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Negativity of curvature on spacés
parametrizing Hodge decompositions
of reduced first cohomology groups

Ngaiming Mok

Let m : X — B be a regular holomorphic family of compact Kéhler manifolds
over a simply-connected complex manifold B and assume that the total space X is
equipped with a fixed Kihler metric g. Let I' be the fundamental group of a typ-
ical fiber Xo. Let ® : I' — U(H) be a unitary representation of I' on a (separable
complex) Hilbert space for which the reduced first cohomology group Hrled(F, ) is
non-zero. Fix an isomorphism between 71 (Xp) and I'. Since B is simply-connected
we have a consistent identification between 7 (X;) and I for any fiber X;. We have
therefore a consistent family of identifications of HL4(T', ®) := V with the space of
harmonic forms on (X3, g|x,) with coefficients twisted by ®. Since X is Kéhler we
have thus obtained a decomposition of VC = V @ C into W; @ W, where W, cor-
responds to the space of holomorphic 1-forms with coeflicients twisted by ®. When
the representation space is finite-dimensional, one can parametrize the space of
Hodge decompositions of V< by the Siegel upper half-plane, on which the Bergman
metric is an invariant Kahler metric of nonpositive holomorphic bisectional cur-
vature and strictly negative holomorphic sectional curvature. If the infinitesimal
variation of the Hodge decomposition of VC is injective, we have an induced Kéhler
metric on B with the same curvature property. For instance it follows that B is
Brody hyperbolic, i.e., it admits no nontrivial entire holomorphic curve. When
the representation space is infinite-dimensional, one can no longer associate to the
“universal” space of Hodge decompositions a Kahler metric, since infinitesimal de-
formations are given by bounded operators from W; to Ve/w, W,. Instead we
will in essence construct a canonical complex Finsler metric, which in the finite-
dimensional case reduces to the Kobayashi metric. We note that the Kobayashi
metric on the Siegel upper half-plane is a continuous complex Finsler metric of
holomorphic sectional curvature < —2, and that it agrees with the Carathéodory
metric. For the purpose of deducing hyperbolicity properties of parameter spaces
of Hodge decompositions of V€, the Kobayashi metric serves the same purpose as
the Bergman metric. Since our interest lies only in studying regular holomorphic
families of compact Kéahler manifolds, we will avoid the technicalities of dealing
with infinite-dimensional moduli spaces of Hodge decompositions of VC. Instead,
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we will directly construct a (possibly degenerate) complex Finsler metric on B and
show that it is of holomorphic sectional curvature < —2 in the usual sense.

§1 Preliminaries

(1.1) Let w : X — B be a regular holomorphic family of compact Kahler manifolds
over a simply-connected complex manifold B. For ¢ € B denote by X; the fiber
n~1(t). Let T be the fundamental group of a typical fiber Xy. Since B is simply-
connected there is a canonical way of identifying 7 (X;) with 71(Xo) =T. Let H
be a complex Hilbert space, which we will assume to be separable throughout the
article. Let ® : I' — H be a unitary representation on H such that the reduced first
cohomology group V := H,(T',®) # 0. Denote by Eg the locally constant bundle
of Hilbert spaces on X associated to ®. For any t € B we may identify V' with
the space of harmonic 1-forms H}, . (X, Fs) with values in Eg. For a d-closed
smooth 1-form with values in Eg we will denote by [r] the corresponding element
inV.

Let I' be the fundamental group of some compact Riemannian manifold. By
Korevaar-Schoen [KS] and Mok [M1], HL (T, ®) # 0 for some ® if and only if I’
violates Property (T) of Kazhdan’s (cf. de la Harpe-Valette [HV]). This is the case
for instance if T' is of subexponential growth (cf. Mok [M2]). Another example of
a nonvanishing reduced first cohomology group in the Kéhler case is given by the
left regular representation p on a compact Riemann surface S of genus > 2. In this
case the harmonic (1,0)-forms on S with values in E, correspond precisely to the
square-integrable holomorphic 1-forms on the unit disk as the universal cover of S.

Considering ® as an orthogonal representation of the underlying space we have
a complex conjugation defined on HC := H ®g C. Write ES for the correspond-
ing locally constant bundle of Hilbert spaces. We have the Hodge decomposition
HL (X, ES)=HN (X, ES)® H:L (X4, ES). The space Hy (X:, ES) con-
sists of Eg—valued holomorphic 1-forms. Denote by W; C V the vector subspace
corresponding to H}Iliﬁm(X t, £S). An Eg-valued differential form ¢ is said to be real
if and only if g = ¢. For 7 a real Eg-valued harmonic 1-form, we have n = n10+70!

where 01 = 10 and #'0 is a d-closed Eg-valued holomorphic 1-form.

For notational simplicity from now on we will replace H Cby H, and ® Qg id :
I' > UH®) by & : T — U(H). In other words, we treat ® as denoting the
complexification of some orthogonal representation so that complex conjugation on
H makes sense.

(1.2) In what follows X stands for any of the fibers X; in the regular holomorphic
family 7 : X — B of compact Kahler manifolds. By lifting harmonic 1-forms
from X to the universal covering space X and integrating we obtain a canonical
map from H}, (X, Es) to HL4(T',®). We will show that this canonical map is
a topological isomorphism, when we endow both sides with structures of Hilbert
spaces. The discussion here is valid for compact Riemannian manifolds in general
and the Kahler property of X plays no role in the discussion. Since X carries
a given Riemannian (Kihler) metric, HY, (X, Es) carries the usual structure of
a Hilbert space when we endow the harmonic forms with global L?-norms with
respect to the given Riemannign metric. Completeness of Hy, (X, Es) follows
readily from Schauder estiﬁi'éfes.'on harmonic forms, which work equally well when
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the underlying Hilbert space H of the unitary representation ® is separable and
infinite-dimensional.

