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Reduced density matrix and combined dynamics of electrons and nuclei
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Nuclear dynamics is incorporated into an efficient density matrix formalism of electronic dynamics
which has been applied to molecular systems containing thousands of atoms. The formalism for the
combined dynamics of electrons and nuclei is derived from the Dirac—Frenkel variational principle.
The single electron reduced density matrices and the Glauber coherent states are used for the
electronic and nuclear degrees of freedom, respectively. The new formalism is applicable to
simulate the dynamics of large molecular systems. As an illustration of its validity, the formalism

is employed to calculate the electron and nuclei dynamics of hydrogen molecule200®
American Institute of Physic§S0021-9606)0)30734-9

I. INTRODUCTION In this paper we propose a method for treating the elec-
trons and nuclei simultaneously without assuming different
Recently a linear scaling method, the localized densitytime scales for electrons and nuclei or the BO approxima-
matrix (LDM) method, was developed to simulate electroniction. We therefore do not have to resort to the PES or force
dynamics of very large molecular systems containing thoufield in the calculation of nuclear dynamics. Since the elec-
sands of atom&® It is based on the time-dependent tronic degrees of freedom may be handled efficiently with
Hartree—FockK TDHF) approximation, and follows the evo- the LDM method, it is expected that the new method may
lution of a single electron reduced density matrix in realultimately be used to simulate the electronic and nuclear dy-
time. It has been applied successfully to simulate linear opnamics of large complex molecular systems. We adopt a
tical response of electrons in polyacetylene oligomers, carvariational approach for the combined dynamics of electrons
bon nanotubes, and pgfyphenylenevinylene(PPV) aggre-  and nuclei. The equations of motion for the electronic and
gatest~® In these calculations the nuclei are frozen, and thuswuclear degrees of freedom may be derivigghrously from
the nuclear dynamics is not included. Since the simulation ishe exact Lagrangian using the Dirac—Frenkel variational
carried out in time domain, it is natural to include the nuclearprinciple!® Similar to the END method, Glauber coherent
dynamics. The LDM simulation time step for the electronic states which correspond to the fixed-width Gaussians in real
dynamics is 0.01 to 0.1 fs while the time step is on the ordespace are adopted for the nuclear motion. To take advantage
of 0.1 fs for the Car—Parrinello methtftand 0.1 to 1 fs for  of the LDM treatment of electrons, the reduced density ma-
the force field molecular dynamics simulatibnlt is thus trices, instead of the wave functions, are used to describe the
desirable to include the nuclear motion in the LDM calcula-electronic dynamics. In parallel to our developments of the
tion. LDM methods for fixed nuclei which started from rather
Traditionally the dynamics of electrons and nuclei in simple Hamiltonians, the semiempirical Hamiltonian, the
molecular systems is treated within the Born—Oppenheimecomplete neglect of differential overlap in spectroscopy
(BO) or the adiabatic approximation in which the time scale(CNDO/S,%° is used as the first implementation to describe
of nuclear motion is assumed to be much longer than that ahe dynamics of electrons and nuclei. We emphasize that the
the electron motion. The nuclear motion is often computedadoption of CNDO/S Hamiltonians are not essential to our
with potential energy surface®ES or force fields which approach, and extensions to include more sophisticated
are often obtained fromab initio calculations. Numerical Hamiltonians such as PM3 and the density functional theory
simulations beyond the BO approximation are limited to(DFT)?! can easily be implemented as in the case of fixed
small systems due to the requirement of expensive computauclei®
tional resources for the electronic degrees of freedom. The The paper is organized as follows. In Sec. Il we intro-
electron—nuclear dynamid¢€ND) method has been applied duce the Dirac—Frenkel variational principle which allows
to diatomic or triatomic molecule€*® The electronic and for dynamical descriptions of the electrons and nuclei in a
nuclear wave functions are approximated by the single Slatesingle framework. Formal equations of motion are derived in
determinants and fixed-width Gaussian wave functions, retheir respective subspaces for a single-configurational ansatz
spectively. Other important contributions to the nonadiabatidin Sec. Il A. The nuclear classical equations of motion are
dynamics include the surface-hopping approaches by Tullgleduced from the time-dependent variational principle in the
et al1® which serve as an alternative to methods of a singldimit of small coherent state widths. Generalizations to in-
average nuclear path. Also proposed were semiclassicalude multiple configurations are discussed in Sec. || B. The
treatments of curve crossings in reaction dynamics by Millemew formalism may be used to simulate the combined dy-

et al,!” and applications of similar nature to the spin-bosonnamics of electrons and nuclei in complex molecular sys-
problem and internal conversion processes by Stbck. tems. As a first step towards that goal, we adopt the CNDO/S
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Hamiltonian and simulate the dynamics of electrons and nu- We consider a system witM nuclei andN electrons.
clei in hydrogen molecules. Results are reported in Sec. IVThe nuclear and electronic coordinates are labeled, ag

Discussions are presented in Sec. V. =1,..M) andr{ (i=1,...N), respectively. The energy ex-
pression takes the form
E=(¢"|Al¢T)

Il. COMBINED ELECTRONIC AND NUCLEAR
DYNAMICS 72 52
=(N= 2 5 5 Vandrah) o)
n
The Dirac—Frenkel variational princigféis a powerful n 2M, r?rﬁ
technique to obtain approximate dynamics for quantum sys-

