<table>
<thead>
<tr>
<th>Title</th>
<th>Epizonal I- and A-type granites and associated ash-flow tuffs, Fogo Island, northeast Newfoundland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Sandeman, HA; Malpas, J</td>
</tr>
<tr>
<td>Citation</td>
<td>Canadian Journal Of Earth Sciences, 1995, v. 32 n. 11, p. 1835-1844</td>
</tr>
<tr>
<td>Issued Date</td>
<td>1995</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/42090</td>
</tr>
<tr>
<td>Rights</td>
<td>Canadian Journal of Earth Sciences. Copyright © N R C Research Press.; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Epizonal I- and A-type granites and associated ash-flow tuffs, Fogo Island, northeast Newfoundland

Hamish A. Sandeman and John Malpas

Abstract: Magmatic activity of Silurian–Devonian age is widespread in the Appalachian–Caledonian Orogen. A marked characteristic of this magmatism is the composite nature of the igneous suites, which range from peridotite to granodiorite in single plutonic bodies. The origin of these suites is still enigmatic, and the assumption that all are the same not proven. Such a suite of intrusive rocks, ranging in composition from minor peridotite to granodiorite, intrudes an openly folded sequence of Silurian volcanogenic sandstones and ash-flow tuffs on Fogo Island, northeast Newfoundland. Two units, the Rogers Cove and Hare Bay microgranites, consist of fine-grained hastingsite granites with spherulitic and flow-banded textures, and exhibit drusy cavities and microfractures that contain the mineral assemblage hastingsite hornblende + plagioclase + magnetite + zircon. These rocks are characterized by elevated high field strength element contents (e.g., Zr = 74–672 and Y = 21–103 ppm), very high FeO*/MgO ratios (FeO*/MgO = 2.4–93.5), and 10,000 Ga/Al ratios of 1.67–10.52, indicating an A-type granitoid affinity. A third and the most voluminous granitic unit, the Shoal Bay granite, is an alkali-feldspar-phyric, medium-grained, equigranular biotite–hastingsite granite with hastingsite and anitite biotite interstitial to euhedral plagioclase, anhedral quartz, and perthite crystals. The Shoal Bay granite exhibits mineral parageneses similar to the microgranites, but chemical characteristics more typical of calc-alkaline, I-type granitoids. Volcanic–sedimentary sequences spatially associated with the granitic rocks include dense, welded, high-silica, hastingsite-bearing ash-flow tuffs with compositions that suggest they represent erupted equivalents of fractionated end members of the Shoal Bay granite. The rocks making up the Fogo Island batholith have been directly equated with the bimodal, calc-alkaline Mount Peyton batholith of northeast Newfoundland, but the specialized A-type nature of the Fogo granitoids suggests differing source conditions for the two suites.

Résumé : L’activité magmatique d’âge Siluro-Dévénien est amplement répandue dans l’orogène appalachien–calédonien. Une caractéristique de ce magmatisme est la nature composite des suites ignées, variant de péridotite à granodiorite dans les corps plutoniques individuels. La source de ces suites demeure énigmatique, et la thèse qu’elle serait la même partout n’est pas démontrée. Une de ces suites de roches intrusives, dont la composition varie d’une petite masse péridotitique à une granodiorite, pénètre dans une séquence de plis ouverts formée de grès volcanogéniques et de cœlules pyroclastiques de cendres, d’âge Silurien, sur l’île Fogo, dans le nord-est de Terre-Neuve. Deux unités, les microgranites de Rogers Cove et de Hare Bay, constituées de granites à hastingsite, à grain fin, avec des textures d’écoulement rubané et sphérolitique, et exhibant des cavités druzyques et microfractures recouvertes par l’assemblage minéralogique de hornblende hastingsitique + plagioclase + magnétite + zircon. Ces roches sont caractérisées par des teneurs élevées en éléments à forte intensité de champ (ex., Zr = 74–672 et Y = 21–103 ppm), des rapports très élevés de FeO*/MgO (FeO*/MgO = 2.4–93.5), et des rapports 10,000 Ga/Al de 1.67–10.52, indiquant une affinité granitoidique de type-A. Une troisième et la plus volumineuse unité granitique, le granite de Shoal Bay à hastingsite et biotite équigranulaire, à grain moyen, et à feldspath porphyrique alcalin, incluant de la hastingsite et de la biotite annulaire en position interstitielle dans le plagioclase automorphe, et des cristaux néomorphes de quartz et de perthite. Le granite de Shoal présente une paragenèse similaire à celle des microgranites, mais les caractéristiques chimiques se rapprochent plus des granitoides calc-alcalins de type-I. Les séquences volcan-sédimentaires associées spatialement aux roches granitiques incluent des cœlules.
pyroclastiques de cendres avec de l’hastingsite, elles sont denses, soudees ettres siliceuses, leurs compositions suggèrent qu'elles représentent les équivalents éruptifs des pôles de fractionnement du granite de Shoal Bay. Les roches appartenant au batholite de l’île Fogo sont interprétées comme étant directement équivalents aux roches calco-alcaines bimodales du batholite de Mount Peyton, dans le nord-est de Terre-Neuve, mais la nature spécialisée de ce type-A des granites de Fogo suggère des conditions magmatiques différentes pour les deux suites. [Traduit par la rédaction]