We proceed now to define a Hilbert space norm on V = HL (T, ®). Recall that
a l-cochain ¢ € C!(T', ®) is a function ¢ : I' — H. We write ¢, for the value of ¢
at v € I'. The 1-cochain ¢ € C}(I', ®) is said to be a 1-cocycle if it satisfies the
identity cys = ®(7)(cs) + ¢,. We call this identity the compatibility condition on
1-cocycles.

Since I' is the fundamental group of the compact Kéhler manlfold X, it is
finitely generated. Let ~i,- -, be a finite set of generators of I We endow
the vector space Z!(T', ®) of 1-cocycles with the norm given by ||c||? = [|cy, |2 +

-+ +|ley,. ||?. Since I is generated by v1,- -+ ,¥m, any ¢ € Z'(T', ®) is completely
determined by c,,- -+ , ¢y, and by the compatibility condition on 1-cocycles. By
the latter, ¢ = 0 whenever ¢,, = -+ = ¢,,, = 0, so that || - || is indeed a norm
on ZY(T',®). A 1-cocycle c € Z}(T, ®) is said to be a 1-coboundary, written ¢ €
BY(T, ®), if there exists some element h € H such that ¢, = h — ®(y)(h) := dh(y)
for every v € I'. We say that ¢ € Z(T', ®) is a 1-quasi-coboundary if there exists a
sequence {c*} of 1-coboundaries such that for every v € T, we have ¢, = limj_,o0 c¥.
From the compatibility condition on 1-cocycles the latter is valid if and only if it
is valid on a given set of generators. Thus the vector space of 1-quasi-coboundaries
can be identified with the closure of B1(T', ®) of B([', ®) in Z}(I', ®) with respect
to the Hilbert space norm || - ||. As a vector space the reduced cohomology group
V = HL,(T',®) is defined as Z'(T', ®)/B1(T, ®). Note that this does not depend
on the choice of the finite set of generators of I'. Fixing this set and hence || - ||,
however, we have the induced structure of a Hilbert space on V. We note

LEMMA (1.2.1). Let || - ||1 resp. || - ||2 be two choices of Hilbert space norms
onV corresponding to two choices of finite sets of generators {'y @) ye ,fy"%l} resp.
{ (2) S Y m2} Then, the identity map on V induces a topological isomorphism

(VII 1) = (V[ - [l2)-

PROOF. Let ¢ be an arbitrary element of Z!(I', ®). For any v € I, from the
compatibility condition on 1-cocycles, we can express c, as a linear combinatior
of ¢, for § € {'y§1), ,’ymz} with coefficients independent of the 1-cocycle c. It
follows that ¢ : (V,||-]l1) = (V]| - ||2)- is continuous. Applying the same argument
to the inverse map we conclude that ¢ is a topological isomorphism.

Let (X, g) be a compact Riemannian manifold with fundamental group I'. We
can endow H}, (X,Es) with the structure of a Hilbert space by defining the
norm of a harmonic 1-form 7 by |[n|[> = [ ||n(z)||*dV (z), where dV is the volume
form on X determined by the Riemannian metric g. We have a canonical map
A:HL__(X,Es) — HL (T, ®). The main result of this section is

harm

PROPOSITION (1.2.1). Endow H},. (X, Es) with the structure of a Hilbert
space as determined by the Riemannian metric on X, and HL4(T,®) with the
structure of a Hilbert space as determined by a choice of a finite set of generators
of T. Then the canonical map 7 : HE, (X, Eq)) — HL,(T,®) is a topological
isomorphism. ‘ S

For the study of Eg-valued differential forms on X we have the following simple
version of Hodge decomposmon on closed forms which remains valid when H is of
infinite dimensions. ’
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LEMMA (1.2.2). Given any smooth d-closed Eg-valued 1-form £ on X, we have
&€ =n+(, where n is a harmonic form, and ¢ the L?-limit of a sequence of d-ezact
smooth Eg-valued 1-forms. Furthermore, { is smooth.

ProoF. Let (H,|| - ||) be the Hilbert space of square-integrable Fg-valued
differential 1-forms on X and denote by < -,- > the corresponding inner product.
Denote by d* the formal adjoint of d on (X,g). Let Z(X,Es) be the vector
subspace of Eg-valued smooth d-closed 1-forms. Let H' C H be the closure of
ZY(X, Ep) with respect to ||-||. For any 8 € Z}(X, Es) we have < 3,d*p > = 0 for
every smooth Eg-valued 2-form ¢ on X. Taking L2-limit this remains true for every
B € H'. Integrating by parts this implies that [ lies in the domain of definition of
d and that furthermore d@ = 0 in the sense of distribution. Let B!(X, Es) C H' be
the vector subspace of Eg-valued smooth d-exact 1-forms, and denote by H"” C H'
the closure of B!(X, Eg) with respect to ||-||. Write H' = H"” @K for the orthogonal
decomposition. For any n € K, n is orthogonal to da for any Eg-valued section o on
X. It follows by integrating by parts that n belongs to the domain of definition of
d*, and that furthermore d*n = 0 in the sense of distribution. Thus # is harmonic in
the sense that dn = d*n = 0, so that 7 is smooth from local elliptic estimates, even
in the case when H is infinite-dimensional. From the orthogonal decomposition
H =Ko H', K= H},,. (X,Es), we have accordingly £ = n + ¢, where 7 and
hence ¢ are smooth. [

REMARKS

In the classical case where H is finite-dimensional, we have the deeper statement
that ¢ = dx for some smooth Eg-valued section on X, but the latter is no longer
true when H is of countably infinite dimensions.