2 2
tems for which exact solutions are elusive. The formulation T R 9 e T
+ -, — —+V -
starts with the exact Lagrangian (4] To2m arf“2 Dl
ind . (@[ Ven{ra} {riDI 87, (2.6
L:<¢T(t)|?E—H|¢T(t)>, (2. eN L no Lt

where M,, are the atomic mass for theth atom, m; is
where¢'(t) is an ansatz for the full normalized wave func- the ith electron mass, and/\({rn}), Ved{r{}), and
tion of a quantum system which hinges on parameter®en({rn}.{r{}) are the nucleus—nucleus, electron—electron,
7m(m=1,2,3,..). Herey, can be complex numbers or and nucleus—electron interaction energies, respectively.

trial wave functions of subsystems. In general, the Dirac— Below we discuss separately the electronic and nuclear
Frenkel variational principfé leads to equations of motion derived from the variational procedure.
d| JdL JL
atl oot | T o1 0, (2.2) 1. The electronic equations of motion
[/ IMm

where 77; stands for the complex conjugate of,. Applying the time-dependent variational approach,

Below we apply the Dirac—Frenkel variational principle d/ oL JL
to a single-determinant ansatz and its multiconfigurational —|——|———=0, (2.7)
generalization. dt\o(g|) bl
A. Single-configurational ansatz we obtain the equations for the electronic degrees of free-
The TDHF equation for fixed nuclei can be derived from do:
the Dirac—Frenkel variational principf@.The trial wave inp=[h',p], (2.9
function |¢"F) for an electronic system is a single Slater L
determinant composed of single-particle orbitals. One as- Where the Fock matrik’ is given by
sociates a single-particle density matgix(t) with | ™" JE
h'|¢i))=— 2.9
pij(t):<¢HF|ajTai|¢HF>i (2.3 |40 N il 29

wherea/(a;) creategannihilates an electron at thgth (ith)  The difference betweeh’ and the usual Fock matrix (cf.

orbital. The density matrixp;;(t), as a projector onto the Appendix A lies only in thath’, being dependent on
space spanned by occupied orbitals, characterizes the Slater

determinant up to within a phase. This is easily seen by (" |Ved{rfh) +Ven({ra} {reH o), (2.10
exchanging two orbitals in¢"™") which leavesp;;(t) un-
changed but#"F) with a negative sign. In Appendix A, we
give a brief derivation of the equations of motion for the
density matrixp;;(t).

To include nuclear motion, we generalize the trial wave
function in the TDHF approximation to include the nuclear
degrees of freedom:

changes with time as the nuclei move. In other words, quan-
tities such aw;; in Eq.(3.1) are now time dependent I as
compared withh. So far basis orbitals have not been speci-
fied. Orbitals fixed in space are not suitable to describe dy-
namical chemical systems, which may require a large num-
ber of basis functions. One needs to consider basis orbitals
{¢i(t)} which move with the nuclei. Equations of motion for

[Ty =]| )| pN), (2.4 the density matrix in a moving basis is
where the normalized single Slater determingat™ is , aldi(1))
composed oN single-particle orbitalsy;, and|¢N) repre-  Pij= (1) (di(D[[h",p][#;() —pij{Si(V)] o,
sents a normalized nuclear wave function. The Lagrangian |
has the form (1)

'Vi_Pija—r]"Vj|¢j(t)>, (2.11
ih o it 1
L—?Zi (<¢i|¢i>_<¢i|¢’i>)+7(<¢ 4" wherer; and V; are, respectively, the position vector and
_ . velocity of the nucleus on which theh orbital resides. The
—(N|NY) —(pT|H|pT). (2.5  details of derivation are given in Appendix B.
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2. Nuclear dynamics as coherent states

ih . .
L= 2 (MM — (8N M) —E”

The nuclear degrees of the freedom are treated within 2
the same variational framework. For example, the formal i 3N
equation of motion fof ") is derived from _ '?21 (aya? — a* a))—E' 2.16
d JL aL .
el el B - =0. (212  with
dt\ g(gN|) Ko .
From the energy expression of E@.6) one readily arrives E':<“|_§ 2M, ?+VNN|‘“>
at n
o +(al( 8" Vet Venl ) ). (217
i pNy= { —; e P+VNN({rn})+(¢HF|Vee({r$}) This follows from
n
. 1d 2. L
(a|ay==5 (aiaf)+(ale vaeilq;bfeti|o)
+Ven({rat{rfhl ™) | [¢"). (2.13
= 1d| 2+ aiaf (2.18
(AMFIVee{reh)| #7F) is dependent offr,} in many approxi- 2t/ A '

mation schemes, and thus cannot be neglected iNEW.  \hereb(h,) is the creationannihilation operator forith
In order to capture fully the time evolution of nuclear mo- degree of freedom, and is defined as

tion, some detailed form ofgp") has to be specified, and

corresponding equations of motion derived. i Mo [ & d

For the nuclear wave function, a convenient ansatz to by = ﬁqﬁ' 2M;o dq;’ (2.19
use is the Glauber coherent st&télhe coherent states are
equivalent to the so-called frozen Gaussian wave patckets b— Mio | # J 59
the real space representation. Frozen Gaussian wave packets ' ﬁqi 2Mjw (9_q, (220

are robust in time evolution. In contrast, Gaussian wav . . .
. : . guations of motion for the complex displacementthen
packets with variant widths are often found to be prob- .
assume the simple form

lematic?*?® The coherent state is regarded as a quantum me-
chanical state which approaches a classical state when the JE’
width goes to zer8?25-2%|n fact, in a harmonic potential the i o=
coherent state undergoes the same dynamics using classical

mechanics as using quantum mechanicsfiAends to zero, Here «; is related to the average nuclear positi@p); and

the width of the coherent state vanishes, and the nuclei aigomentump;), for theith nuclear degree of freedom by
reduced to classical particles localized in the phase space.

