]d. Let

St 5 ~«0t , ~21!t«0t ,!2 sintu1«0t ,!2 costu1«0t , + + + ,!2 costul ,Zt21
' «0t !

',

whereui Þ uj if i Þ j. Then

1

!n (
t51

@nt#

St
L
&& ~W '~t!,N '~t!!' in D2~l11!1p*1q11, (4.2)

where W~t! is a ~2l 1 2!-dimensional standard Brownian motion and N~t! is a
~ p* 1 q 1 1!-dimensional Brownian motion, which is independent of W~t! and
has mean zero and covariancetS defined as in Theorem 2.1.

The random elements inSt are the same as those in Theorem 2+2 of Chan
and Wei~1988!, except forZt21

' «t + We need some special arguments because
of this different random element+ The following two lemmas are essential for
the proof of Theorem 4+1+ The first ensures thatW~t! andN~t! are asymptoti-
cally independent, and the second implies that the Lindeberg condition given
in Helland ~1982! is satisfied+ The proofs of the two lemmas can be found in
Appendix C, which includes some arguments different from those for Theo-
rem 2+2 in Chan and Wei~1988!+

LEMMA 4 +1+ n21 (k52
@nt# eikuE~«0k

2 Zk216Fk21! 5 op~1!, where i5 !21, t [
@0,1# , andFt 5 s$«01, + + + ,«0t %, thes-field generated by«01, + + + ,«0t.

LEMMA 4 +2+ n21 (k52
@nt# E @7Zk«0k1172I ~7Zk«0k117 . !nd6Fk!# 5 op~1!.

Proof of Theorem 4+1+ First,

1

n (
t51

n

ES ]«0t

]d
2 Zdt

0D2

5
1

n (
t51

n

ES(
i5t

` 1

i
«0t2iD2

5
1

n (
t51

n

(
i5t

` 1

i 2 5 o~1!+
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Similarly, we can show thatn21 (t51
n E7]«0t 0]f* 2 Zf*t

0 72 5 o~1! and
n21 (t51

n E7]«0t 0]c 2 Zct
0 72 5 o~1!+ Thus,

1

n (
t51

n

7Zt 2 Zt
072 5 op~1!+ (4.3)

BecauseZt
0 is strictly stationary and ergodic withE~Zt

0Zt
0' ! , `, by the ergo-

dic theorem, n21 (t51
n Zt

0Zt
0' 5 S 1 op~1!+ Furthermore, by ~4+3!, we can show

that n21 (t51
n ~Zt Zt

' 2 Zt
0Zt

0' ! 5 op~1! and hence

1

n (
t52

@nt#

Zt21 Zt21
' 5 tS 1 op~1!+ (4.4)

For u, d [ @0,2p# , observe that

1

n (
k52

@nt#

cosku sinkd r 0, and if u Þ d,

1

n (
k52

@nt#

cosku coskd 5
1

n (
k52

@nt#

sinku sinkd r 0+

Now, by Lemmas 4+1 and 4+2, ~4+4!, and applying the standard functional cen-
tral limit theorem~Helland, 1982, Theorem 3+3!, we can complete the proof+

n

Let xt 5 c0
21~B!~12 B!d0yt + Becauseyt are generated by model~1+1! through

DGM2, $xt % satisfies the unstable autoregressive model

f0~B!xt 5 «0t , (4.5)

with xt 5 0 as t # 0+1 Following Chan and Wei~1988!, we may transform
$xt % into various componentwise arguments corresponding to the locations
of their roots+ Let ut 5 ~1 2 B!2af0~B!xt , vt 5 ~1 1 B!2bf0~B!xt , zt 5
f0
*21~B!f0~B!xt , and xt, k 5 ~1 2 2 cosukB 1 B2!2dkf0~B!xt , k 5 1, + + + , l+

Then

~12 B!aut 5 «0t , ~11 B!bvt 5 «0t ,

f0
*~B!zt 5 «0t ,

~12 2 cosuk B 1 B2!dkxt, k 5 «0t , k 5 1, + + + , l,

wherea,b,dk, andf0
*~B! are defined as in~1+3!+ Define

ut 5 ~ut , + + + ,ut2a11!', vt 5 ~vt , + + + , vt2b11!',

zt 5 ~zt , + + + , zt2p*11!',

x t, k 5 ~xt, k, + + + , xt2dk11, k!', k 5 1, + + + , l+
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As shown in Chan and Wei~1988!, there exists a nonsingular matrixQ* such
that