To relate harmonic 1-forms with the algebraically defined reduced first coho-
mology group first of all we can associate 1-cocycles to closed Eg-valued 1-forms
on X by lifting to the universal covering space X of X and integrating. We fix a
base point 0 € X. For each g€ Z1(X, Eg) denote by § its lifting to X. Define for
each p € X, Fe(p) = [, Qo) { , where @ (0,p) denotes any smooth path joining o to
p. Then F := F; satisfies the functional equation

Fe(v(p)) = ®(MF(p) + &4(§),

for any v € I'. We have thus associated to & a 1-cocycle c(§) = (cy)yer. The
1-cocycle c¢(€) depends on the choice of the base point o € X, but the class [e(€)] =
[cylyer € HL4(T,®) is independent of the choice of the base point. We define
K': (X, Eg) — Z\(T,®) by K(£) = c(¢) and  : Z1(X, Eo) — Hiy(T, ®) by
k(&) = [e(£)]. We have

LEMMA (1.2.3). The linear map & : ZY(X,Ee) — HL4(T',®) is continuous

if we consider Z1(X,Eg) as a dense topological vector subspace of H'. In other
words, K extends to a continuous linear map & : H' — HL4(T, ®).

PROOF. Let {£} be a sequence of smooth d-closed Eg-valued 1-forms which
converge in L? to a smooth d-closed 1-form £.,. We have to prove that k(fe) =
limy o #{&k). For each k, & lifts to a smooth mapping Fy, : X — H such that

- F(v(p)) = ®(7)(Fi(p) + <&,

i
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where we have written Fj, for Fy, , and c§ for ¢, (€x). For £ use the same notations
with the index k replaced by oo. We claim that [C:]‘yer' converges to [c5°],er. This
requires a proof, since £ only converges to £ in the L2-norm. We note that the
1-cocycles ¢ = (c*), er may actually diverge. To prove the claim we will have to
replace each c* by cohomologous 1-cocycles e¥ = c¥ + §hy, such that {e*} converges
as a sequence of 1-cocycles.

For the integral F¢ of any smooth Eg-valued 1-form £ on X, normalized by
F¢(o) = 0, and for any v € T, write the functional equation for F in the form
cy(€) = Fe(yp) — ®(v)Fe(p). Fix v € I. Recall that Fe(p) = fp(o’p) £ If we
could estimate F; on compact sets in terms of £, then we would have bounds on
G.(€) for v belonging to a finite set of generators of I' in terms of L2-norms of &,
and Lemma (1.2.2) would fall out easily. Unfortunately the desired estimates on
F; are in general not possible. Estimates on F; depend on the choice of the base
point 0 € X. A change of base point will result in replacing c(¢) € Z\(T, ®) by
a cohomologous element ¢(¢) + 6k € Z'(I',®). From now on o € X will denote a
variable base point. To indicate dependence on the base point, we will write F?,
c(&,0), etc. Let E C X be a bounded measurable subset. Then, the average of
c(€,0) as o ranges over E makes sense. It will give a 1-cocycle, to be denoted by
(&, E) whose class [c(&, E)] € HL (X, Eg) is the same as [c(£, 0)]. This is what we
are going to do, with an aim to finding a suitable average such that c(¢, E) can be
estimated. For this purpose we are going to establish
(1) Let ¢ € Z(X,Eg) and D C X be a bounded domain. For o € X let Fg

X — H be such that dFY = §, the lifting of £ to X. For p € X write
FP(p) for Vol( B9) f D F€ dV( ), where dV denotes the volume element of

X, g), defining FP : X — H such that dFP? = £. Then, given any compact
13 3

measurable subset M C X we have S ||F£D || < Cw|€]| for some constant Cpy

depending on M but independent of £.

We note that Lemma (1.3.2) follows readily from (t). To see this using FgD in place
of F¢ = F¢ we have analogously c$ &p) = FED('yp) - <I>(7)F£D(p). From (1) we
conclude that ||c2|| < C,|[¢]| for some constant C., independent of £. Recall that
& € ZY(X, Es) converges to {x € Z1(X,Eg) in the L2-norm. For each v € T,
applying (f) to the differences & — &, we see that cD (&x — €x0) converges to 0.
Since || - || on HL (T, ®) is defined by a finite set of generators of T, [P (&)] =

k(&) converges to [cD (£xo)] = K(€x), giving the continuity of « : Zl(X Eg) —
H, rled (F’ Q)

For the proof of (f) F¢ is obtained by integrating £ with initial point o, and FgD
is obtained from F¢ by averaging as the initial point o varies over D. The L'-norm
of F¢ over a closed ball disjoint from o can in an obvious way be controlled by
the L'-norm of ¢&. This gives readily (1) for the special case when M and D are
disjoint. However, when o € M, we have to take care of singular weight functions
arising from the use of polar coordinates centred at the initial point 0. For r > 0
and 0 € X write B(o;r) for the geodesic ball on X of radius r centred at o. By
covering arguments it is clear that () follows from
(b) Let € > 0, € < 1 be such that 4¢ is less than the injectivity radius (X, g) of

(X, g). Let b € X be arbitrary. For r > 0 write B, for the geodesic ball B(b;r).
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Then, in the notations of () we have

/Be (/}32 IIFé’(p)IIdV(p)> dv (o) < C|l¢]|

for some constant C independent of £ € Z1(X, Eg).

To complete the proof of Lemma (1.2.2) we proceed to prove (b). For each o € B,
we can use normal geodesic coordinates on the geodesic ball B(o; 4¢). Note that the
closed geodesic ball By is contained in B(o;3¢). For such o we will obtain F on
B(o0; 3¢) by integrating along geodesics emanating from o. Write n for the complex
dimension of X. Using normal geodesic coordinates estimates of Fy’ as stated in (b)
in terms of £ can be reduced to the same problem for Euclidean space R™ in place
of X. We have

/. ( L 1@V @) dvio) < C [ | ( 5 Tt €V () ) av(o

for some positive constant C. Here and in what follows C' is a generic symbol for
a positive constant independent of £. The choice of a single base point o gives F¢.
For estimates of the L'-norm of Fg’ over By, in terms of £ we have to introduce the
singular factor d(o;p)2"~! which corresponds to blowing-up at the centre o. The
latter is integrable at o as a function in p. On the other hand, when we average the
estimates as o varies over Be, the singular factor d(o,p)?"~! is also integrable as a
function in o at p. This translates immediately to the estimate

/ ( /[ !IFg’(p)HdV(p))dV(o)SC [ Ewlave)

<c ( / ) ||E<p)u2dV(p)) ol

where we used in the second last step the Cauchy-Schwarz inequality. The proof of
Lemma (1.2.3) is complete. [

We turn now to the proof of our main result in this section.