This makes the coherent states especially suitable for mod- _ Mo L 1
=\ 5 ()t \/ 55— (Ppi 2.2
eling quasiclassical systems. “ 2h (G ZﬁMiwi(p')t (222
We approximate the nuclear wave functig) with a
coherent state:

(2.21)

ﬁai* .

with M; the corresponding mass.
To understand the physics of E(R.21), one may as-

3N sume harmonic potentials for nuclei, for which

|pNy=la®)=]] |ai(1), (2.14
=t E'=2 (Jai|?+12to;. (2.23

whereq; (i=1,...,.3\) are complex parameters that charac- ' . .

terize the motion oN nuclei alongx, y, andz directions, and ~ The parameterg; follow the equation of motion:

the coherent statgy;(t)) may be expressed in the site rep- it =h o (2.24

I |l B .

resentation as
Equation(2.249) is in fact the classical equation of motion for

1 /Mo 2 a harmonic oscillator ifq;), and(p;), are substituted by the
_ 14 = v _ i/t i/t
(Xai(t)=m exp{ 2[ 5 X~ V2Relai(t) corresponding classical quantities. This shall become clearer
in the next subsection.

[2M; w; izati
+i Im(ai(t))[ ﬁ.w| " Re(ai(t))”, There can be many generalizations for the ansatz of a

single coherent state for the nuclear dynamics. One generali-
(2.15 zation is a superposition of many coherent states which bet-
ter captures the quantum nature of the nuclear mdfion.
where w; is the characteristic frequency foth degree of When the corresponding electronic state is multiconfigura-
freedom which determines the width of the Gaussian wavéional, such a generalization becomes absolutely necessary.
packet. In Sec. IIB as well as Appendices E and F, we discuss the
The Lagrangian takes the form scenario of a multiconfigurational ansatz with a multi-
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coherent-state nuclear wave function. Elsewhere in the paB. Multiconfigurational ansatz

per, we shall confine ourselves to the single coherent state. A multiconfigurational ansatz which contains more than

one Slater determinants may take the form
3. Recovery of nuclear classical equations of motion
. . . T\ — HF N
Here we show that the equations of motion given by the ¢ F% Conl b )| D) (2.32
Dirac—Frenkel variational principle lead to classical nuclear

dynamics in the limit of vanishing width of the Gaussian yhere|4HF) are single Slater determinants for the electrons,
wave 'packets. We also derive the Igwest order correctlons'r.d,m are the nuclear wave functiors, are the configuration
The site and momentum representations of the coherent stai@efficients, and the configurational indexruns from 1 to

are listed in Appendix C. By using the identity M. The trial statg2.32 includes the multiple-trajectory fea-
P 1 9 1 9 ture that the surface-hopping approa€and recently, the
el R iz—”, (2.25  full-multiple-spawning metho8? attempt to reproduce. The
da; da da; fully quantum-mechanical stat@.32 avoids artificial draw-
where backs such as undesired coherence destruction of the surface-
hopping method. Starting from a single electron—nuclear
af =Rele), of=Im(a), (226 configuration, a system should evolve on a single potential
the equation of motiori2.21) becomes surface, and no bifurcation of the nuclear trajectory should
occur until a curve crossing or a transition region is reached.
., LoE Then an additional electron—nuclear configuration is intro-
Y ﬁ' duced to describe the appearance of the new electronic state.
' The corresponding time dependencecgf, | ) and|#h)
_ 1 9E’ can be derived from the Dirac—Frenkel variational principle.
hai=— 2 g- (227 As two nuclear trajectories diverge, their overlap vanishes.
I

We may neglect the interference between them. Each trajec-
One uses the momentum-space representation of the ctery evolves virtually independently. In Appendix E we dem-
herent stategcf. Appendix Q to evaluate the kinetic term in  onstrate how a multiconfigurational ansatz of the f¢eh82

E’, yielding is handled in a time-dependent variational procedure.
() The trial wave function(2.32 bears close resemblance
()= It (2.28  to the Davydov ansatz for the lattice Holstein moded.
M; Appendix B:331

One then uses the site-space representation of the coherent

statedqcf. Appendix Q for the potential terms iE’. Assume d(1)) = 8110 A (H)bf—H 0

the width of the Gaussian wave packets is small so that onL,\ ) ; Un(DBy|O)exex % (Ang()bg=H.C) ||0)en,
can expand the potential near the mean vdlye,. To the (2.33

second order in the Taylor expansion, one obtains ) _ ) )
where the index labels the lattice site$0)e,(|0) ) is the

(b=~ (‘9_'5’) ' (2.29 vacuum state for both _the excit_céphonor) degrees of free-
aq; @), dom,B! creates an exciton on site andb(; creates a phonon
. ) _of frequencyw, . For each electronic configuratidiﬂO)ex,
The width of the Gaussian wave packets enters the equatiog unique lattice wave function is assigned. The time-
of motion if the potential is expanded to the fourth order in dependent parametets,(t) and \,q(t) which characterize
the vicinity of (g;);. The lowest order correction to Ed. the Davydov ansatz can also be determined from the Dirac—

(2.29 is quadratic in the wave packet width Frenkel variational principle. Details of ensuing equations of
vaa? [ 53E’ motion are given in Appendix F. )
- ! ( - , (2.30 The similarities between the two amsa can be explored
8h 1\ ax; x=Via! to better understand E¢R.32. Both anste attach a distinct