Introduction

Siluro-Devonian magmatism in the Appalachian–Caledonian orogen is characterized by composite mafic–felsic plutonic suites (e.g., Bevier and Whalen 1990; Dunning et al. 1990). In central Newfoundland, such composite bodies include the Mount Peyton, Hodges Hill, and Fogo Island batholiths, which make up a significant portion of exposed bedrock.

The Fogo Island granitic batholith underlies most of Fogo Island, northeast Newfoundland (Fig. 1), but a significant part of the southern and eastern portions of the island are made up of dioritic and gabbroic rocks. The mafic–ultramafic Tilling igneous complex contains the most mafic rocks to occur together with granitic rocks in all of Newfoundland, and has been described by Williams (1957), Baird (1958), Cawthorn (1978), and Aydin et al. (1994). Little is published on the composition of the granitic rocks of Fogo Island. Hughes (1972) described granophyric and micrographic textured granitic rocks of the Fogo Peninsula and commented on their calc-alkaline affinities. Strong and Dickson (1978) briefly discussed the Fogo Island granites when contrasting plutonic complexes throughout east-central Newfoundland. They compared the Fogo Island batholith to the Mount Peyton batholith, a similar bimodal plutonic assemblage exposed within the Dunnage Zone of central Newfoundland. Using the Mount Peyton batholith as a lithodemic type, Williams et al. (1989) classified the rocks of the Fogo Island batholith as post-tectonic, “Mt. Peyton Types.” They noted the restriction of similar bimodal intrusive suites to the northern part of the Exploits subzone of central Newfoundland and suggested a genetic control resulting from a common, lower crustal source. The enigmatic nature of these bimodal suites was further emphasized by Kerr et al. (1992).

A K–Ar determination of 380 ± 16 Ma presented by Wanless et al. (1964) and further discussed by Williams (1964) represented the first absolute geochronologic information for rocks of the Fogo Island batholith and corroborated the broadly Siluro-Devonian age suggested by Baird (1958). Little other geochronologic information is available, except a Rb–Sr isochron age of 412 Ma presented by Fryer et al. (1992) for a suite of granitic rocks from the Fogo Island batholith, indicating a Late Silurian age. This appears to be an increasingly common geochronologic result for granitic rocks of the Newfoundland Dunnage Zone (Kerr et al. 1992; Fryer et al. 1992).

The present article summarizes current ideas and conclusions from an ongoing study. Field, petrographic, and geochemical data obtained from rocks exposed on the western portions of Fogo Island indicate (i) a petrogenetic link through fractional crystallization for the various silicic igneous units exposed west of approximately 54°12′W longitude (Fig. 1); (ii) a transition from granites of dominantly I type to microgranites of A type; and (iii) that a temporal link between the mafic and silicic magmas appears likely, although no geochemical link is yet established.

