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A new procedure for computing the factor of
safety using the Morgenstern-Price method

D.Y. Zhu, C.F. Lee, Q.H. Qian, Z.S. Zou, and F. Sun

Abstract: By employing the same assumption regarding interslice forces as that used in the Morgenstern-Price method,
two concise recurrence relations between interslice forces and interslice moments are derived which satisfy both force
and moment equilibrium conditions. The Newton-Raphson method is used for determining the factor of satety and the
associated scaling parameter of the interslice force function. Algebraic derivatives required in the solution process are
evolved in a recursive manner which can be easily implemented in a computer program. The choices of initial values
of safety factor and scaling parameter are suggested. The procedure proposed in this paper proves to be efficient and

solutions converge rapidly.
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Résumé :

En utilisant les mémes hypothéses concernant les forces intertranches que celles utilisées dans la méthode de

Morgenstern-Price, on dérive deux relations concises de répétitions entre les forces intertranches et entre les moments
intertranches qui satisfont les conditions d’équilibre tant des forces que des moments. La méthode Newton-Raphson est
utilisée pour déterminer le coefficient de sécurité et le parametre d’échelle associé de la fonction de force entre les
tranches. Les dérivées algébriques requises dans le processus de solution sont développées de facon récursive, ce qui
peut &tre facilement exécuté par un programme d’ordinateur. On suggére les choix des valeurs initiales du coefficient
de sécurité et du parametre d’échelle. La procédure proposée dans cet article se montre efficiente et les solutions

convergent rapidement.
Mots clés :

[Traduit par la Rédaction]

Introduction

The limit equilibrium method of slices has been widely
used for slope-stability analysis in engineering practice. For
a general-shaped slip surface, rigorous limit equilibrium
methods of slices are recommended for stability analysis be-
cause they satisfy both force and moment equilibrium
(Duncan 1996). In practice, the Morgenstern-Price method
(Morgenstern and Price 1965) is the most popular of such
methods. It adopts a simple assumption regarding the
interslice force inclination and involves the least numerical
difficulty. The Spencer method (Spencer 1967, 1973) is one
special case of the Morgenstern-Price method, since it as-
sumes parallel interslice force inclinations. The
Morgenstern-Price method assumes that the inclinations of
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interslice forces may be described by a function Af (x), where
Ais a scaling parameter and f (x) reflects its shape. With this
assumption, several authors have derived various forms of
force and moment equilibrium equations and developed dif-
ferent schemes for solving the resultant simultaneous equa-
tions which involve two unknowns: A and the factor of
safety F,. Morgenstern and Price (1965) derived the force
equilibrium equation in a differential form and the moment
equilibrium equation in an integral form. They then pro-
posed a numerical technique to solve the force and moment
equilibrium equations by means of the Newton-Raphson ap-
proach (Morgenstern and Price 1967). Spencer (1973) de-
rived a recurrence relationship between the interslice forces
and gave the moment equilibrium equation for the whole
sliding mass in an algebraic form. He then solved for A and
F, by repeatedly adjusting their values to satisfy the two
equations in turn. Fredlund and Krahn (1977) expressed the
factor of safety with two implicit equations, one for the
force equilibrium and one for the moment equilibrium about
a specified point. Assuming a series of values of A and com-
puting the associated values of factor of safety with the two
equations, respectively, one can obtain two curves of F ver-
sus A The values of F and A at the intersection point of the
two curves are thus determined, simultaneously satisfying
both force and moment equilibria. Chen and Morgenstern
(1983) derived two integral equations satisfying force and
moment equilibria, respectively, and solving these equations
by means of the Newton-Raphson approach. The derivatives
in this case are of an analytic nature but in a complex
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Fig. 1. Sliding mass dividing into slices and forces acting on a typical slice: (@) sliding mass; (b) forces on a slice: (¢) forces on a

weightless slice.
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integral form with the integrand in a differential form. De-
spite these efforts. the Morgenstern-Price method is still
rather complicated for some general practitioners, who pre-
fer to use simple methods of slices such as the simplified
Janbu method (Janbu et al. 1956), the Lowe and Karafiath
method (Lowe and Karafiath 1960). or the U.S. Army Corps
of Engineers method (U.S. Army Corps of Engineers 1967),
which satisfy only the force equilibrium condition. This pa-
per presents a new concise formulation of force and moment
equilibria equations within the framework of the
Morgenstern-Price method, with an efficient procedure for
computing the factor of safety.