) . o N nuclear wave function to an electronic configuration. For the
where the dimensionless quantityis related to the position |attice Holstein model, each configuratioB[(0),) corre-

q; by sponds to a single exciton stationed on a specific lattice site.
M o For Eqg.(2.32, each configuration corresponds to a Slater
X = #qi , (2.3) determinant made of individual orbitals. The Holstein model,

however, does not require changing electronic configurations
anda;= VA/(M;w;) gives the width of the coherent state. To to adapt to changes of the lattice wave functions. Because the
the second order in the Taylor expansion of the potentiahumber of distinct one-exciton configurations equals the
near the mean valu@;),, the classical equations of motion number of lattice sites regardless of detailed information on
are fully recovered. Quantum effects are presented by thkttice deformation. It is not true for the trial sta32. The
third-order terms which are proportional to the width individual orbitals of which the Slater determinants are com-
squared. posed change as the nuclei move.
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Ill. THE CNDO/S HAMILTONIAN wherevy,, is the average on-site repulsion energy for atom
. . . L If the internuclear distancR,, is large (above 3.5 A, ynm
In this section we adopt a specific Hamiltonian for e comes the interaction between two charged spheres. In the
the electronic degrees of freedom, and restrict Ourselveépposite limit when the nuclei coincide,, reduces to the

to closed %h32”_ molecules. The semiempirical CNDO/Syep ision of two electrons on the same nucleus. These one-
Hamiltoniarf®3? is employed to describe the electrons andcenterynn are approximated by the well-known method in-
nuclei in molecules. With the CNDO/S Hamiltonian as thetroduced by Parisét

approximate Hamiltoniarhi’j takes the form . 39
Yan=3 (IntAn), 3.9

hi;=t;;+25;; Zk VikPkk™ VijPij» (3.)  wherel, andA, are the valence state ionization potential and
the electron affinity, respectively. Following the CNDO/2
wheres,; is Kroenecker delta, and; is the Coulomb repul- method? V,,, is approximated byZ,y,m neglecting the
sion between two electrons at orbitalandj. The CNDO/S  penetration effects in which electrons in an orbital of one
model adopts the zero differential overlégDO) approxima-  atom penetrate the shell of another leading to net attraction.
tion, and the total energy of closed shell electronic system The force acting on the nucleus of théh atom can be

may be classified into one-atom and two-atom terms: calculated from
F,=—-V (EtOt+VNN). (31@
EO=> E.+ > Enm, (3.2 rooone
n n<m To simplify our simulation, we set
where d
2 o. (3.13)
ien i,jen (9I’n
En=22i piiUii + ; (2piipjj = PijPji) Ynn 33  Thus
m#n
o 2 ZnZn Fn:_VnE Enm— VnVn, (3.12
Enm=§i: EJ: (4pij,3ij_zpij7nm)+ T PanViam m

nm

whereV , stands for the derivative with respect to the posi-
~PomVmnt PanPmmYam- B4 tion vectorr,, of nth nucleus. The reader is referred to Ap-

Various quantities in Eq¢3.3) and (3.4) are defined as fol- Pendix D for details of the nuclear-force evaluation.

lows. U;; is a one-center term defined as

Uy =(i| - 1V2— Vi), (35 V. HYDROGEN MOLECULE

whereV; is the potential of electronfrom nuclei and core To demonstrate the feasibility of our approach to capture
electrons.y,, is the average Coulomb repulsion energy be_comple_x dynamics of electrons and nuclei, we simulate the
tween an electron in any valence atomic orbital of te dynarmgs of a hydrogen molecule under an incident extern_al
atom and another in an orbital of timeth atom, andV, , is electric flelq. The ground state for the hydroger) molecule is
the interaction energy of an electron in any valence orbital oft SYMMetric state formed from the atomie arbitals, and
nth atom with the core ofnth atom.Z, is the core charge the excited state, on the other hand, corresponds to the anti-

(including the nucleus and inner shelts the nth atom, p;; symmetric corr:flgfgratlon. E}aChl 5|mulgt|0n IS gompos_ed gf
is the usual one-electron density matrix, @, is the total WO r(ljms_. Int elf st run, t ? edtgctromcl grlou_n statg 'f] 0b-
valence electron charge on théh atom tained via a self-consistent-fieldCP calculation, and the

equilibrium nuclear configuration is generated by allowing
the nuclei to relax from an arbitrary set of initial positions.
Pnnzzzi Pii - (38 The electronic relaxation is simultaneously carried out by the
time domain LDM ground state calculatidrSince the pur-
The off-diagonal core matrix elements between atomic orbitpose of this run is to achieve both electronic and nuclear
als on different atoms are estimated by equilibria, the nuclear kinetic energy is depleted rapidly for
Bi=p0 S 37 fast convergence. In the second run, the equilibrium nuclear
R ' configuration is adopted as the initial configuration, and the
where §; the overlap integral, an;d;ﬂm is a parameter de- external field is applied to perturb the combined system of
pending on the nature of atomsandm. r,,, is the distance electrons and nuclei. A time-domain Gaussian profile is
between two nuclen andm. given to the external field with an adjustable width This
The average interaction energy,,, was first calculated provides an electronic excitation up te#i/ty. To achieve
by Roothaar?® Various approximations ofy,, were later —excitation at a specific frequenay,, an oscillating term
proposed. For example, in the Nishimoto—Magataexp(—iwg/f) is added to the external field. Dissipative

ien

approximatiort® v,,, is estimated from the mechanisms are introduced to relax both the electronic and

e? 1 nuclear subsystems. The electronic system is relaxed via the

Yom= e +Rym| (3.9 phenomenological dephasing, while the nuclear system is
YnnT Ymm dissipated with small fractiofi~0.05% of nuclear kinetic
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m
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FIG. 1. H-H bond length of a hydrogen molecule with an external field. eV