PROOF OF PROPOSITION (1.2.1). The canonical map A : HE (X, Fg) —

HL (T, ®) is precisely the restriction of k : Z1(X, Eg) — H.4(T,®). By Lemma

(1.2.3) X is continuous. Actually, if we denote by L the restriction of K : Z1(X, Eg)

— ZY(T, ®) to H}, (X, Eg), then L is already continuous from Schauder estimates
on harmonic forms.

Let now [c] = [¢y]er be a class in the reduced first cohomology group. We are
going to find a harmonic form 7 in H}, (X, Eg) such that A(n) = [c]. We can find
a finite cover Y = {U,} of X by open coordinate balls and associate in a canonical
way each 1-cocycle [c] € HL (T, ®) to a Cech 1-cocycle on X relative to the cover
U. By the standard method of passing from Cech l-cocycles to closed 1-forms
by partition of unity, there exists a linear map T : Z'(I',®) — ZY(X,Es) C H’
such that ¢(T'((cy)yer)) = (¢y)yer, ie., K(T(c)) = c. From the construction by
partition of unity 7 is contlnuous w1th respect to Hilbert space norms. Furthermore,
T(6h) € BYX,Es).
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We proceed to prove that A : H}, (X,Es) — HL4(T,Eg) is a topologi-
cal isomorphism. Let ¢ € ZYI',®) and write T(c) = £ and £ = n+ (,n €
H}. (X,Es),( € H, according to the Hodge decomposition as given by Lemma
(1.2.2). Since T(B(T',®)) C BY(X, Eg) from the continuity of T it descends to
a continuous linear map 7 : HL (T, ®) — H'/H"” = K, where = denotes a linear
isometry. We have K(T(c)) = c so that x(T(c)) = [c], giving &(n) + &(¢) = [c].
Since k(B'(X,Es)) = 0 it follows from Lemma (1.2.3) that x(¢{) = 0, so that
w(1([e])) = [c], i-e, A(7[c]) = [¢].

Conversely let n € HE, (X,Es). £ := T(K(n)) € Z2'(X,Eg) is such that
K(¢) = K(n). Write £ = /i + ¢, 71 € H},.n(X, Es), ¢ € H", according to Hodge
decomposition. Then, K(n — 7) = K(§ — i) = K({). Thus, n — % = ¢ + da for
some smooth section a of Eg over X. Since ( +da € H” and HY, (X, Fp) = K is
orthogonal to H”, we conclude 7j = 0, i.e., T(K(n)) = n. Passing to quotient spaces
7(k(n)) =7, i.e, 7(A(n)) = n. Since both A and 7 are continuous, we have proven
that A and 7 are inverses of each other and that they are topological isomorphisms,
as desired. 0O

(1.3) Recall that by assumption the total space of 7 : X — B is equipped with
a Kahler metric ¢ and denote by w the Kahler form of (X,g). Beyond this our
considerations are local over B and rely only on restrictions of 7 : X — B to local
holomorphic curves on B. For r > 0 write A(r) = {z € C: 2| <7}, A = A(1).
Let € > 0 be arbitrary and 7 : X — A(1+¢€) be a regular family of compact Kahler
manifolds diffeomorphic to the trivial family Xo x A(1+¢€) — A. Thus, we have a
smooth family of diffeomorphisms f; : X; & Xo. From now on we will only consider
the family restricted to the unit disk A € A(1 + €). Any smooth differential form
@ on Xg can then be identified with f;¢ on X;.

Let h : H® H — C be the bilinear pairing such that h(v ® W) = < v,w >
for the Hermitian inner product on H. We will use the same symbol h for the
induced bilinear pairing on Eg, and extend h in an obvious way to E¢ ® Eg-valued
differential forms. For t € A, and Eg-valued smooth 1-forms pu,v; consider the
skew-symmetric pairing

Sy, p) = i V=1h(v Ap) Aw™ .

When v is replaced by v/ + dy for some smooth section ¢ of Eg over X, clearly

S(v', ) = S(v, p). Furthermore, if v’ —v is only the L2-limit of a sequence of d-exact

Eg-valued 1-forms dyp; it remains true that S(v/, u) = lim S(v+dg;, u) = S(v, p).
11— 00

It follows that S induces a skew-symmetric pairing on HL (', ®). We will use the
same notation S for the latter and call it the symplectic form on H4(T', ®). Note
that with the identification HL (T, ®) = H}, .(X¢, Es) as given in Proposition
(1.2.1) we have S(a,b) = S(v, u) whenever v resp. p is the harmonic representative

of a resp. b; a,b € H-,(T,®). Now for v € H}2 (T, Ep) we have

Sy, ) = V=TI AT) AW = |y,
Xy

while
S v) = —|vi?,
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so that S is positive-definite on W; and negative-definite on W;. Furthermore, for
v,ve € HYY (U, Es) we have S(v1,15) = S(71,72) = 0. From V = HL (T, ®)
HL, (X, Es) = HEC (X4, Es) ® H:L(X:, Es) we can give V the structure of
a Hilbert space by using norms on harmonic forms. Wy, W, C V are orthogonal to
each other with respect to this Hilbert space structure. The Hermitian inner prod-
uct on V may depend on ¢, although by Proposition (1.2.1) they are all equivalent
to (but not necessarily identical to) Hilbert space structures on V = HL (T, ®)

defined via 1-cocycles as given in (1.2). On the other hand, we have

LEMMA (1.3.1). The symplectic form S on V = H}, (X:, Es) is independent
of t.

Proor. Recall the smooth family of diffeomorphisms f; : X; = Xy. For v, u
d-closed Eg-valued 1-forms on X, we have

Srvfimw = [ VIR n fr nwn

Since w is a Kéahler form defined on the total space X, fi(w |x,) is cohomologous
to w | x,, so that

S(fiv, fin) = . V=1h(fiv A ffw) A (ffw)

= V=1h(v A p) Aw™?
Xo

= S(v, p).