Q*x t 5 ~ut
' ,vt
' ,x t,1
' , + + + ,x t, l

' ,zt
'!', (4.6)

wherex t 5 ~xt , + + + , xt2p11!' +
Further defineut~ j 1 1! 5 ~12 B!a2jut for j 5 0,1, + + + ,a 2 1, Ut 5 ~ut~1!, + + + ,

ut~a!!', vt~ j 1 1! 5 ~1 2 B!b2jvt for j 5 0,1, + + + ,b 2 1, Vt 5 ~vt~1!, + + + , vt~b!!',
xt, k~ j 1 1! 5 ~1 2 2B cosuk 1 B2!dk2jxt, k for k 5 1, + + + , l, j 5 0,1, + + + ,dk 2 1,
Xt, k 5 ~xt, k~1!, xt21, k~1!, + + + , xt, k~dk!, xt21, k~dk!!

' + There exist nonsingular matri-
cesM, GM, Ck, k 5 1, + + + , l, which can be found in Chan and Wei~1988!, such
that

Mut 5 Ut , GMvt 5 Vt , Ckx t, k 5 Xt, k, k 5 1, + + + , l+ (4.7)

DenoteG* 5 diag~M, GM,C1, + + + ,Cl , Ip* !Q
* + Then

G*x t 5 ~Ut
' ,Vt

' ,Xt,1
' , + + + ,Xt, l

' ,zt
'!'+ (4.8)

Thus, x t has been decomposed into some subvectors corresponding to various
unit roots and stationary components+ Lemmas 4+3 and 4+4, which follow, come
directly from Theorems 3+1+2, 3+2+1, and 3+3+4 of Chan and Wei~1988!+ In
Lemma 4+3, ~a!–~c! show the limiting distributions corresponding to various
unit roots in the score function, whereas~d!–~f ! show the limiting distributions
corresponding to various unit roots in the information matrix+ Lemma 4+4 shows
that the cross product terms between various nonstationary and stationary com-
ponents involvingf0

* in the information matrix converge to zero in probability+

LEMMA 4 +3+

(a) Nn
21 (

t52

n

Ut21«0t rL j,

(b) ENn
21 (

t52

n

Vt21«0t rL Dj,

(c) Lk,n
21 (

t52

n

Xt21, k«0t rL zk,

(d) Nn
21 (

t52

n

Ut21Ut21
' Nn

21 rL F,

(e) ENn
21 (

t52

n

Vt21Vt21
' ENn

21 rL EF,

( f ) Lk,n
21 (

t52

n

Xt21, k Xt21, k
' Lk,n

21 rL Hk,
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where k5 1, + + + , l, j, F, Dj, EF, zk, and Hk are defined in Appendix A, and F,EF,
and Hk are positive definite matrices in probability.

LEMMA 4 +4+ The following random variables converge to zero in probability:

Nn
21 (

t52

n

Ut21Vt21
' ENn

21, Nn
21 (

t52

n

Ut21 Xt21, k
' Lk, n

21 ,

ENn
21 (

t52

n

Vt21 Xt21, k
' Lk, n

21 , k 5 1, + + + , l,

Lk, n
21 (

t52

n

Xt21, k Xt21, k1

' Lk1, n
21 , k Þ k1, k, k1 5 1, + + + , l,

Nn
21 (

t52

n

Ut21zt21
' 0!n, ENn

21 (
t52

n

Vt21zt21
' !n,

Lk, n
21 (

t52

n

Xt21, kzt21
' 0!n, k 5 1, + + + , l+

Now, we introduce two additional lemmas+ Lemma 4+5 is for the proof of
Lemma 4+6~b!, which together with Theorem 4+1 ensures that the estimators of
various unit roots are asymptotically independent of the estimators ofd0 and
c0+ Lemma 4+6 shows the asymptotic distributions of the score function and
the information matrix+

LEMMA 4 +5+ Suppose that§t is one of the random vectors Nn
21Ut, ENn

21Vt ,
and Lk, n

21 Xt, k, k 5 1, + + + , l, then

(a) n2102 (
t52

n

§t21S(
i51

t21 1

i
«0t2iD1 n2102 (

t52

n S(
i51

t21 1

i
§t2iD«0t 5 op~1!,

(b) n2102 (
t52

n

§t21S(
i51

t21

yc0
~i !«0t2iD1 n2102 (

t52

n S(
i51

t21

yc0
~i !§t2iD«0t 5 op~1!,

wherec0
21~B! 5 (i51

` yc0
~i !Bi.