Lithologies

Host rocks of the Fogo Island batholith comprise two sedimentary–volcanic packages dominating the northwestern and southwestern regions of the island. The northern package, belonging to the Brimstone Head and Fogo Harbour formations, consists of an interbedded sequence of ash-flow tuffs and volcaniclastic sediments, and the volcanogenic sandstones and intercalated shale sedimentary rocks of southwest Fogo Island have been correlated with the South End Formation of the nearby Change Islands (Easton 1969).

Volcanic units

Volcanic rocks include thin horizons (<20 m) of strongly welded ash-flow tuff in massive volcaniclastic sandstone comprising the Fogo Harbour Formation. Directly overlying them, in a conformable relationship, is a resistant unit (<100 m) of welded ash-flow tuff named the Brimstone Head Formation (Baird 1958). Both formations typically dip approximately 25–40° northwards, away from intrusive rocks of the Fogo Island batholith. Volcaniclastic rocks of the Brimstone Head Formation consist of three distinct facies of ash-flow tuff: a moderately welded, devitrified basal and lower–middle facies, a strongly welded upper–middle facies containing abundant lithophysae, and an unwelded upper facies dominated by pyroclastic breccia. These three facies are considered to form a single thick cooling unit. The Brimstone Head Formation typically consists of rare, broken phenocrysts (<0.2 mm) of quartz and alkali feldspar in a cryptocrystalline, devitrified groundmass of strongly silicic composition. Fiamme are rare and are replaced by irregular lensoid patches of intergrown quartz, alkali feldspar, and rare amphibole. Thin layers of ash-flow tuff, interbedded with volcanogenic sedimentary rocks of the Fogo Harbour Formation, are similar in petrography, mineralogy, and chemistry to the ash flows of the Brimstone Head Formation, and together record the earliest volcanic activity on Fogo Island.

Plutonic units

We divide the granitic rocks of the Fogo Island batholith into three distinct units on the basis of their petrology, each showing a variety of textures indicative of epizonal crystallization. The preponderant unit, the Shoal Bay granite (new term), consists of variably textured, generally medium-grained biotite–hornblendite granodiorite–syenogranite, which dominates the north and north-central portions of the island. This granite contains euhedral, prismatic plagioclase, commonly
an orange-pink colour, is commonly traversed by thin veins of anhedral, perthitic muscovite intergrown with anhedral quartz having undulatory extinction. Biotite and blue-green amphibole are rare, and minor biotite decreases, whereas amphibole increases towards the northern and western contacts with the volcanic-sedimentary packages. Other minerals present include apatite, zircon, and magnetite.

To the north and west, the Shoal Bay granite grades into the Hare Bay microgranite (new term). This unit appears to consist of a stunted variety of the Shoal Bay granite, and at the contact with the Fogo Harbour Formation, is characterized by the presence of quartz and feldspar phenocrysts contained in a matrix of quartz and feldspar microliths. The Fogo Peninsula and Shore Bay microgranite are characterized by the presence of phenocrysts of biotite, quartz, and feldspar in a matrix of quartz, feldspar, and muscovite. The Fogo Peninsula microgranite is intruded by the Rogers Cove microgranite (new term), as a series of sills on the southwest...
Table 1. Major and trace element geochemistry for the Fogo Island granites and associated ash-flow tuffs of the Fogo Group.