Since f; induces the identity map on V = HL ,(T'; ®) by definition this means that
S :V x V — C does not depend on the choice of t € A, as desired.

(1.4) We are going to measure how the Hodge decomposition V = W; @ W varies
as t ranges over A. In the finite-dimensional case I'(X;,(Eg)) constitutes a
holomorphic vector bundle as t varies, by the Direct Image Theorem. For the
infinite-dimensional case this remains true. To see this we start with examining
the variation of Hi, . (X:, Es). Let n € Hi,...(Xo,Es). For ffn on X; we have
[ft*n] = {Tlt] for a unique n € Hlllarm(XtvE‘P)' Write ft*n =n + pt, where U and
pt are orthogonal. It follows that ||n|| < ||finll < (1 + C|t|)||n|| for some pos-
itive constant C. Here and in what follows | - || will denote global L?-norms on
some X; unless otherwise specified, and C will be a generic symbol for positive
constants. Starting with 7, we also have ||7|| < [|(fi 1)*nll < (14 C|t|)||n: ||, which
gives (1 —Clt])||nll < [Inell < (1 +Cle)lnll. Since [[£7l|* = lmel|* + llpel|? it follows
that ||fFn — nel| = |lpell < Cltll|n||.- Denote by A = dd; + did the d-Laplacian on
(Xt,w |x,)- We have,
[Ac(fEm) (@)l < Clel linll

for some constant C independent of z € X;, from Schauder estimates on harmonic
forms. Here note that the norm || - || on the left is pointwise and that on the right
is global. Cover X, by a finite number of coordinate neighborhoods {U®}, which
leads to a covering {UZ} of X; via the diffeomorphisms f;. We may take U® to
be domains with smooth boundaries. Solve now Auy = A(ffn) on U with
Dirichlet boundary conditions. ‘We have [[ug(z)|| < C|¢t||n]| for every z € U and
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every a. Then, A;(fin—ud) = 0= Ayne. Since || fin—nel| < Clt|||nl} we conclude
that || f;n — uf — nellue < C|t| ||n]| for all o, t. Elliptic estimates then give uniform
bounds for the harmonic forms f;n — u{ — 7 and hence for fin — n;, giving

LEMMA (1.4.1). There ezists a constant C such that
I(fin—n) @) < Cltllinll for every te€ A, z € Xe.

By Lemma (1.2.1) V = HL (T, ®) carries a well-defined structure of a topo-
logical vector space. By Proposition (1.2.1) this structure agrees with that of
Hharm(Xt,Eq)) for any t € A via the canonical isomorphism H} . (X, Fs) =
HL (T, ®), so that the canonical map Hy,.,(X¢, Es) & Hy,, (Xv, Eg) for t, ¢’ € A
is a topological isomorphism. Lemma (1.4.1) implies this latter statement without

using 1-cocycles.

LEMMA (1.4.2). Fort € A, let B¢ : HE, (X0, Es) — Hl,m(Xe, Es) be
the linear map defined by Z¢(n) = m:. Then, Z; is an inverted bounded linear
operator such that Z4(n) is uniformly Lipschitz in (t,n) for t € A and for every
n € HE, . (Xo,Es) of unit norm.

PROOF. Lemma (1.4.1) shows that for every n € H{,. . (Xo,Es),Z¢(n) is
Lipschitz in t at t = 0. For to € A fixed and t € A arbitrary write fi'n =
(Fof2)*(Fom). Then 7= (fofigt) o + (Fefis ) (Figm — o). Write g, = fofir’
Then, g, = id, and ;1 = g, + g5 (fin —,)- Since fin— 7, lies in the closure
of d-exact Eg-valued 1-form on Xy, g7 (fn — M) lies on the closure of d-exact
Eg-valued 1-form on X;. As a consequence Z¢(n) = 7; satisfies

(g5 neo — me)(@)I| < Clt = tol I, || for every  t€ A,z € Xy,

by the same arguments as in Lemma (1.4.1). Here C may be taken to be the
same positive constant for any to € A, since the regular family is defined on a
neighborhood of the closed disk A. As a consequence Z¢(n) is uniformly Lipschitz
in (t,n) for t € A and for n € H},..(Xo, Es) of unit norm.

We proceed now to show
PROPOSITION (1.4.1). Fort € A(e) e>0 suﬁiczently small there exist in-

vertible bounded linear operators ©; : harm(XO’E‘I)) (Xt, Eg) such that
for every n € HE2 (Xo,Es), ©¢(n) is holomorphic in t.

harm

PROOF. We first show that there exists ¥, : Hpo, (Xo, Ee) — H;;im(xt, Es)
with similar properties as ©; except that ¥, is only uniformly Lipschitz in . Fix
now 1 € HY2 (Xo,Es). For an Eg-valued 1-form ¢ write ¢ = @10 4 01 for the

decomposition of ¢ into components of types (1,0) and (0,1). We have

et = (frn)®t + (e — fr)™t

By Lemma (1.4.1) we have uniform bounds ||(n: — ffn)(z)|| < C|¢t|[n|| for every
z € X;. The component (f}1)%! may be interpreted as taking the (0, 1)-component
of a fixed differential 1-form with twisted coefficients with respect to a variable
family of complex structures. Slnce n is of type (1,0) if follows that ||(ffn)!| <
Clt| ||17|| As a consequence 7> (@)|| < Clt||Inl| for every z € X. Define now
U, : HY (Xo,Es) — Hharm(xt,{aq,) by W.(n) = n;'°. Then ¥, has the required
properties. o
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For an Eg-valued smooth d-closed 1-form ¢, on X; we denote by [p;] € V =
HL (T, ®) its class in the reduced cohomology group. For two Hilbert spaces H’
and H"” we denote by B(H’, H") the Banach space of bounded operators T from
H'’ and H" equipped with the operator norm ||T|| = sup{||Tz| : z € H', ||z| = 1}.
In case H' = H" we will also write B(H’) for the Banach algebra B(H’; H'). For
each t € A we have ¥; € %(Hﬁa‘im(xo,E¢),Hha,m(xt,E¢)) We will identify
each H}, . (X;, Es) with H: (T',®) = V and by abuse of notation consider ¥,
as an element of B(Wy, W) C B(Wy, V). By Lemma (1.4.2) the continuous map
v A — B(Wp, V) is Lipschitz. It follows that for almost every ¢y € A, &% S Y (to)

and 2% (to) are defined.