Proof+ We present the proof only for§t 5 Nn
21Ut + Other cases are similar+

For ~a!, denoteht 5 (i51
t21~10i !«

0 t2i andm t 5 (i51
` ~10i !«

0 t2i +We first note that

ES(
t51

i21

htD2

5 ES(
t51

i21

m t 2 (
t51

i21

(
k5t

` 1

k
«

0 t2kD2

# 2ES(
t51

i21

m tD2

1 2ES(
t51

i21

(
k5t

` 1

k
«

0 t2kD2

+ (4.9)
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Furthermore, we have

ES(
t51

i

m tD2

5 iEm t
2 1 2 (

r51

i21

~i 2 r !Em t m t2r

5 iEm t
2 1 2 (

r51

i21

~i 2 r !S(
k51

` 1

k~k 1 r !D
# iEm t

2 1 (
r51

i21

~i 2 r !r 2102S(
k51

` 1

k302D
5 iEm t

2 1 OS(
r51

i21

~i 2 r !r 2102D5 o~i 3021108!+ (4.10)

By Minkowski’s inequality,

ES(
t51

i21

(
k5t

` 1

k
«

0 t2kD2

# F(
t51

i21!ES(
k5t

` 1

k
«

0 t2kD2G2

5 S(
t51

i21

!(
k5t

` 1

k2D2

5 OSF(
t51

i21

t2~12a!02G2D
5 o~i 302!, (4.11)

where 0, a , 1
2
_ + By ~4+9!–~4+11!, we know that

ES(
t51

i21

htD2

5 o~i 3021108!+ (4.12)

Now we consider thejth element of the first term in~a!, i +e+,
n21022j (t52

n ut21~ j !ht + By the definition ofut~ j !, we have

ut ~ j ! 5 (
i51

t

ui ~ j 2 1!, (4.13)

and hence

(
t52

n

ut21~ j !ht 5 F(
t52

n

ut21~ j 2 1!GS(
i51

n

hiD2 (
t52

n S(
i51

t21

hiDut21~ j 2 1!

5 I1n 2 I2n, say+ (4.14)

By ~4+12!, n21 (i51
n ht 5 op~n21130411016! 5 op~1!, and by Lemma 4+3~d!,

6n2~ j21! (t52
n ut21~ j 2 1!6 # @n22~ j21!11 (t52

n ut21
2 ~ j 2 1!#102 5 Op~n102!+

Thus, we have

n2j2102I1n 5 @n2~ j21!2102un~ j !#Sn21 (
i51

n

htD5 op~1!+ (4.15)
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When j 5 1, by ~4+12!,

EI2n
2 5 (

t52

n

ES(
i51

t21

hiD2

5 (
t52

n

o~t 3021108! 5 o~n5021108!+ (4.16)

Thus, E~n2302I2n!2 5 o~n21021108! 5 o~1!, and hencen2302I2n 5 op~1!+ When
j . 1,

E6 I2n6 # (
t52

n

E*S(
i51

t21

hiDut21~ j 2 1!*
# n j2302 (

t52

n HES(
i51

t21

hiD2

E @n2~ j22!2102ut ~ j 2 1!# 2J102

5 oSn j2302 (
t52

n

t 30411016D5 o~n j110411016!, (4.17)

where the first equation holds by~2+17! in Ling ~1998! ~i+e+, Eut
2~ j ! 5

O~t 2~ j21!11!! and~4+12!+ Hencen2j2102I2n 5 op~1!+ Further by~4+14! and~4+15!,
we can claim

n2102Nn
21 (

t52

n

Ut21ht 5 op~1!+ (4.18)

Next, we consider thejth element of the second term in~a!, that is,
n2j2102 (t52

n ~(i51
t21 i 21ut2i ~ j !!«0t + By Minkowski’s inequality and~2+17! in

Ling ~1998!, we have

EFn2j2102 (
t52

n S(
i51

t21 1

i
ut2i ~ j !D«0tG2

5 n22j21 (
t52

n

ES(
i51

t21 1

i
ut2i ~ j !D2

# n22j21 (
t52

n S(
i51

t21 1

i !Eut2i
2 ~ j !D2

5 OSn22j21 (
t52

n S(
i51

t21 n j2102

i D2D
5 OSn22 (

t52

n S(
i51

t21 1

i D2D5 o~1!+

Thus

n2102Nn
21 (

t52

n S(
i51

t21 1

i
Ut2iD«0t 5 op~1!+ (4.19)

By ~4+18! and ~4+19!, ~a! holds+ For ~b!, becauseyc0
~i ! 5 O~ r i ! with 0 #

r , 1, it can be more easily proved, and hence the details are omitted+ This
completes the proof+ n
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LEMMA 4 +6+

(a) Gn Dn rL 22~j ', Dj ',z1
' + + + ,zl

' ,N ' !',

(b) GnInGn
' rL 2 diag~F, EF,H1, + + + ,Hl ,S!,

where j, F, Dj, EF, zi , and Hi, i 5 1, + + + , l are defined in Appendix A, N is a
normal random vector with mean 0 and covarianceS defined as in Theo-
rem 2.1, and~F,j!, ~ EF, Dj!, ~H1,z1!, . . . , ~Hl ,zl !, and N are independent.