<table>
<thead>
<tr>
<th></th>
<th>Shoal Bay granite</th>
<th>Hare Bay microgranite</th>
<th>Rogers Cove microgranite</th>
<th>Ash-flow tuffs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F-244</td>
<td>F-469</td>
<td>F-199</td>
<td>F-484</td>
</tr>
<tr>
<td>SiO₂ (wt. %)</td>
<td>76.20</td>
<td>76.80</td>
<td>77.20</td>
<td>73.40</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.16</td>
<td>0.24</td>
<td>0.12</td>
<td>0.40</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>12.40</td>
<td>12.20</td>
<td>11.20</td>
<td>13.20</td>
</tr>
<tr>
<td>FeO*</td>
<td>1.33</td>
<td>1.94</td>
<td>1.71</td>
<td>2.99</td>
</tr>
<tr>
<td>MnO</td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>MgO</td>
<td>0.23</td>
<td>0.28</td>
<td>0.04</td>
<td>0.90</td>
</tr>
<tr>
<td>CaO</td>
<td>0.92</td>
<td>0.88</td>
<td>0.24</td>
<td>2.06</td>
</tr>
<tr>
<td>Na₂O</td>
<td>3.88</td>
<td>3.61</td>
<td>3.72</td>
<td>3.84</td>
</tr>
<tr>
<td>K₂O</td>
<td>4.26</td>
<td>4.18</td>
<td>4.10</td>
<td>3.29</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>LOI</td>
<td>0.89</td>
<td>0.58</td>
<td>0.72</td>
<td>0.45</td>
</tr>
<tr>
<td>Total V</td>
<td>100.32</td>
<td>100.76</td>
<td>99.08</td>
<td>100.60</td>
</tr>
<tr>
<td>Cu</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>25.00</td>
</tr>
<tr>
<td>Pb</td>
<td>44.00</td>
<td>27.00</td>
<td>18.00</td>
<td>22.00</td>
</tr>
<tr>
<td>Zn</td>
<td>13.00</td>
<td>20.00</td>
<td>17.00</td>
<td>25.00</td>
</tr>
<tr>
<td>Rb</td>
<td>143.00</td>
<td>166.00</td>
<td>130.00</td>
<td>125.00</td>
</tr>
<tr>
<td>Ba</td>
<td>426.00</td>
<td>441.00</td>
<td>503.00</td>
<td>475.00</td>
</tr>
<tr>
<td>Sr</td>
<td>67.00</td>
<td>56.00</td>
<td>57.00</td>
<td>118.00</td>
</tr>
<tr>
<td>Ga</td>
<td>23.00</td>
<td>22.00</td>
<td>21.00</td>
<td>22.00</td>
</tr>
<tr>
<td>Nb</td>
<td>14.00</td>
<td>17.00</td>
<td>18.00</td>
<td>14.00</td>
</tr>
<tr>
<td>Zr</td>
<td>130.00</td>
<td>184.00</td>
<td>195.00</td>
<td>186.00</td>
</tr>
<tr>
<td>Y</td>
<td>85.00</td>
<td>84.00</td>
<td>98.00</td>
<td>71.00</td>
</tr>
<tr>
<td>Th</td>
<td>32.00</td>
<td>28.00</td>
<td>19.00</td>
<td>17.00</td>
</tr>
<tr>
<td>U</td>
<td>2.00</td>
<td>4.00</td>
<td>5.00</td>
<td>—</td>
</tr>
<tr>
<td>La</td>
<td>36.80</td>
<td>61.40</td>
<td>59.50</td>
<td>50.00</td>
</tr>
<tr>
<td>Ce</td>
<td>92.50</td>
<td>126.60</td>
<td>126.10</td>
<td>96.50</td>
</tr>
<tr>
<td>Pr</td>
<td>11.60</td>
<td>13.10</td>
<td>13.90</td>
<td>12.30</td>
</tr>
<tr>
<td>Nd</td>
<td>45.50</td>
<td>80.30</td>
<td>68.70</td>
<td>53.20</td>
</tr>
<tr>
<td>Sm</td>
<td>10.00</td>
<td>12.70</td>
<td>16.80</td>
<td>10.80</td>
</tr>
<tr>
<td>Eu</td>
<td>1.10</td>
<td>0.50</td>
<td>0.60</td>
<td>0.70</td>
</tr>
<tr>
<td>Gd</td>
<td>9.10</td>
<td>11.50</td>
<td>15.60</td>
<td>11.60</td>
</tr>
<tr>
<td>Tb</td>
<td>1.80</td>
<td>2.00</td>
<td>2.10</td>
<td>1.80</td>
</tr>
<tr>
<td>Dy</td>
<td>11.00</td>
<td>13.40</td>
<td>15.50</td>
<td>11.50</td>
</tr>
<tr>
<td>Ho</td>
<td>2.40</td>
<td>2.30</td>
<td>2.50</td>
<td>2.00</td>
</tr>
<tr>
<td>Er</td>
<td>7.20</td>
<td>7.60</td>
<td>8.50</td>
<td>6.80</td>
</tr>
<tr>
<td>Yb</td>
<td>6.90</td>
<td>6.20</td>
<td>6.30</td>
<td>5.60</td>
</tr>
<tr>
<td>Lu</td>
<td>1.10</td>
<td>1.40</td>
<td>1.40</td>
<td>1.30</td>
</tr>
<tr>
<td>Total REE</td>
<td>237.00</td>
<td>319.00</td>
<td>337.00</td>
<td>264.00</td>
</tr>
<tr>
<td>Eu/Eu*</td>
<td>0.35</td>
<td>0.12</td>
<td>0.11</td>
<td>0.19</td>
</tr>
<tr>
<td>Ce₆/Yb₆</td>
<td>3.41</td>
<td>5.19</td>
<td>5.09</td>
<td>4.18</td>
</tr>
</tbody>
</table>