The field is applied at=0 along the line connecting the two hydrogen

atoms with an oscillating frequency of 18.54 eV. An electronic dephasing ofF/G. 3. The weak-field optical response of a hydrogen moleculgD(w)]

0.04 eV is adopted. versusw, whenD (w) is the dipole moment of H The field is applied along
the line connecting the two hydrogen atoms. An electronic dephasing of
0.04 eV is adopted. The main peak is located at 18.54 eV.

energy taken out at each time step. Much weaker nuclear
damping is adopted as compared with the first run in WhiChl'his in turn affects the nuclear movements. This high-

_20, I 1 i I . . 3
1. 2% c_)f thg nuclear kinetic energy is depleted per t'.me. s.t(.e equency mode is absent in the bond length evolution shown
Simulation is completed when the system recovers its initia n Fig. 1

state prior to the application of external field. In Fig. 3 we plot the weak-field optical response of H

The time-evolution of the hydrogen—hydrogen bond.l.h tical axi ts th | f h
length during the second run is displayed in Fig. 1. The field, e vertical axis represents the value of{Iw)], where

is applied along the '”?e which _conne_cts the two hyOIrOger]‘requency domain. The electric field is weak so that the nu-
atoms so that no rotational motion is introduced. The elec-

. o . . _clei are only slightly disturbed. Clearly there is a peak at
tronic excitation disturbs the neutrality of the atoms causing; g £, o\ which corresponds to the higher frequency oscilla-

a bond contraction n the fII’S.t fgw femtoseconds. This Sion in Fig. 2. The ground state of the hydrogen molecule is
followed by bond oscillations with its mean gradually return- symmetric bonding state while the excited state is a disso-

ing to equilibrium as the electronic excitation is dephasedciative antibonding state. The energy gap between the

The. pscﬂlgﬂon period is about 2.0 fs. Flgurg .2 shows the round state and the excited state is therefore represented by
position displacement of one of the two nuclei in the secon he peak at 18.54 eV. There are structures barely visible on
run. After the external field is applied, the nuclear movement, .« o sides which are phonon-induced and whose ampli-

exhibits a second oscillation with a much higher frequency}udes strengthen upon increasing the external field. In Fig. 4

This is attributed to an electronic transition upon the external, display the strong-field optical response of the hydrogen
excitation which has an oscillating frequency of 18.54 ev'molecule to a strong external field with a Gaussian packet

0.1012 x T
T v T

. 0.1011 4 J
0 < =

g €

S >

[

S

£ 0.1010 b % 0-

2 =

S 2

% <

O 0-1009 1

0.1008 r T v . T . .
Y 20 40 16 18 20 22

fs eV

FIG. 2. Movement of one hydrogen atom driven by external field at 18.54FIG. 4. The strong-field optical response of a hydrogen molecul® ()]

eV. The field is applied at=0 along the line connecting the two hydrogen versusw. The field is applied along the line connecting the two hydrogen
atoms with an oscillating frequency of 18.54 eV. An electronic dephasing ofatoms. The time-domain width of the pulse is 0.1 fs. An electronic dephas-
0.04 eV is adopted. ing of 0.04 eV is adopted.
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T " T 7 kept the same as those in Fig. 4. Compared with Fig. 4, the
signs of the stochastic process are obvious in Fig. 5, although
the basic features in Fig. 4 survives the collision effect.

V. DISCUSSION

We have developed a method for simulating the com-
0 bined dynamics of electrons and nuclei in complex systems.
The dynamics is described by the single reduced density ma-
trices for electrons and the Glauber coherent states for nuclei.
Since the linear-scaling LDM method may be used to simu-
late the electronic dynamics, the method opens up a wide
range of applications and may be employed to calculate the
combined dynamics of large complex systems.
16 " 18 ) 20 ) 29 The simulations run so far are mostly in the Born—
eV Oppenheimer regime as the energy scale in the electronic
. _ _ system greatly exceeds that of the nuclear system, although
FIG. 5. Effect of collisions on the strong-field optical response of a hydro- .
gen molecule. The time-domain width of the pulse is 0.1 fs. The character[“"dea‘r movements on th? same Order. of frequencies as the
istic collision time 1# is 1 fs. The temperature for the Boltzmann distribu- €lectrons are shown to exist under a high-frequency driving
tion is 225 K. field. Our approach can be generally applied to nonadiabatic
regimes where the two energy scales are comparable. Similar
nonadiabatic methods with combined quantum and classical

width of 0.1 fs. There is a predominant structure at 18.54 evdynamics for electrons and nuc1IBeL(\)/vere applied to scattering
Phonon-induced features appearing on two sides are sep@r—Obl_emS1 gnd small systerﬁ?s. " Determinantal wave
rated from the main structure by 1.1 eV which correspondguncuon_é ““were used instead of density matrices for the
to the bond length oscillation frequency shown in Fig. 1. electronic dynamics. These calculations were restricted only

In order to simulate a realistic system where atomic col{0 Small systems. In comparison, our approach has the po-

lisions frequently occur, we introduce a mechanism for enlential to be applied to much larger systems. Generalizations

ergy fluctuations in which the temperature is kept constant. ©© include muitiple configurations and more sophisticated
A stochastic collision term is added to the equations of moluclear wave functions are also possible. In Appendix E we

tion for nuclear dynamics. The resulting stochastic differen-llustrate _how nuclear and electronic wave functions are

tial equations bear close resemblance to the Langevin equi@ndlied in a multiconfigurational ansatz.