To modify ¥, to ©; the key point is to show that whenever aw( to) is defined,
%—Z(t(}) € B(Wy,Wy,). To this end without loss of generality we assume that
there exists a holomorphic section ¢ : A — & of the regular family = : X — A.
Integrating ntl‘o on )?t there exists a smooth function F : ¥ — H such that

F(y(p)) = ®(7)F(p) + c,(t)

for every = € X and v € I" and such that F is holomorphic on each )~(t. Define
p: Xo — H as follows. For any to € A and p € X, letv e Tp(f) be such that v
projects to % on A. Since F' is holomorphic on XO, dF(v) does not depend on the
choice of v. The function p : )?to — H defined by p(p) = dF(7) is holomorphic,
and it transforms according to

w1(P) = B(u(p) + 23 1)

Thus, p is the integral of an Eg-valued holomorphic 1-form v = vy (to) on Xy, and
<6—c1(t0)) . is an associated 1-cycle.
ve

We have the Hodge decomposition V = W, @ W,. In the finite-dimensional
case, dim(V') = 2p, the assignment of W; C V corresponds to a mapping p of A
into the Grassmannian Gr(V;p) of n-dimensional vector subspaces of V. From the
Lipschitz property of ¥ we conclude that p: A — Gr(V;p) is Lipschitz. From the
holomorphicity of vy(t) for almost all ¢ the Lipschitz map p satisfies the Cauchy-
Riemann equation 0p = 0 in the sense of distribution. Hence, p is holomorphic.
To give an argument that also works in the infinite-dimensional situation we will
instead produce a holomorphic trivialization of W in a neighborhood of 0 by solving
differential equations. We will assume that V is infinite-dimensional, although
obviously the same argument works in the finite-dimensional case.

Write V = V x A for the trivial bundle over A with fibers isomorphic to
V. By the Lipschitz property of ¥ there is a Lipschitz trivialization of W on
a neigborhood of 0. Thus, there exist Lipschitz sections s1(t), s2(t), - sn(t), -
of W over a neighborhood A(e) of 0, such that (s1(0), s2(0), - ,5,(0),---) is an
orthonormal basis of Wy, and such that (s,(¢)) constitutes a uniformly Lipschitz
family of sections over A(e). Shrinking e if necessary we may assume that for
each t € A(e), (s1(t), s2(t), - sn(t), ) is a topological basis of W,. Write s(t)
for the infinite column vector [s;(t), s2(t),- -+ ,sn(t),--+]T. For almost all t € A,
vp(t) is defined and holomorphic for all 7 € Wy, which means that s satisfies some
differential equation 8s = As®df in the sense of distribution. Here 4 is taken to be
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a Lipschitz map from A(e) into the Banach algebra B(H) of a Hilbert space H of
countably infinite dimensions. To produce a trivialization of W in a neighborhood
of 0 we are going to replace s by some Zs, where Z : Ae) — B(H).

We proceed to solve (Zs) =0, i.e., s + Za- =0, giving (ZA + aZ)s =0.
We impose the initial condltlon zZ(0) =1, the 1dent1ty map, and proceed to solve
%—? = —ZA on a neighborhood of 0. Using the Cauchy kernel we have a solution
of ay = —A, where Y : A(e) — B(H) with Y(0) = 0. Let now Z = exp(Y).
Then _a? = %(exp(Y)) = exp(Y)%—}t-/ = —ZA; Z(0) = I, as desired. The proof of
Proposition (1.4.1) is now completed by defining ©:(n) = Z¥(n) for any n € Wy
and for ¢ sufficiently small. [

REMARKS

It is possible to prove a priori that the harmonic forms 7; representing the same
class in the reduced cohomology group V = HL (T, ®) varies smoothly in ¢ even
when the Hilbert space H is of countably infinite dimension, by the same method
of boot-strapping and Schauder estimates as in the finite-dimensional case. For the
sake of presenting a self-contained proof we have instead given a proof of Proposition
1.4.1 basing on the much easier property that the variation of 7 is at least Lipschitz.

§2 The canonical complex Finsler metric
(2.1) We are going to derive from 7 : X — B and the variation of Hodge decom-

positions V = HL (T, ®) = W; & W, a canonical complex Finsler metric on B.
Again take B = A. Fix any to € A. For any [n] € W;,,n € HL (Xt Ea), let

n(t) be a holomorphic 1-parameter family of d-closed holomorphic 1-forms on X
with values in Fg, defined for |t — to| sufficiently small, such that n(to) = 1. Then,
[7)'(0) € V. Suppose 7:(t) and n(t) are 2 holomorphic families with the same
property. Then, the difference [r;(t) — 72(t)] is a germ of holomorphic section of
V vanishing at to. Writing £(t) = n1(t) — n2(t),&(t0) = 0 and [£]'(to) € Wo. Thus
[n)'(to) mod Wy, € V/Wy, = W, is independent of the choice of 7(t) extending
n. By the arguments of Proposition (1.4.1) the map 7 — [n]’(to) mod W, can be
realized as a bounded linear operator s, : Wy, — Wy,. We call &, the Kodaira-
Spencer class at tg. Recall that B(W,,) denotes the Banach algebra of bounded
linear operators on the Hilbert space Wy, and that ||T’|| denotes its operator norm.
Denote by W C V x A the subbundle with fiber W; over t € A. We may consider
W C V x A as a holomorphic vector bundle in an obvious way, by Proposition
(1.4.1). Let now a € W;,, and a(t) be a germ of holomorphic section of W at to.
Write o (tg) = € + I, where &, u € Wy,. Since S vanishes identically on Wy, we
have
S(a, ' (t0)) = S(0,€) + S(a, ) = S(a, ).