Notes: REE not determined for ash-flow tuffs. —, not detected.

Coast of the island. This is an orange—pink, fine-grained hornblende microgranite typified by flow-banding and spherulitic textures. The spherulites consist of acicular intergrowths of quartz, alkali feldspar, and rarely amphibole, are commonly nucleated on phenocrysts of quartz or alkali feldspar, and are enclosed in a microgranitic groundmass of similar composition. Amphibole typically occurs as anhedral, medium-grained masses closely associated with abundant hematite—ilmenite intergrowths and rare titanite and zircon, but also in veinform (< 1 mm) with associated magnetite and plagioclase. These mineral clots and veinlets appear to be late-stage crystallization products that fill drusy cavities and crosscut all other features, and are considered products of deuteric crystallization. The Rogers Cove microgranite is therefore interpreted as a fluid-rich, high-level, late-stage magmatic pulse.

The granitic rocks of the Fogo Island batholith clearly intrude a series of mafic rocks, in which they also form small bosses and plugs. These mafic rocks consist of undivided monzodiorites and gabbros belonging to the Seldom Cove suite (new term). They commonly display compositional layering and contain abundant hornfelsed sedimentary xenocrysts.
Sills derived from the local country rocks. Where character-
ized by cumulate layering, rocks of the Seldom Cove suite
contain subbed plagioclase chadacrysts in ortho-
clinopyroxene oikocrysts. Clinopyroxene is the most abun-
dant mafic phase, but is invariably rimmed by secondary
plagioclase. More evolved examples of the Seldom Cove suite
contain amphibole as the dominant mafic phase and up to
10% plagioclase. Micrographic textures indicative of rapidly
cooled rocks become progressively more common to the
northwest, suggesting a north- and westward-shallowing
of the mafic intrusive complex. Although these rocks may be
related to the mafic–ultramafic rocks of eastern Fogo Island
Bird 1958; Cawthorn 1978; Saunders 1990; Aydin et al.
1994), a direct petrochemical link has not yet been estab-
lished.

Gabbroic dykes and sills of intermediate to mafic composi-
tion are found in the vicinity of Stag Harbour (Fig. 1).
These are intimately associated with the sheeted microgra-
istic sills of the Rogers Cove microgranite, and the two rock
types form a thick, shallow-dipping intrusive complex with
abundant screens of hornfelsed sedimentary country rock.
Texture relationships, such as globular inclusions of basaltic
material in many of the microgranitic sills, and back-veining
of basaltic material into microgranite, suggest that magmatic
mixing occurred between two coexisting but contrasting
magmas. Although similar features have been described by
Aydin et al. (1994) from an area on the east coast of Fogo,
they have not been documented on a regional scale.

Petrochemistry

Analytical methods

In order to ascertain petrogenetic relationships between the
granitic units and their country rocks, samples from the
Shoil Bay granite, the Hare Bay microgranite, the Rogers
Cove microgranite, and ash-flow tuffs from the Trimstone
F oral Formation were analysed at Memorial University of
Newfoundland for major, trace, and rare earth elements.
These analyses have been supplemented by some data pre-
pared in Strong and Dickson (1978) where appropriate.
Major elements were determined on a Perkin Elmer 2380
atomic absorption spectrophotometer after dissolution of the
powdered samples in hydrofluoric acid. Trace elements were
determined by X-ray fluorescence (XRF) spectrometry of
ground rock powder discs on a Phillips P.W. 1450 XRF
spectrometer. Trace element determinations were calibrated
against at least 10 standard reference materials. Rare earth
elements were also analysed by XRF spectrometry using the
film method of Fryer (1977). Representative whole-rock
petrochemical analyses are presented in Table 1. Total iron in
samples has been recalculated as ferrous oxide and is
expressed as FeO*.