tions for the Brownian motiof’~*°Each stochastic collision The single-trajectory approach employed here belongs to
is an instantaneous event which affects the momentum df'¢ class of theories based on the time-dependent self-
one particle. The times at which different particles undergdonsistent-field methodTDSCH.™ Compared with multi-
collisions are statistically uncorrelated. The probability for Ple-trajectory - approaches such as the surface-hopping

Arbitrary Unit

the collision to take place betweermndt + dt is method®3° and the full-multiple-spawning algorith, nu-
clei follow an average mean path in TDSCF. Therefore
p(t)dt=vexp(—rvt)dt, (4.))  TDSCF may not be a good approximation when the excited

where the characteristic collision time isv1/Alternatively, ~ Staté acquires a significant population and its adiabatic po-
one may state that the time intervals between two successigntial surface greatly diverges from that of the ground state.
collisions are distributed according fo(t). Therefore the Since in the cases examined here the excited state population
probability for each individual atom to experience the nextiS kept small at all times, the validity of our approach should
collision increases with timécounting from the previous hold

collision) The CNDO/S method gives a larger force constant than
that is experimentally observed for the case of the hydrogen

ftp dt=1—exp(— vt). 4.2) molecule(about twice too large, see Ref. 45 owever, the
0 purpose of our example is mainly to demonstrate the feasi-

- . ility of our method instead of providing a close comparison
If a collision occurs, the momentum of the atom is replaced . ;
o with the experiments. Furthermore, as we have demonstrated
at random from a Boltzmann distribution at the temperatur

T %or fixed nuclei, the simplified electronic Hamiltonian
CNDO/S employed in this paper can be generalized to
1 [{ p2+ p§+ p§> io do.d w3 Hamiltonians of higher sophisticatigfor instance, PM3 and
T/ L8Xp — 5 7 |9Pxapyap;. . DFT) in order to better describe nuclear potential surfaces
(\2mmksT)? 2misT for complex molecules. We have previously extended our
The effect of collisions on the strong-field responses of &.DM calculations from CNDO/S Hamiltonians to PM3
hydrogen molecule is shown in Fig. 5. The characteristicHamiltonians for fixed nuclei with easé€ We expect such
collision time 1k in Eq. (4.1) is 1 fs. The temperature from extensions to include more sophisticated electronic Hamilto-
which the Boltzmann distribution is drawn is 225 K. Apart nians carried out for mobile nuclei in the next stage of de-
from the added collision term, the system parameters areelopments.
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Dynamics calculations in the literature often treat theon nuclear motion. Most computations of the optical re-
environment of a quantum system classicAfy*® Attempts  sponse of large polymers treat the nuclear effect phenomeno-
were also made to infer absorption lineshapes from such hylegically because of the excessive computational cost to
brid calculationg® Our method which mixes the quantum determine the PES. In comparison our method is not con-
electronic system with its classical nuclear environment isstrained by PES computations. The density-matrix formula-
expected to capture quantities that have classical interpretéion given here which can be readily incorporated into the
tions. These include time-dependent observables such &M method is a computationally efficient tool to model
electronic populations and mean positions and momenta afombined dynamics of electrons and nuclei in large systems.
vibrational modes. However, it is not able to reproduce the
vibronic features in the absorption spectra. The failure is
caused by inability of classical nuclear dynamics to describe CKNOWLEDGMENTS
the nuclear wave function overlaps at different times. Al-
though the full quantum vibronic spectra are not reproduced ~ Support from the Hong Kong Research Grant Council
with the lattice treated classically, peaksufy* Nwpycear(N (RGO and the Committee for Research and Conference
is an integer are observed from the hybrid simulations, al- Grants(CRCG of the University of Hong Kong is gratefully
beit often with negative signs. It is understood as a latticetcknowledged.
perturbation to the electronic transition. The signs of the
peaks shall depend on the relative phase between the elec-
tronic and nuclear oscillations as demonstrated by the simpl@PPENDIX A: THE TIME-DEPENDENT

identities: HARTREE-FOCK APPROXIMATION
2 sinxsiny= —cogXx+Yy)+cogx—y), (5.9 The TDHF equations can be derived from the time-
. _ ) dependent variational approach. First, one defines the La-
2 sinx cosy=sin(x+y)+sin(x—y), (5.2 grangian
2 cosx cosy=cogX+Yy)+cogx—y). (5.3 5
L= <¢TI——— [67). (A1)

From the first identity, the two peaks atg= wnyciear Will
have opposite signs, while from the last two identities, th ere the trial wave functio™) is a normalized single
peaks will have the same sign. We point out that the optic%l ter determinant so that Lagrange multipliers are not
response shown in Figs. 3 and 4 are not absorption spectra, a grang P
The coupled equations of motion for electrons By11) and néeeded. _Equanons of motion for the trial wave functig)
nuclei with the nuclear force given by E¢3.12 are not are obtained from
expanded in terms of the external electric field and thus the d | JL aL
optical responses we obtained include linear and nonlinear &(W) e
components.