Recurrence relations for interslice forces
and moments

Consider a slip surface of general shape, as shown in
Fig. la, above which the sliding mass is divided into n verti-
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cal slices. The inclinations and locations of the interslice
forces are also depicted in the figure. Now choose a typical
slice k for examining the forces acting upon it (Fig. 15). It
should be noted that effective stress is considered in this pa-
per, but the approach is certainly applicable also to total
stress.

There are seven sets of forces acting on the slice &, as in-
dicated in Fig. 1h: (i) W, is the total weight of the slice; (if)
K W, is the inertial force due to an earthquake, where K_ is
the coefficient of seismic force which is assumed to be hori-
zontal; (iii) Q, is the surface load acting on the slope surface
at angle @y to the vertical (positive as indicated in the fig-
ure); (iv) Py, and P, are interslice forces acting on two sides
at angles 6,_; and 6, to the horizontal, respectively. their lo-
cations being at heights Z, , and Z, above the slice base, re-
spectively; (v) U, is the resultant water force at the slice base
(U = ud;. where u; is the average pore-water pressure at the
base, and /, is the length of the slice base); (vi) N, is the
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effective normal force on the slice base; and (vii) T} is the
shearing resistant force at the slice base, assuming the soil
obeys the Mohr-Coulomb failure criterion (7}, = N, tan ¢}' +
c'l,. where ¢f" and ¢} are the mobilized friction angle and
cohesion, respectively).

(1] oF = mn—l[ tan ¢, J el = ‘F.{

where ¢ and c¢; are the internal angle of friction and cohe-
sion of the slice base, respectively. The other geometrical
quantities for the slice are the average slice height #,, the
slice width by, and the inclination angle of the base oy.
Take a weightless slice (the weight being regarded as an
external load at its center of gravity) with the same dimen-
sion as slice k for examining the recurrence relation between
the forces acting on the slice, as shown in Fig. lc. It is as-
sumed that the slice base only has a friction angle ¢, since
the shearing force due to cohesion is regarded as an external
force. Also assume a force, S, acting on the weightless slice
at an angle B(S) to the horizontal, and the resistant force, R,
which acts on the base at an angle ¢}' to the normal. The
counterpart of force S is P(S), making an angle 6, with the
horizontal. By resolving the forces § and P(S) in the direc-
tion normal to force R, the relation between S and Py(S) is
derived as follows:
2] Bys =l ) -0kl
cos (o, —8; — o)

Note the inclinations of relevant forces in the following:

BB =8, B =T
BIKW,) =0 B) =+

B =—(m—a)  Plefly) =—(m—o0y)

The contributions of these forces to the interslice force P;
can be determined by using eq. [2]. Summation of their con-
tributions leads to a recurrence relation between the
interslice forces for the slice shown in Fig. 1b:

|
(3] I Semea et — g
: cos(oy — 0, — o

[cos(oy =60y —OF) Py
+sin{o, — O IW, + cos(oy, — oK W,
+sin(0, —ax — 9P Oy + sin @ U, —c 'l cos ¢)"]

By taking moments of forces about the midpoint of the
slice base, we obtain the following moment equilibrium con-
dition:

[41 'Pk—'l cos 9;‘,_|[Zk_| 3 % tan o J_ Pﬁ'-l sin 9;\._1 %

— P, cos ek[zk —%lan oy, ]—Pk sin 6 %

+ KW, E;i - sinyh, =0
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Let
IS] M& = P;‘. cos Bka and M;..,_; = Pi‘-'l. cos 8&_1.2‘._‘

where M, and M,_, are known as interslice moments. Substi-
tuting eq. [5] into eq. [4] and rearranging. we obtain a recur-
rence relation between the interslice moments as follows:

(6] My=M,;_,

by
+ ‘
2cos o

[sin(oy, —0,)P, + sin(o, —0,_)P_;]

+ KW, %‘ ~ QO sin ./,

With known values of P, and M|, at the upper end of the
sliding mass. the subsequent interslice forces and moments
can be computed by using eqs. [3] and [6], respectively, in a
recursive manner. Obviously, for overall equilibrium of the
sliding mass, the last interslice force and moment must be
equal to zero, that is,

[(7al P,F. N =0
(7] M, (F. N =0

The scaling parameter A and the factor of safety F, can be
determined by solving egs. [7a] and [7h] simultaneously.
This will be discussed in the next section.