Mineral compositions were determined at Memorial
University using a Jeol JX-5A electron probe microanalyser
equipped with three computer-controlled wavelength disper-
sion spectrometers. Kakauini augite was used as a primary
standard for all analyses, and analytical data were
backed against appropriate standard reference minerals.

Major and trace elements

Sample compositions range in SiO2 content from 68 to 78.5 wt. %
(average) and vary in composition from totalite to monzo-
granite. The volcanioclastic rocks are rhyolitic grading to
alkali rhyolitic. Ash-flow tuffs are highly silicic and because of
their recrystallized nature and scattered geochemical
trends (see below) are inferred to have undergone deuteric
alteration during cooling. We present Harker variation dia-
grams for both the granitic and volcanic rocks of western
Fogo Island (Fig. 2). Most elements have somewhat scatter-
ed curvilinear trends and there is extreme enrichment of
FeO*, Zr, and Nb in the most silicic end members. There is
some scatter of the data but the general trends, mineralogic
and compositional similarities of the various rock units, and
the geochemical coherency of each rock type suggest that all
could be petrogenetically linked through crystal–liquid frac-
tionation mechanisms. The extreme enrichment of FeO* and
the high field strength elements (HFSE) Nb, Zr, and Y and
the rare earth elements in the most silicic rocks, as empha-
sized in Fig. 3, may in part be attributed to deuteric processes
involving separation of an alkali-rich fluid from the crystal-
rich melt at the terminal stage of crystallization. The “early”
magmatic trends exhibited by the Shool Bay granites are not
significantly changed by the introduction of the fluid, but we
acknowledge that redistribution of many elements may have
occurred, resulting in scattering of the geochemical data and
poorly defined fractionation trends. Strong FeO*-enrichment
trends observed in the granitic rocks are supported by the
amphibole and biotite compositions. Amphiboles are gener-
ally hastingsitic hornblende but span the range from ferro-
hornblende through ferro-edenitic hornblende to hastingsite
(s.s.) (Leake 1978). Amphiboles are chloride-rich, particu-
larly those in the microgranitic rocks, which contain up to
1.75 wt. % Cl, suggesting that they have crystallized from a
Cl-rich fluid. Biotites are annitic (FeO*/ FeO* + MgO =
0.64–0.79) and enriched in FeO and impoverished in AlIV
compared with biotites from typical calc-alkaline intrusive
rocks.

The data suggest that the volcanioclastic rocks in general
might be chemically equivalent to the most silicic examples of
Shoil Bay granite, or, conversely, the least felsic exam-
ple2s of the two microgranitic suites, although this is not
conclusive. The volcanioclastic rocks are somewhat more
potassium enriched than most of the granitic rocks.

Log-log plots of Sr–Ba–Rb (Fig. 4) demonstrate that
combined fractionation of plagioclase and alkali feldspar
with less significant separation of amphibole have best account
for the trends exhibited by the Shool Bay granites. The trends
of the microgranitic suites are difficult to interpret, and consis-
tent element–element variations are not observed, indicating
that mobilization and redistribution of these elements has
occurred. Preferential removal of amphibole in the latter
stages of differentiation would essentially counteract the
element–element trends resulting from removal of the feld-
spar. This may explain in part the scattered trends shown by
the microgranitic suites.

Rare earth elements

In Fig. 5, we have plotted rare earth element (REE) data for
representative samples of the three varieties of granite. REE
patterns for two samples of each rock unit define tight group-
ings, thereby discriminating the granite types. Also shown
are the patterns for one specimen of Mount Peyton granite
(1D-66; Strong and Dupuy 1982) and one sample of amphi-
bolite granite from the Topsails intrusive suite (TB83; Whalen

1839
Fig. 2. Selected major and trace element Harker variation diagrams for the Fogo Island granites and associated volcanic rocks. Triangles, Shoal Bay; stars, Rogers Cove; circles, Hare Bay; squares, ash-flow tufts.

and Currie 1990). Note the depleted abundances of the REE in the Mount Peyton granite and the slightly enriched REE contents of the specimen of amphibole granite from the Topsails suite relative to the Fogo Island granites.