Proof+ For ~a!, note that

Gn Dn 5 22 (
t52

n S~Nn
21Ut !

', ~ ENn
21Vt !

', ~L1, n
21 X1, n!', + + + , ~Ll, n

21Xl, n!',
1

!n
Zt21
' «0tD',

(4.20)

where Zt21 is defined as in Theorem 4+1+ By Lemma 4+3~a!–~c! and Theo-
rem 4+1, ~a! holds+

For ~b!, by the definition ofzt , its elementzt satisfies

f0
*~B!zt 5 c0~B!«0t ,

with zt 5 0 ast # 0, i+e+, model~4+1!+ By ~4+4!,

1

n (
t52

n ]«0t

]f*
]«0t

]f*
' 5 E~Zf*t

0 Zf*t
0' ! 1 op~1! (4.21)

1

n

]2S~l0!

] Dc] Dc '
5

2

n (
t52

n ]«0t

] Dc
]«0t

] Dc '
1 op~1!

5 2E1
Zct

0 Zct
0' Zct

0 Zdt
0

Zdt
0 Zct

0'
p2

6
2 1 op~1!, (4.22)

where Dc 5 ~c1, + + + ,cq,d!'+ By Lemma 4+4, we have

Jn
21Gn

*F ]2S~l0!

]f]f '
GGn

*' Jn
'21

5 2 (
t52

n

diagHNn
21Ut Ut

'Nn
21, ENn

21Vt Vt
' ENn

21, L1, n
21 X1, n X1, n

' L1, n
21 ,

+ + + , Ll, n
21Xl, n Xl, n

' Ll, n
21,

1

n

]«0t

]f*
]«0t

]f*
' J

1 op~1!+ (4.23)

NONSTATIONARY FARIMA MODELS 755



By Lemma 4+5 and~4+4!, we can show that

Jn
21Gn

*
]2S~l0!

]f]d
5 2@0,E~Zf*t

0' Zdt
0 !# ' 1 op~1!, (4.24)

Jn
21Gn

*
]2S~l0!

]f]c '
5 2@0,E~Zf*t

0 Zct
0' !' # ' 1 op~1!, (4.25)

wherei 5 1, + + + ,q+ By ~4+21!–~4+25! and Lemma 4+3~d!–~f !, we know that~b!
holds+

Note that the random vectors and matrices involved in~4+20! and~4+23! are
functionals of the basic processes in Theorem 4+1+ The independence of~F,j!,
~ EF, Dj!, ~H1,z1!, + + + , ~Hl ,zl !, andN follows ~4+23! and Theorem 4+1+ This com-
pletes the proof+ n

The following is the final lemma+ Its proof can be found in Appendix C+
This lemma ensures that the remainder term of the Taylor expansion ofS~l! is
small enough such that there is a local solution for]S~l!0]l+

LEMMA 4 +7+ When7na2102Gn
'21~l 2 l0!7 , 1,

Gn @In~l! 2 In#Gn
' 5 OpS** 1

!n
Gn
'21~l 2 l0!**D,

where0 , a , 1
2
_.

Proof of Theorem 2+1+ By Taylor’s expansion,

]S~l!

]l
5 Dn 1 In 3 ~l 2 l0! 1 @In~l* ! 2 In# ~l 2 l0!, (4.26)

wherel* 5 l0 1 y~l 2 l0! with y 5 y~n,l! satisfying6y6 # 1+ Multiplying
n2a21~l 2 l0!' to ~4+26!, we have

n2a21~l 2 l0!'
]S~l!