Solving for F, and ). by the Newton-Raphson
method

The scaling parameter A and the factor of safety F, are
contained implicitly in eqs. [7a] and [7b], which are nonlin-
ear in nature. Thus, an iterative procedure is required for
their solution. The Newton-Raphson method is often used
for solving nonlinear equations. Suppose that the values of
F, and X at the ith step are obtained as F,”' and A", then
their values at the ith step are modified as

(8] F+l) = F ) + AF WD = AD + AL

aM n M af)]l

)] n '-a_):'_ =¥ n —éI
B AR =op oM, oF, oF,

a\ oF, oF. ok
A\= 3%, oM, oP, oF,
o\ OF. 9F o\

The function of the inclination of interslice force is writ-
ten as

[10] tan 8= Af(x")

where x” is the linearly normalized x coordinate with values
at the two ends of the slip surface equal to zero and unity,
respectively, and f(x”) is assumed.

Now first differentiate ¢} and ¢ with respect to F, and 6,
with respect to A:
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[1la] of =tan"[M] dog’ :—LF sin 2¢}"

F, dF, 2F,
. - M m

[Ne] ety HeEs ol
F\ d"F; 5

(llc] 6 =tan'Qf) 9% —cos?@, f,
di
where f, denotes the value of the interslice force function

flx”) corresponding to the interface between slice k and slice
e+ 1.

Let

2] P = g_i

in which

[13]. D; = cos(oy — 6, — OF)

and

[14] A, = cos(oy — 8, — OF )P,y + sin(oy — o7 )W,

+ cos(oy — OP VKW, + sin(oy — oy, — ¢7)0;
+ sin of'U, — ¢,"I, cos Of

From eq. [12] the following relations hold:

[15] al’é;:l.[i‘i#-&@}

oF, D,|oF, " OF,
% = R oA _ P i%,
% Dok oo

The derivatives in the above equation are derived as fol-
lows:

[16a] E;?{ = sin(aL, — 0, — o) %E:
[16b] _a% = sin(; — 0y =4 dc%
[16¢] ‘3% = cos(0y, — 0, —0F) %
+ sin(oy =6, — 98Py % +[~cos(a, —opIW,
+sin(0y; —OMK W, —cos(ot, — o — 0 O
+ cos OFU + 7l sin o ] cﬁ{ ~1; cos dﬂ"%
[16d] —aa%i— =cos(oy —0,_; — o) égii:L
a8,

+ sin(oy =0, —0F")P; a\

Substituting eqgs. [1la)-[1lc] into eq. [15] and then into
egs. [16al-[16d], we have

885
[17] 0P, _ cos(oy — 8, —Of) 9P,
aF; CDS(aL —9;‘ _¢Eﬂ) aF\
et m
+’";A tan(oy, — 0, — OP")P,
_ sin 260} sin(o, —8,_; —¢7") p
2F,  cos(oy —0, —0F)
ut m
an.29) [cos(ak — O W,
2F, cos(oy, — 0, — o)
—sin(ot, — OF KW, + cos(oy, — ey, — 07 )0,
—cos O Uy + cos ¢"cot O ¢! !k]
[[8] aﬁ = cos(oy — Bi-l _¢T} aP;-_]
dh cos(oy, —0, —d") A
~tan(oy, — 68, — Of') cos® 6,y fiF;
L sin(oy -0, — 0P cos? 8,_; fi P
COS{ak ——ﬁk —tbﬂ‘) )
[lgl aM,. L, BM‘._l + ."lli sin[();k = 9;‘) a_PE
daF;, dF, 2cosoy OF,
i bi sin{()‘.i -ek_|] aPk_]
2cos oy oF,
120] oM, _ oM, + b sin(oy -6,) oP,

oA oA

> bk sin({li _BQ aPA—l
2 cos O oA

2cos o gL

b, cos(oy, —0,) cos? 0, f; P
= 2 kIt p
2cos oy

5 by cos(o, —0,_) cos” 0, fi_ P
2cos oy

Equations [17]-[20] are the recurrence equations for com-
puting the required derivatives. These equations are in alge-
braic form involving no numerical approximation and the
derivatives in eq. [9] can be exactly computed.