The Shoal Bay granites are characterized by intermediate REE contents where light rare earth elements (LREE) values are 100× chondrite, and heavy rare earth element (HREE) contents are 30–40× chondrite. These rocks are typified by Ce/YbN = 3.4–5.2 and have large Eu anomalies as indicated by Eu/Eu* = 0.11–0.35, where Eu* represents the value for Eu interpolated from Sm and Gd concentrations.

The REE data are more supportive of the conclusion that the granitic units are related through fractional crystallization. Specimens of Rogers Cove microgranite are enriched in all REE (Σ REE = 303–380 ppm) relative to Shoal Bay granites (Σ REE = 237–337 ppm). They are characterized by CeN/YbN = 4.3–5.2, values that are comparable to those for the Shoal Bay granites, and by Eu/Eu* = 0.25–0.36. These observations are in agreement with field evidence that indicates that the Rogers Cove microgranite represents a late pulse of silicic magma within which feldspar fractionation may have slowed and (or) amphibole fractionation increased, giving rise to Eu/Eu* typically greater than those for the Shoal Bay granites.

Samples of Hare Bay microgranite typically have lower combined REE contents (Σ REE = 197–215 ppm) with lower CeN/YbN = 3.4–4.3. Eu/Eu* values are highly variable for individual intrusive bodies, suggesting variable degrees of feldspar fractionation in localized zones of crystallization and (or) a more significant effect of amphibole fractionation.

Tectonic setting and petrogenesis

In the geochemical classification of granitoids, two major schemes are utilized: Barbarin (1990) classifies granitoid rocks on the basis of their source region and defines three main groups corresponding to a crustal (C type), a mafic (T type), or a mixed source (H type). Chappell and White's (1974) classification considers granitoid rocks to be dominantly of crustal origin and defines I- and S-type granites.
which were extracted from igneous and sedimentary protoliths respectively. This classification has been extended by adding an M type for the most calc-alkaline plagiogranites and an A type for anorogenic granites thought to result from partial melting of granulitic residue after extraction of an anorogenic granite (e.g., Whalen et al. 1987).

In Fig. 6, analyses of granitic rocks of the Fogo Island batholith are plotted in the tectonic discrimination diagrams of Pearce et al. (1984). Analyses of Shoal Bay granites plot in volcanic-arc granites (VAG) or within-plate granites (WPG), but samples of the Hare Bay and the Rogers Cove microgranites plot as WPG. When plotted in the tectonic discrimination diagrams of Maniar and Piccoli (1989), the granites of the Fogo Island batholith plot as postorogenic granites (POG), and continental epeirogenic granites (CEUG), essentially corroborating the conclusions drawn from the plots of Pearce et al. (1984). The Fogo Island granites are clearly not fully developed, rift-related granites, but are distinct from calc-alkaline I-type granitoids.

These conclusions are further corroborated using the discriminant criteria of Whalen et al. (1987) (Fig. 7). It is evident that the Fogo Island granites, and in particular the Hare Bay and Rogers Cove microgranites, are enriched in Ga relative to Al and have elemental abundances typical of A-type anorogenic granitoids. Fields for the alkaline rocks of the Topsails igneous complex (Whalen 1989; Whalen and Currie 1990) and for the Mount Peyton granites (Strong and Dupuy 1982) are also indicated. Of the three units making up the
Fig. 5. Chondrite-normalized (values from Sun 1982) rare earth element diagram for six granitic specimens from western Fogo Island. These are compared to one sample of Mount Peyton granite (Strong and Dupuy 1982) and one sample of amphibole granite of the Topsails igneous complex (Whalen and Currie 1990). HBM, Hare Bay microgranite; SBG, ShoaI Bay granite; RCM, Rogers Cove microgranite.

Fogo Island batholith, the ShoaI Bay granites have the lowest Ga/Al ratios and are most similar to typical I- or S-type granites. The ash-flow tuffs of the Fogo Group are again comparable to the most fractionated examples of the ShoaI Bay granites.