]l

5 @na2102Gn
'21~l 2 l0!# ' @na2102Gn Dn#

1 @na2102Gn
'21~l 2 l0!# ' @GnInGn

' 1 Rn~l!# @na2102Gn
'21~l 2 l0!# ,

(4.27)

whereRn~l! 5 Gn @In~l* ! 2 In#Gn
' + Denote the last term byP+

Let n and« be two given and sufficiently small positive numbers andVn~«! 5

$l : 7na2102Gn
'21~l 2 l0!7 5 «% +

Note thatS . 0 ~see Li and McLeod, 1986!+ By Lemma 4+3, the matrix diag
~F, EF,H1, + + + ,Hl ,S! is positive definite in probability+ By Lemma 4+6~b!, there
are a constantc1 and an integerN1 such that, asn . N1,

P$GnInGn
' , 2c1 Im3m% . 12 n,
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wherem 5 p 1 q 1 1 andIm3m is them 3 m identity matrix+ By Lemma 4+7,
there exists a constantc such that, for small enough«, asn . N1 andl [ Vn~«!,

P$@GnInGn
' 1 Rn~l!# , 2cIm3m% . 12 n+

Hence asn . N1 andl [ Vn~«!,

P$P , 2c«2% . 12 n+ (4.28)

By Lemma 4+6~a!, we know thatGnDn 5 Op~1!+ Hence there exists an inte-
ger N2 such that asn . N2,

PHna21027Gn Dn7 ,
c

2
«J . 12 n+ (4.29)

By ~4+29!, asn . N2 andl [ Vn~«!,

PH@na2102Gn
'21~l 2 l0!# ' @na2102Gn Dn# ,

c

2
«2J . 12 n+ (4.30)

Thus by~4+27!, ~4+28!, and~4+30!, asn . max$N1,N2% andl [ Vn~«!, with
at least probability 12 n,

n2a21~l 2 l0!'
]S~l!

]l
, 2c«2 1

c

2
«2 , 0+ (4.31)

Let Y 5 na2102Gn
'21~l 2 l0!0« andg~l! 5 Gn]S~l!0]l+ Then by~4+31!,

7Y7 5 1 and Y'g~n1022a«Gn
' Y 1 l0! , 0+

Because]S~l!0]l is continuous and henceg is also continuous onY, by the fixed
point theorem~Aitchison and Silvey, 1958! there is a solutionZln satisfying
g~n1022a«Gn

' Y 1 l0! 5 0, i+e+, ]S~ Zln!0]l 5 0, and7na2102Gn
'21~ Zln 2 l0!7, «+

Consequently, the proof of part~a! is completed+
For such a sequence ofZln, by ~4+26! and Lemma 4+7 we have

Gn
'21~ Zln 2 l0! 5 2FGnInGn

' 1 OpS** 1

!n
Gn
'21~ Zln 2 l0!**DG21

~Gn Dn!+ (4.32)

By part ~a! of this theorem, na2102Gn
'21~ Zln 2 l0! converges to zero in prob-

ability+ By Theorem 2+3 of Chan and Wei~1988! and Lemma 4+1, all random
variables inGnDn and GnInGn

' converge jointly+ Again by Lemma 4+6 and
~4+32!, we complete the proof of part~b!+ n

NOTE

1+ Denotext
* 5 ~1 2 B!d0yt + Then f0~B!xt

* 5 c0~B!«0t + The termxt
* also has two different

DGMs+ The first one, namely, DGM1*, is to generateut 5 c0~B!«0t and then generatext
* through

f0~B!xt
*5 ut with xt

*5 0 ast # 0+ The second one, namely DGM2*, is to generatef0~B!ut 5 «0t

with ut 5 0 ast # 0 and then generatext
* throughxt

*5 c0~B!ut + Under DGM2*, ~4+5! holds forxt ,
and under DGM1*, ~4+5! does not hold+ However, in the latter case, using Theorems 4+1–4+3 in
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Ling and Li ~1998! with ht being a constant, we can show that the CSS estimators have the same
asymptotic distributions as those in this paper+ This means that the effect of the DGM1* and DGM2*

in the nonstationary ARMA models is asymptotically ignorable for the CSS approach+ For simplic-
ity, we use DGM2* for xt

* in this paper+
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APPENDIX A: LIMITING DISTRIBUTIONS