In our model the nuclear motion can be viewed as a Where|¢) are the individual orbitals which make up the HF
classical bath that is coupled to the electronic degrees of@ve function. We then arrived at
freedom. The combined system of electrons and nuclei there-
fore serves as a paradigm for chromophore-bath systems. If —ifi| )+~ a<¢ | =0 (A3)
the nuclear motion is harmonic then the bath is bosonic. A
simple anharmonic bath is a collection of two-level systemaVith
(TLS)*® which are responsible for the chromophore transi- EE<¢T||:||¢T> (Ad)
tion frequency modulation in glasses. Strong anharmonicity '
is expected in the hydrogen molecule disturbed by a moderfhe complex conjugate of E¢A3) has the form
ate external field. We have simulated the transfer of the elec-

2 ot

=0, (A2)

tronic energy from the incident laser light into the nuclear |ﬁ<¢> |+ —— &|¢> =0. (A5)
(bath system. It is found that such transfers in the hydrogen
molecule require~100 fs to complete after excitation by Define the single-electron density matgpas
strong external pulses. oce
There have been studies of the simultaneous dynamics of p= E | i) il (AB)

electrons and nuclei in a linear monatomic chain and in a

zig—zag chain of nitrogen atofi$What constitutes a physi- and the Fock matrik as
cally more interesting system are polymers such as poly-

acetylene and polp-phenylenevinylene Polarons and soli- JE

tons are among the different entities which emerge in those hl )= o i |

51-58 ; _
polymers? Modern techniques of femtosecond spectro From (A7), it is easy to show that is a function ofp. Thus,

scopy® shall reveal, in details previously unavailable, theone readily obtains the closed equation of motiondrom
complex dynamics of electrons and nuclei in these materialsE .(A3) and (A5)

Since the polymers are flexible and can change its shape
easily, spectroscopic properties of polymers depend heavily iap=[h,p]. (A8)

(A7)
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APPENDIX B: EQUATIONS OF MOTION IN A MOVING which is a simply displaced ground stafihe “vacuum”

BASIS statego= 7~ YYe~(¥2x*) The phase factor in E4C5) is in
Orbitals fixed in space are prone to convergence probf.aCt the so-called “electron translation factor” which are

lems in the time evolution. To consider basis orbitals whichusually multiplied to atomic orbitals to describe molecules in

move with the nuclei, we write the one-electron density ma{motion. _ _ _
trix in terms of a time-dependent basis: The momentum-space representation can be derived via
a Fourier transform

p=2 pij(D (D) (D], (B1) 1 ‘
1] (pla)= \/:f dx e 'PX(x|a)
where| ¢;(t)) is the orbitals that centers on the moving nu- 2m
clei. Then the equation of motion fas; (t) follows: — (U4 exp— L[p—v2 Im(a)]?
(i7) "' pl=p=2] pijlsi(O)((D)] ~iRea)[v2p=Im(a)]}, (C7)
N where the dimensionless quantjyis related to the momen-
) ¢i(t) tum p, by
+Pijkf;—ri>'vi<¢j(t)| .
A bi(1) Pp=———=—=>0/«- (C8)
+pijl (1)) <(§Jr( | Vi, (B2) iMw
J

Equations(C5) and (C7) are essential for the derivation of
wherer; and V; are, respectively, the position vector and classical dynamics from the time-dependent variational ap-
velocity of the nucleus on which thi¢h orbital resides. The proach in Sec. 11 A3.

individual elements of the density matrix therefore follows

Eq. (2.11). The last two terms in Eq(2.11) describe the

difference between changesidh andjth orbitals. In a hy- APPENDIX D: THE CNDO/S APPROXIMATIONS

drogen molecule, the two terms cancel each other. When the ] ) ]
velocities of the nuclei are small, the two terms can be ne- '€ Slater-type basis functions are used in the CNDO/S

glected in general. calculations:

(Zga)na+(1/2)
APPENDIX C: COHERENT STATES IN SITE AND Xa(r,0,¢)= —|r““’1 exp(—Zar) Y m(60,),
MOMENTUM REPRESENTATION (2n,)!

(D1
r\‘/?/here ns, |, andm are the principal, azimuthal, and the
magnetic quantum numbers, respectively, afmg(e,@ is
2 a the real normalized spherical harmonics, is the orbital
|ay=e" (el /2)20 \/ﬁ|n>. (Cy exponent.
' The overlap integraf,;, can be written in terms of the
In the site-space representation the number staté% are reduced overlap integra(n,,l,,m,n,,l,,a,B):