The Rogers Cove and Hare Bay microgranites have Ga/Al ratios that correspond most closely to those of typical A-type granites and plot within the field defined by the alkaline—peralkaline rocks of the Topsails complex. In contrast, granitic rocks of the Mount Peyton batholith have Ga/Al ratios and elemental abundances typical of I-type granitoids.

Discussion

The Fogo Island batholith has been quoted as an example of the widespread Siluro-Devonian plutonism prevalent in the Appalachian—Caledonian Orogen. However, the field, petrographic, and geochemical data presented here demonstrate the anorogenic, alkaline nature of the granites of Fogo Island, and distinguish them from typical I-type, calc-alkaline granites of the Mount Peyton batholith, with which the Fogo Island granites have been previously directly compared (Strong and Dickson 1978; Williams et al. 1989). This distinction is supported by major, trace, and REE data that demonstrate the geochemical evolution of the Fogo Island granites as a function of dominantly plagioclase and then alkali-feldspar (perthite) fractionation with a significant contribution from amphibole, most critically at times during crystallization when the residual melt reached the period of major deuteric activity. The extreme fractionation of FeO+ Zr, Nb, and Y into the late-stage, evolved melts, particularly in localized regions of ‘‘trapped’’ melt, indicates that these elements did not reach effective saturation until immediately prior to final quenching of the magma. Stabilization of Zr and comparable HFSE in magmas has been discussed by Watson (1979) with reference to highly peralkaline melts, and it may be that similar conditions commonly arise in the A-type granite suite. Whether A-type granites exist as a distinct class is not clear from this investigation, but it is certain that some granites having A-type characteristics may be formed through progressive fractionation of less specialized, I-type, calc-alkaline parents. In rocks of the Fogo Island batholith, an increase in alkalinity during fractionation is most strongly associated with development of fine-grained microgranitic rocks having textures indicative of deuteric or autometasomatic processes.

The geographic separation and inherent difficulties in correlating lithostratigraphic and tectonic elements between Fogo Island and mainland Newfoundland adds significantly to problems of interpreting the tectonic setting of the Fogo Island batholith. These rocks are located in the Bowood belt of the Durnage Zone (Exploits subzone), within the north-eastermost extremity of the North American Appalachians, a region described by Williams et al. (1989), Fryer et al. (1992), and Kerr et al. (1992) as characterized by a complex suite of Siluro-Devonian magmatic rocks, probably derived from ensialic (no direct input from subduction of oceanic crust) melting during tectonic thickening of the
Fig. 6. Tectonic discrimination diagrams of Rb vs. \(Y + Nb \) and \(Nb \) vs. \(Y \) after Pearce et al. (1984). Symbols as in Fig. 2.

Fig. 7. Discriminant plots after Whalen et al. (1987) comparing the Fogo Island granites with fields for the Topsails alkaline granites (solid lines) and the Mount Peyton granites (broken lines). Also plotted are average compositions for A-, S-, and I-type granites (within squares) and average compositions for fractionated S- and I-type granites (within circles). Data for the Mount Peyton granites are from Strong and Dupuy (1982), and data for the Topsails granites are from Whalen et al. (1987), Whalen (1989), and Whalen and Currie (1990). Symbols as in Fig. 2.

Middle Belt (CMB). This is considered to have occurred well after final closure of Iapetus at ca. 470 Ma. The bimodal gabbro–granite complexes can be considered the result of delamination of the lithosphere during crustal thickening, subsequent material and thermal input from mantle-derived melt, and concomitant crustal melting. On the basis of geochemical and isotopic data, it has been argued that the strong geographic zonations of Devonian intrusive suites reflect the polyphase structural history of the CMB, and that the igneous suites are their contrasting geochemical signatures to characterize lower crustal blocks from which they were derived.

Acknowledgments

The research for this paper was funded by the Natural Sciences and Engineering Research Council of Canada.
through an operating grant to J. Malpas. We thank J. Brydie and J. Buckle for help with manuscript preparation, and K.L. Currie and J.W. Creasy for improving the manuscript through early reviews.

References