F0~t! 5 W1~t!, Fj ~t! 5E
0

t

Fj21~s!ds, j 5 1, + + + ,a,

F 5 ~sij !a3a, sij 5E
0

t

Fi21~s!Fj21~s!ds, i, j 5 1, + + + ,a,

j 5 SE
0

1

F0~t!dW1~t!, + + + ,E
0

1

Fa21~t!dW1~t!D'+
EF0~t! 5 W2~t!, EFj ~t! 5E

0

t

EFj21~s!ds, j 5 1, + + + ,b,

EF 5 ~ Isij !, Isij 5E
0

t

EFi21~s! EFj21~s!ds, i, j 5 1, + + + ,b,

Dj 5 2SE
0

1

EF0~t!dW2~t!, + + + ,E
0

1

EFb21~t!dW2~t!D+
z 5 ~j1, + + + ,j2d !', H 5 ~sij !2d32d ,

j2j21~t! 5
1

2 sinu SE0

1

fj21~s!dW2~s! 2E
0

1

gj21~s!dW1~s!D,
j2j ~t! 5

1

2 sinu HcosuFE
0

1

fj21~s! dW1~s! 2E
0

1

gj21~s!dW1~s!G
2 sinuFE

0

1

fj21~s!dW1~s! 1E
0

1

gj21~s!dW2~s!GJ ,
s2k21,2j21 5 s2k,2j

5
1

4 sin2u SE0

1

fk21~s! fj21~s!ds1E
0

1

gk21~s!gj21~s!dsD,
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s2k21,2j 5 s2j,2k21

5
1

4 sin2u HcosuFE
0

1

fk21~s! fj21~s!ds1E
0

1

gk21~s!gj21~s!dsG
2 sinuFE

0

1

fj21~s!gk21~s!ds2E
0

1

gj21~s! fk21~s!dsGJ ,
fj ~t! 5

1

2 sinu SsinuE
0

t

fj21~s!ds2 cosuE
0

t

gj21~s!dsD,
gj ~t! 5

1

2 sinu ScosuE
0

t

fj21~s!ds1 sinuE
0

t

gj21~s!dsD,
f0~t! 5 W1~t! and g0 5 W2~t!,

whereWi ~t! is the i th element ofW~t! defined in Theorem 4+1+ Finally, defineHk and
zk as earlier withu replaced byuk and~W1~t!,W2~t!! replaced by~W2k12~t!,W2k13~t!!+

APPENDIX B: THE PROOF OF~1+5!

First, we note that

1 [ ~12 z!d0~12 z!2d0

[ S(
i50

`

a0i ziDS(
i50

`

Ia0i ziD
[ 11 (

k51

` S(
i50

k

a0i Ia0, k2iDzk+

Thus, we have

(
i50

k

a0i Ia0, k2i 5 0, k 5 1,2, + + + + (B.1)

Because(k50
t21 a0k yt2k 5 ut with ~12 B!ut 5 «0t , t 5 1,2, + + + , andu0 5 0, it follows that

(
k50

t21

a0k~ yt2k 2 yt2k21! 5 ut 2 ut21 5 «0t +

Let ut
* 5 yt 2 yt21+ Thenyt 5 yt21 1 ut

*, and

(
k50

t21

a0kut2k
* 5 «0t + (B.2)
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From ~B+2!, it follows that

(
k50

t21

Ia0k«0t2k 5 (
k50

t21

Ia0kS (
i50

t2k21

a0i ut2k2i
* D

5 ut
*1 (

k51

t21S(
i50

k

a0i Ia0, k2iDut2k
* + (B.3)

By ~B+1!, the second term in~B+3! is equal to zero, and hence~1+5! holds+ This com-
pletes the proof+ n

APPENDIX C: THE REMAINING PROOFS

Proof of Lemma 4.1.

1

n (
k52

@nt#

eikuE~«0k
2 Zk216Fk21! 5 2

1

n (
k52

@nt#

eikuS ]«0k

]f*'
,
]«0k

]c '
,
]«0k

]d
D', (C.1)

whereu [ @0,1# + First, we show that

2
1

n (
k52

@nt#

eiku
]«0k

]d
5 2

1

n (
k52

@nt#

eikuS(
j51

k21 1

j
«0k2jD5 op~1!+ (C.2)

Note that

1

n (
k52

@nt#

eikuS(
j51

k21 1

j
«0k2jD 5

1

n (
j51

@nt#21 eiju

j (
k51

@nt#2j

eiku«0k+

By the triangle inequality, 6(k51
@nt#2j eiku«0k6 # 6(k51

@nt#2j sinku«0k6 1 6(k51
@nt#2j cosku«0k6+

It is easy to show that max1#j#n n2102 6(k51
j sinku«0k6 and max1#j#n n2102 6(k51

j

cosku«0k6 converge to max0#t#16B1k~t!6 and max0#t#16B2k~t!6 in distribution, where
B1k~t! andB2k~t! are Brownian motions+ Thus