Choices of initial values of F; and A

The initial values of F, and A have a considerable effect
on the convergence rate. In the extreme, if they are unrea-
sonably assumed, F, and A may possibly diverge in the itera-
tion process. The following suggested scheme can be used to
avoid this difficulty in calculating the factor of safety by the
Morgenstern-Price method. The solutions can be obtained in
wo stages.

At the first stage, the initial value of F can be set at unity
in all cases and A is assumed equal to a fixed empirical
value:

[21] A=07tan B

in which f is the inclination of the chord connecting the two
ends of the slip surface. With this initial value of F, and the
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Table 1. Iteration process for computing the factor of safety in example 1,

fiexH=1 fx) =sin(x ")
F, A P, (kN) AF, M, (kN-m) F, A P, (kN) AF, M, (kN-m)
Compute initial value of F,
1.0000 0.2293 —-1546.3 0.3992 1.0000 0.2293 -1211.0 0.3912
1.3992 0.2293 —439.2 0.2207 1.3912 0.2293 -316.7 0.1874
1.6199 0.2293 -58.9 0.0395 1.5786 0.2293 -35.1 0.0262
Compute converged values of F_ and A
1.6594 0.2293 ~-1.4 -599.3 1.6048 0.2293 0.5 —1741.8
1.6744 0.2553 -11.7 -54.4 1.6496 0.3355 ~-11.7 -57.5
1.6829 0.2556 -0.3 -1.2 1.6600 0.3361 0.3 -1.7
1.6830 0.2556 -0.004 -0.02 1.6602 0.3361 -0.01 -0.08
Fig. 2. Slope used in example 1. Table 2. Soil properties used in example 2.
Layer ¥ (kN/m?) ¢’ (kPa) o’ (°)
A 1 19.0 0.0 26.0
el 2 18.8 215 20.0
| 3 18.0 15:5 26.0
' 4 18.5 28.0 22.0
5 19.0 50.0 10.0
0.0
. i Example 2

fixed value of A the Newton-Raphson method is used for
improving F,. The increment in F, for each step is

P
22 AR 2
I"‘-] AF:. %

oF,

where dP,/0F , is computed using eq. [17]. To ensure conver-
gence, the increment of F, must be restricted in a limit. For
this purpose, max|AF | £ 0.5 is recommended. The iteration
process is terminated if 1AF | < 0.05.

The modified value of F_ at the end of this stage and the
value of A given by eq. [21] are used as the initial values for
the second stage of determining F, and A simultaneously.

Example 1

For the purpose of illustration, an example slope as shown
in Fig. 2 is analyzed using the procedure proposed in this
paper. Two forms of interslice force function commonly
used in slope engineering are chosen: one is a constant
shape and the other is of half-sine shape. One hundred verti-
cal slices are used to discretize the sliding mass. The results
obtained with this iteration process are presented in Table 1.
The solutions have converged rapidly and with rather high
precision, although such precision is not always necessary
for routine analysis.

Another slope with complex soil stratigraphy and water
table is analyzed as shown in Fig. 3. The soil properties are
given in Table 2. A horizontal seismic coefficient of 0.1 is
adopted and the sliding mass is divided into 100 vertical
slices. The results are presented in Table 3. For
benchmarking purposes, the Slope/W computer software
(Geo-Slope International Ltd. 1998) is also used to calculate
the factor of safety of the slope in this example. Four load-
ing cases are considered: water pressure and earthquake; wa-
ter pressure and no earthquake; earthquake and no water
pressure; and absence of both water pressure and earth-
quake. A comparison of the factor of safety values and the
associated scaling factors computed with the method pro-
posed in this paper and with the Slope/W software is pre-
sented in Table 4. The differences in computed values of
factor of safety are negligible for practical purposes and the
associated values of scaling factor given by the two methods
are nearly identical.