As explained a(t) can be modified to &(t) with &'(0) = & € Wy,. Since S(-,%) is a
Hermitian inner product on W;,, by the Cauchy-Schwarz Inequality

1S(a, B)I* < 1S(e, )] IS (1, )1,

so that o .
1S, WI* _ [S(w, )
S@@P = [5(a,3)]

~ for the Kodaira-Spencer class -z, € B(Wy,). From this we can define

< s |
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DEFINITION (2.1.1). For tg € A, letting Oy, (W) be the space of germs of
holomorphic sections of W at to, we define a semi-norm || - || on the holomorphic
tangent bundle T(A) by

2

9 |5 (, o (t0)) 2
= = LA R G2 t
] 0= s { By 0 e e Winatw
is an extension of o to a germ in Oy, (W)}
We call || - || the canonical complex Finsler metric on A induced by w: X — A.

We have ||%||(t0) < ||&¢, || for the Kodaira-Spencer class, ki, € B(Wy,). The
two norms actually agree, but we will not need this fact here. For our purpose it is
sufficient to establish

LEMMA (2.1.1). Suppose ty € A is such that H%H(to) = 0. Then, the Kodaira-
Spencer class ki, : Wy, — Wto vanishes.

PROOF. The canonical complex Finsler metric || - || vanishes at to € A if and
only if S(a,a’(tg)) = 0 for every a € Wy, and for every holomorphic extension a(t)
of a to a neighborhood of ty. We argue that this implies S(c, 8'(t9)) = 0 for every
a, 3 € W,, and for every holomorphic extension a(t) of o to a neighborhood of to.
To see this recall that a(t) and 3(t) are of type (1,0) at ¢, so that S(a(t), 8(t)) = 0.
Differentiating we have

(1) S(a/ (1), B(t) + S(eft), /(1)) = 0.
Assume now ||%||(t0) = 0. Then,

S(a+sB,a’ +s8)(to) =0 forany secC,

so that

(2) S(e, o) +5(S(er, ') + §(8,0)) + 5°S(8,8) =0 at to

for every s € C, showing that

3) S(a(to), B'(to)) + S(B(to), o (to)) = 0.

Comparing with (1) at ¢t = to and using the skew-symmetry of .S, we conclude that
(4) S(e(to), B'(to)) =0

for any choice of @ = a(tp), 8 = B(to) € Wi,. In other words, S(a, k4,(3)) = 0 for
any a, 3 € W;,. Fixing 8 and choosing @ = #,(8) € W, we conclude from (4)
that

(5) S(kto(B), 0 (8)) = llkee (B)II? =0

for any choice of § € W;,. It follows that ||%||(t0) = 0 if any only if k;, = 0, as
desired. [ o '

(2.2) We proceed to make use of the canonical Finsler metric as defined in (2.1) to
prove hyperbolicity propertiés of base spaces. We are going to establish
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MAIN THEOREM. Let 7 : X — B be a regular holomorphic family of compact
Kdhler manifolds over a complex manifold B and assume that the total space X
is equipped with a fized Kihler metric g. For a typical fiber Xo = w=1(0) let @ :
m1(Xo) — U(H) be a unitary representation such that the reduced first cohomology
group HL (T, ®) # 0; T := m(Xo). Then, either the Hodge decomposition of
HL,(T,®) ®r C on X; is locally constant in t or it induces in a canonical way
a possibly degenerate continuous complex Finsler metric of holomorphic sectional
curvature < —2 on the universal cover B of B. In particular, if B is a compact
Riemann surface C then either the Hodge decomposition is locally constant, or C
s of genus > 2.

PRrooF. Fix ¢y € A,0 # ag € Wy, and choose an extension of ay to a germ
a(t) in Oy (W) so that o'(to) € Wy,. Consider the germ of real-analytic function

ho at tg defined by
S(att), o/ ()
1S (a(t), a())[?

log ho(t) = log |S(a(t), & (¢))I? —log |S(e(t), a(2))[*.
Since a(t) and o(t) are holomorphic in ¢,log |S(a(t), o/(t))|? is pluriharmonic in ¢,
and we have

ho(t) =
We have

= S t0g (0, P(to).

Here we use o to denote the choice of a germ in O (W) extending oy € Wy, as
described in the above. We have S{a,@) > 0 and

0 N @it
aS(a,a) = S(d, @).

By the choice of o, &'(tg) € Wy,. Since S vanishes on W, we have

9 S(a,)(te) = 0.

Now
K 1 82 _ 1 |a 2
so that ) )
3] 2 0 _
5 log |S (e, @)*(to) = mms(a,a)(to)-
Now )
0 — 0 5=y ’—t
6ta.iS(a,a)— azS(a,o;)— S(o,@).

At tg, o (to) € Wy, so that
S(a/,@)(to) = —S(@, &) (to) = — o’ (to)||*
with respect to the canonical norm on Wy,. It follows that

& 5 S@, o), . et
peay 8 M10) = 2y gy e Alto) =255 ) = 2
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On the other hand, by the Cauchy-Schwarz Inequality,

|S(alto), & t))I® _ lleto) Pl (t)* _ [l (to)l?
[S(ea(to),a(to))> —  lle(to)i* lloe(to)1?”

and we have proven the fundamental inequality

h(to) =

0 oo’ (t)?
log h(to) = > 2h(to)
ot ot et
which amounts to saying that, if h(to) # 0, then h|dt|? is a Hermitian metric of
negative curvature < ~2 at to. By taking suprema in the definition of | - || on