1

n (
k52

@nt#

eikuS(
j51

k21 1

j
«0k2jD 5 OpS 1

n1022a (
j51

@nt#21 1

j 11aD5 op~1!,

where 0, a , 1
2
_ , and the last equation holds because(j51

` j 212a , `+
Note that ]«0t 0]fi

* 5 2(k51
t21 cc~k!«0t2i2k and ]«0t 0]ci 5 2(k51

t21 cf* ~k!«0t2i2k,
with cc~k! 5 O~ rk! and cf* ~k! 5 O~ rk!, where 0# r , 1+ Similar to the proof of
~C+2!, we have2~10n!(k52

j eiku~]«0t 0]f* ! 5 op~1! and 2~10n!(k52
j eiku~]«0t 0]c! 5

op~1!+ This completes the proof+ n
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Proof of Lemma 4.2. We first show that

1

n (
k52

@nt#

EF«0k11
2 S ]«0k

]d
D2

IS*«0k11S ]«0k

]d
D* . !nd6FkDG5 op~1!+ (C.3)

Note that]«0k0]d 5 2(i51
k21 «0k2i 0i and

1

n (
k52

n S(
i51

k21 1

i
«0k2iD2

#
2

n (
k52

n

Zdk
02 1

2

n (
k52

n S(
i5k

` 1

i
«0k2iD2

5 2A1 1 2A2, say, (C.4)

whereZdt
0 is defined before Theorem 2+1+

E6A26 5
1

n (
k52

n

ES(
i5k

` 1

i
«0k2iD2

5
1

n (
k52

n

(
j5k

`

j 22

# OS1

n (
k52

n

k211a (
j5k

`

j 212aD # OS1

n (
k52

n

k211aD5 o~1!, (C.5)

where 0, a , 1+ BecauseZdk
0 is strictly stationary and ergodic withEZdk

02 , `, by the
ergodic theorem, A1 5 n21 (k52

n Zdk
02 converges top206 almost surely~a+s+!+ Thus, by

~C+4! and~C+5!,

1

n (
k52

n S(
i51

k21 1

i
«0k2iD2

5 Op~1!+ (C.6)

Note that

S(
i51

k21 1

i
«0k2iD2

# 2Zdt
02 1 2S(

i5k

` 1

i
«0k2iD2

+ (C.7)

By ~C+5!, for any smalle . 0,

PS1

n
max

2#k#n
S(

i5k

` 1

i
«0k2iD2

. eD #
1

ne (
k52

n

ES(
i5k

` 1

i
«0k2iD2

5 o~1!,

i+e+, n21 max2#k#n~(i5k
` i 21«0k2i !

2 5 op~1!+ Note thatn2102 max2#k#n6Zdk
0 6 5 op~1!

~see Chung, 1968, p+ 95!+ From ~C+7!, we have

1

n
max

2#k#n
S(

i51

k21 1

i
«0k2iD2

5 op~1!, (C.8)

Now by the conditional Markov inequality, ~C+6!, and~C+8!,

1

n (
k52

@nt#

EFS«0k (
i51

k21 1

i
«0k2iD2

IS*«0k (
i51

k21 1

i
«0k2i * . !ndD6Fk21G

#
1

n (
k52

@nt#S(
i51

k21 1

i
«0k2iD21a

n2a02Kd2a

#
1

n (
k52

n S(
i51

k21 1

i
«0k2iD2S1

n
max

2#k#n* (
i51

k21 1

i
«0k2i *

2Da02

Kd2a

5 op~1!, (C.9)
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whereK is some constant+ That is, ~C+3! holds+ Similarly we can show that

1

n (
k52

@nt#

EF«0k11
2 ** ]«0k

]f* **
2

IS6«0k1167
]«0k

]f*
D7 . !nd6Fk!G5 op~1!, (C.10)

1

n (
k52

@nt#

EF«0k11
2 ** ]«0k

]c **
2

IS6«0k1167
]«0k

]c
D7 . !nd6Fk!G5 op~1!+ (C.11)

By ~C+3!, ~C+10!, and~C+11!, we complete the proof+ n

Proof of Lemma 4.7. By a direct differentiation,

]3S~l!