Concluding remarks

The formulation of the Morgenstern-Price method and the
computation procedure presented in this paper are relatively
straightforward compared with those of other approaches
suggested previously. Equations [7a] and [75] are the basic
equations involving the two unknowns A and F,. The terms
on the left-hand sides of eqs. [7a] and [7h] can be calculated
using the recurrence relations, i.e., eqgs. [3] and [6]. The
Newton-Raphson method is used for solving eqgs. [7a] and
[7h]. The required derivatives are given by eqs. [17]-[20].
Reasonable initial values of A and F_ can be deduced from
eqs. [21] and [22].
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Fig. 3. Slope used in example 2.
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Table 3. Iteration process for computing the factor of safety in example 2.
fi7 =1 FixD=snix)
F, A P, (kN) AF, M, (kN-m) F, A P, (kN) AF, M, (kN-m)
Compute initial value of F,
1.0000 0.2282 7226.5 —0.2911 1.0000 0.2282 6674.4 -0.3325
0.7089 0.2282 -3196.8 0.0602 0.6675 0.2282 -2625.4 0.0667
0.7692 0.2282 -296.3 0.0068 0.7341 0.2282 —180.7 0.0053
Compute converged values of F_ and A
0.7760 0.2282 -3.3 -116 895.6 0.7395 0.2282 -0.8 -173 891.6
0.8916 0.3369 2345.6 56 445.6 0.8978 0.5022 2008.8 118 147.5
0.8348 0.3294 -304.9 -2 858.2 0.8133 0.4649 435.4 29 457.7
0.8283 0.3274 -23.9 -295.4 0.7953 0.4501 95.6 5505.7
0.8266 0.3273 -1.2 -12.4 0.7913 0.4475 11.8 632.3
0.8265 0.3273 —0.07 —0.7 0.7908 0.4472 12 61.2
0.7907 0.4472 0.1 54
Table 4. Comparison of calculated factors of safety.
Water Earthquake faeH=1 f’) = sin (x")
pressure effect F, A F, A Procedure
Yes Yes 0.827 0.3273 0.791 0.4472 Present study
0.834 0.3278 0.798 0.4479 Seep/W
Yes No 1.023 0.2512 1.000 0.3307 Present study
1.032 0.2518 1.008 0.3315 Seep/W
No Yes 1.081 (.3526 1.045 0.4800 Present study
1.084 0.3522 1.048 0.4797 Seep/W
No No 1.341 0.2707 1.316 0.3591 Present study
1.345 0.2703 1.320 0.3587 Seep/W

Since all equations are of a closed-form nature, accuracy
is adequately ensured. Furthermore, the proposed approach
can be easily implemented into a computer program because
all the expressions entering into the computation process are
in algebraic form.

References

Chen, Z., and Morgenstern, N.R. 1983. Extensions to the general-
ized method of slices for stability analysis. Canadian
Geotechnical Journal, 20: 104-119.

Duncan, J.M. 1996. State of the art: limit equilibrium and finite-
element analysis of slopes. Journal of Geotechnical Engineering,
ASCE, 122(7): 577-596.

Fredlund, D.G., and Krahn, J. 1977. Comparison of slope stability
methods of analysis. Canadian Geotechnical Journal, 14: 429-439.

Geo-Slope International Ltd. 1998. Slope/W for slope stability
analysis, user’s guide, version 4. Geo-Slope International Ltd.,
Calgary, Alta.

Janbu, N., Bjerrum, L., and Kjaernsli, B. 1956. Soil mechanics ap-
plied to some engineering problems. Norwegian Geotechnical
Institute Publication 16.

© 2001 NRC Canada

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8388

Lowe, J., and Karafiath, L. 1960. Stability of earth dams upon
drawdown. /n Proceedings of the Ist Pan-American Conference
on Soil Mechanics and Foundation Engineering, Mexico City,
Vol. 2, pp. 537-552.

Morgenstern, N.R., and Price, V.E. 1965. The analysis of the sta-
bility of general slip surfaces. Géotechnique, 15(1): 79-93.
Morgenstern, N.R., and Price, V.E. 1967. A numerical method for
solving the equations of stability of general slip surfaces. Com-

puter Journal, 9: 388-393.

Can. Geotech. J. Vol. 38, 2001

Spencer, E. 1967. A method of analysis of the stability of embank-
ments assuming parallel interslice forces. Géotechnique, 17(1):
11-26.

Spencer, E. 1973. The thrust line criterion in embankment stability
analysis. Géotechnique, 23(1): 85-100.

U.S. Army Corps of Engineers. 1967. Stability of slopes and foun-
dations. Engineering manual. U.S. Army Corps of Engineers,
Vicksburg, Miss.

© 2001 NRC Canada

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