T(A) we expect to get a Hermitian metric with the same property everywhere in
the generalized sense ie defining the canonical complex Finsler metric on A by

h(t)|dt|? we expect at 57 log h > 2h everywhere on A in the generalized sense. This
needs a justification when V = HL (T, ®) is infinite-dimensional. The justifica-
tion comes from the uniformity of extension of g to a neighborhood, as given in
the proof of Proposition (1 4.1), according to which for some € > 0 there exists
e, : H-° (X, Eo) — Hharm(Xt, Es) such that ©, are invertible bounded linear

harm
operators, with uniform bounds, and such that for n € H,lmgm(XtO, Eg),B:(n) =mn
is holomorphic in t. From the identification Hﬁa(:m(Xto,Ecp) W: C V, we ob-
tain ©; : Wy, — W; C V, such that ©([]) is holomorphic in ¢. Let now
og € Wiy, a0 = [n] and define a(t) on A.(to) by a(t) = ©:([n]) = [6+(n)]. The
Hermitian metric h(t)|dt|? depends on the choice of ag € Wy, and the extension a.
We will fix the extension « as in the above. The definition of || - || on A(to) can
be given by
|l

py ) = sup {M cafty) € Wy, at) = @t(a)} .

|S(a(t), (1))

Note that it is not necessary (and in general not possible) to require that o/(t) € W
for a general point t € Ac(tp). For ap € Wy, and 0 # o € T'(Ac(t), W) as defined
we will write h,, for hg, so that on A(t),

h(t) = sup ha(t).
ao;éo

Here we note that it is sufficient to consider only those a for which ap = a(to)
is of unit length in Wy,, since hyo = hq for any A € C*. Noting that derivatives
of o for ||ag|| = 1 are uniformly bounded on compact subsets of A(t) from the
uniform boundedness of ©, and from Cauchy estimates, it follows readily that h
is a continuous function. Moreover, the uniform bounds on derivatives also imply
that these exists C > 0 independent of ag such that

62
otot , 7
We conclude that given any § > 0, there exists €(§) > 0, such that

log ha(t) > 2ha(t) — CJt — tol.

5 8t(log7» + 81t — to|?) (2) > 2ha(t)
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on As)(to) for every ap € Wy, ||ag|| = 1. Taking suprema, we conclude that
2
ot ot

on A,s)(to) in a generalized sense. Passing to limits at ¢y as § decreases to 0 we
conclude that

(logh + 8|t — to|?)(t) > 2h(t)

o2
prE log h(to) > 2h(to).

Since the same remains true when ¢y is replaced by t € A.(tg) with obvious mod-
ifications of the notations, we have shown that h(t)|dt|? is a possibly degenerate
continuous complex Finsler metric of Gaussian curvature < —2.

Let now 7 : X — B be the regular family of compact Kéhler manifolds as
in the hypothesis of the Main Theorem and denote by p : B — B the universal
cover. erte X o B for the induced family of compact Kéhler manifolds.
r:X — Bis diffeomorphically trivial, i.e., X=X 0 X B diffeomorphically. Given
a representation ® : 7m1(Xo) — U(H) as in the hypothesis of the Main Theorem
such that H. (T, ®) # 0,T := m;(X,), we have a trivial bundle V x B over B,V =
HL (T, ®) = H}, (X, Es), and a Hodge decomposition V = W &W over B. The
construction of a canonical complex Finsler metric as described gives a (possible
degenerate) continuous complex Finsler metric of holomorphlc curvature < —2 on
B. Inthe special case when B is a compact Riemann surface, B must be conformally
equivalent to the unit disk, by the Uniformization Theorem and the Ahlfors-Schwarz
Lemma. The proof of the Main Theorem is complete. [

From the proof of the Main Theorem the assumption that the total space of
m : X — B carries a Kahler metric can be considerably weakened. It suffices
to assume that the fibers X; = m~!(¢) are equipped with Kihler metrics with
Kahler forms w;, varying continuously in ¢, such that, in the notations of the proof
of Lemma (1.3.1), ffwp is cohomologous to w;. This is the same as saying that
[wi] € H2(X,,R) is locally constant in t.

We turn to the special case of regular families of polarized manifolds. By
a polarized projective manifold we mean a pair (X,n) where X is a projective
manifold and n € H?(X,Z) is the first Chern class some ample line bundle on X.
By a regular family 7 : (X,n) — B of polarized projective manifolds we mean a
regular family = : X — B of projective manifolds, equipped with n, € H*(X;,Z)
for the fiber X; = m~1(t), such that 7, varies continuously in ¢ and (X¢,n;) is a
polarized projective manifold. We have

COROLLARY TO THE PROOF OF THE MAIN THEOREM. Let w : (X,n) —
B be a regular family of polarized projective manifolds over a complex manifold
B. Then the analogue of the Main Theorem holds for the Hodge decomposition of
HL (T, ®) ®r C, without assuming that there ezists a Kdhler metric on the total
space X.

REMARKS
The Hodge decomposition of HL4(T', ®) ®gC on X; does not depend on the specific
choice of a Kahler metric on X;.

PROOF OF COROLLARY. Ast € B varies, H%(X;,Z) constitutes a locally con-
stant bundle H of Abelian groups with discrete fibers. Since 7z € H?(Xy, Z) varies
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continuously, it defines a locally constant section of H over B. For any = € B there
exists an open neighborhood U of z in B together with a smooth family of Kahler
metrics w; on X3, t € U, such that [w;] = ;. The arguments of Lemma (1.3.1) then
work over U to define the symplectic form S on V = HL (T, ®) = H}, _(X;, Eg)
and to prove that it is independent of ¢. We note again that the Hodge decom-
position Hﬁﬁm(Xt, Eg) = Hﬁ;gm(Xt, Es)® Hga’im(Xt, Ej) is actually independent
of the choice of Kihler metric on X;, since the two direct summands consist of
twisted holomorphic resp. anti-holomorphic 1-forms. Over X; the symplectic form
S is defined using wy, but it only depends on its Kéhler class #, which is given. As
the rest of the arguments leading to the Main Theorem are local over B, the local

choices of Kahler forms wy, t € U, suffices. O
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