]d3 5 2 (
t51

n S3
]2«t

]d2

]«t

]d
1 «t

]3«t

]d3 D, (C.12)

]«t

]d
5 f~B!c21~B! log~12 B!~12 B!dyt , (C.13)

]2«t

]d2 5 f~B!c21~B! log2~12 B!~12 B!dyt , (C.14)

]3«t

]d3 5 f~B!c21~B! log3~12 B!~12 B!dyt + (C.15)

Note that

]«t

]d
5 ~f 2 f0!'c21~B!c0~B! log~12 B!~12 B!d2d0x t

1 log~12 B!~12 B!d2d0«0t

1 @c21~B! 2 c0
21~B!# log~12 B!~12 B!d2d0c0~B!«0t

5 I1t 1 I2t 1 I3t , say, (C.16)

wherex t is defined as in~4+6! with xt 5 c0
21~B!~1 2 B!d0yt + By the given condition,

6d 2 d06 , n2a and7n2102 EGn
' ~f 2 f0!7 , n2a , where EGn is defined after~2+6!+ Thus

6 I1t 6 5 6@n2102 EGn
'21~f 2 f0!# ' log~12 B!~12 B!d2d0c~B!21c0~B!@n102 EGnx t #6

# n2a 7 log~12 B!~12 B!d2d0 @c21~B!c0~B!@n102 EGnx t##7+

By Lemma 2+1~d! in Ling ~1998!, max1#t#n E7 EGnx t72 5 O~n21!+ Furthermore, by
Minkowski’s inequality,

1

n (
t51

n

EI1t
2 #

1

n (
t51

n

n2a OS(
i51

t 1

i (
k51

i

kd2d021DS max
1#t#n

E7n102 EGnx t72D102

5
1

n (
t51

n

OSn2a (
i51

t 1

i (
k51

i

kd2d021D
# OS(

i51

n 1

i 11a02 (
k51

i

k 6d2d06212a02D 5 O~1!+ (C.17)
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Now, we consider the second termI2t in ~C+16!+ Let ht 5 ~1 2 B! Dd«0t , where Dd 5
d2 d0+ By the given condition, 6 Dd6 , 1

2
_ for large enoughn and hence by Theorem 1+1~d!

in Hosking ~1981!, Eht
2 5 a constant and for large enoughk, E~ht ht2k! 5 O~k2 Dd21!+

Thus

1

n (
t51

n

EI2t
2 5 ES(

i51

` 1

i
ht2iD2

5 (
i51

` 1

i 2 Eht2i
2 1 2 (

i51

`

(
k51

` 1

i ~i 1 k!
E~ht2i ht2i2k!

5 O~1! 1 2 (
i51

`

(
k51

`

OS 1

i ~i 1 k!k122 DdD
# O~1! 1 2 (

i51

`

(
k51

`

OS 1

i 11102k1110222 DdD5 O~1!+ (C.18)

Similarly we can show thatn21 (t51
n EI3t

2 5 O~1!+ Further by~C+16!–~C+18!, we know
that n21 (t51

n E~]«t 0]d!2 5 O~1!+ Similarly n21 (t51
n E~]2«t 0]d2!2 5 O~1! and

n21 (t51
n E~]3«t 0]d3!2 5 O~1!+ By the preceding discussion, we can show that

1

n

]3S~l!

]d3 5 Op~1!+ (C.19)

Similarly we can show

1

n

]3S~l!

]d2]c
5 Op~1! and

1

n
F!n EGn

]3S~l!

]d2]f
G5 Op~1!+ (C.20)

By ~C+19! and~C+20!,

1

n
F ]2S~l!

]d2 2
]2S~l0!

]d2 G 5
1

n
F!n EGn

]3S~l* !

]d2]f
G ' @n2102 EGn

'21~f 2 f0!#

1
1

n

]3S~l* !

]d2]c '
~c 2 c0! 1

1

n

]3S~l* !

]d3 ~d 2 d0!

5 Op~7n2102Jn
'21~f 2 f0!7! 1 Op~7c 2 c07! 1 Op~6d 2 d06!

5 Op~7n2102Gn
'21~l 2 l07!, (C.21)

wherel* is an intermediate point betweenl andl0+ Similar to the proof of~C+21!, we
can show that the following quantities are equal toOp~7n2102Gn

'21~l 2 l07!:

EGnF ]2S~l!

]f]f '
2

]2S~l0!

]f]f '
G EGn

' ,
1

!n
F ]2S~l!

]d]f '
2

]2S~l0!

]d]f '
G EGn

' ,

1

!n
F ]2S~l!

]c]f '
2

]2S~l0!

]c]f '
G EGn

' ,
1

n
F ]2S~l!

]d]c '
2

]2S~l0!

]d]c '
G ,

1

n
F ]2S~l!

]c]c '
2

]2S~l0!

]c]c '
G +

Thus, Gn@In~l! 2 In#Gn
' 5 Op~7~10!n!Gn

'21~l 2 l0!7!+ This completes the proof+ n
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