The coherent states in one dimension are related to tl
number states by

* n

I
<X|n>:2—(n/2)77—(1/4)ie—(XZ/Z)Hn(X)’ (C2) Sav(Nasla, MMy, 1y, @, )
Jn! Na+(112) ny+(1/2)
_ é/a é/b | | ngt+ny+1
whereH,,(x) are the Hermite functions. The dimensionless  ~ ™ /5~ 50 ) S(Na,la,m,ng,ly, @, B)r g ,
guantity x is related to the positioq, by &
(D2)
Mw
X= qu_ (C3 where
=l b, =l ap, D3
The factor \Mw/# determines the width of the Gaussian falan, A= Colav 3
wave packet. Utilizing the identity
P w S(na,la,m,na,lb,a,ﬁ):D(la,lb,m); Cij)\
tn
—t24+2tx _ i
e T IN= 2 Hy() o (C4 wt Bl [a—p
XAl ——|Bj| —5—|. (D4
one obtains the site-space expression of the coherent states
=7 U8 oyl — LTx—V3 R 2 HereD(l4,l,,m) is a function ofl , I,, andm, andC;;, are
(la)=m Xp -2l o)l matrices labeled by which itself is a function ofh,, ny,
+ilm(a)[vV2Xx—Re @)]}. (C5 g, Iy, andm:
Whena« is real, N=N(ng,ny,l,,1,,m). (D5)
(X|a)=m"" exp{ — [x— V2 R @) ]?}, (C6)  The auxiliary functionsA(x) andB(x) are defined as
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k+1 Kl wherel,, and Ay are the ionization potential and electron
XE m (D6) affinity of hydrogen, respectively. For two hydrogen atoms,
yun has the form®
k+1 K—n
(=D ¢ 11 3 , 1
Bk(X):—Ak(X)_exglm- (D7) yHH,II—) 1- 1+? sz—l—gpg e 2r|, (D15
From Eq.(D2), the derivative of the overlap integr8l, = where { is the orbital exponentp= Ry . The above ex-
with respect tar,;, is composed of two terms: pression foryyy: is different from the Nishimoto—Magata
nat(12) g+ (172) approximation. The difference in their derivatives with re-
dS,p —(ngtn +1) 5 ¢p ds (Nt npt1 spect to the nuclear separatiBpyy is even greater. Adopt-
drap b ,/ (2ny)!(2n,)! drap 2P ' ing the Nishimoto—Magata approximation therefore results
(D8) in less accurate equilibrium bond lengths. To remedy the
where problem, we add a proportionality constdoh the order of
1-2) to the second term on the right-hand side of H2{2)
a+pB calculating the forces so that the experimental values of the
ds dA 2 a—p bond lengths are reproduced.
=D(l,,l,m > Cij, i
drap T drap 2
APPENDIX E: A MULTICONFIGURATIONAL ANSATZ
o
n dBJ—(TB) In this appendix we show how the nuclear and electronic
+A @ '8) ] (D9) trial wave functions are handled in a multiconfigurational
2 drap ansatz in one space dimension. The ansatz has the form
The internuclear forces may now be derived from the RN
energy expressions developed: [pT)=2 Cul SN I, (ED
m
m#n dE
= z an S VAN (D10) where| ¢"'F) are single Slater determinants for the electrons,
e ’ |¢m> are the nuclear wave functions, are the configuration
Where coefficients, and the configurational indexruns from 1 to
M. We need to introduce in the variation a Lagrange multi-
ra—r lier A to ensure
V6 nm= ”r i o1y P
nm
en jem N=(¢"|0T)=2 chem(dhToh ) (dnldm=1. (E2
dEnm  ZnZpy dSnm mn
=T 73 2 E 4P|J:8nm
drom r2 drnm From
dy d/ dL aL N N E3
+ dr_nm( PnanPmm= Panm— Pmnén dt (3’('3;c é’C;c - ﬁC: '
nm
ien jem we give the equations of motion far,,
+> > 2p-2-). (D12 , , .
CT 82 [Emlmict Cm(( i $mX( AT b)) + (AT 1)

Here the derivative of the overlap integi®|,,, with respect
to rpm(dS,m/dr,y) follows Eq. (D8).

In the remainder of this appendix we discuss some spe- <¢" _)\E Cml mic (B9
cifics of the hydrogen molecule. The one-electron density (vher
matrix is calculated from
E=<¢TIH|¢T>, (E5)
=20 G 1=l o). (E6

WherecyJ is the coefficients of expansion of the molecular Including Eq.(E2), there are altogethévl + 1 equations for
orbitals in terms of the valence atomic orbitals. Greek indi-M + 1 variables(c, and\).

ces are used to denote the molecular orbitals. For the case of Next, assuming the nuclear wave functions take the co-
the hydrogen molecule, all elements of the ground state derierent state form

sity matrix equak. The total molecular energy forHn the |¢N>:|a ) (E7)
CNDO/2 approximation has the form " :
1 3 we derive the nuclear part of the equations of motion from
T=—(I+A)y— 5 YHHT 28RS — > Vit g — d/ dL aL oN
HH, d_( -*)_ F =\ * (ES)
(D14) t\day,) dap, dap,
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Utilizing
<an|am>:qua: am— %|am|2_%|an|2)r (E9)
<a’n|dm>:exqa;:c am— %la'm|2_ %|an|2)
x( - Eﬁ|am|2+a::am), (E10
<dn|am>:exqa: am— %lam|2_ %|an|2)
J 24 %
X —§E|an| +a,an, (Ell)
one obtains the equations of motion fey,:
JHE—-ANN) %A ) .
i =t — Kom— K
dm aa:n 4 n;m am(Kym mn)
d ifi H an| ay)
- a(ZanKnm)} - 5% [‘]knw
K[l d 1d .
—W(§a|ak|2—§m|an|2+a:ak—a:ak :
m
(E12
where

Jin=Ck ol PR HDY + X Eonl HFI DHY — CE Cr( BET | )
—chea(oRT i), (E13
Kmn=Cr Cr{ B | 1 (| biv)- (E14

We are now left with the derivation of the equations of
motion for the electronic degrees of freedom. If the inner

products of two Slater determinar{ig}"| "7} are written as

(BT = 8am (7167 + (1= 8 BTS00,
(E15

where| ¢") is the individual orbitals making upp!'"), equa-
tions of motion for

occ

p'=2 [41%4l] (E19
can be obtained from
_iﬁ|¢k>+(9(E+F—)\N)_E oF o €17
' o | dt\ a(ek|

in a similar fashion as the single configuration case in Ap-

pendix A. Here

in :
F=5 2, (1= dum)Ci C{ | ) ((br | bl )
. if .
(B + 5 2 cren(dT (SN

) ih
(BN N+ 5 S (Chem—eien (B

nm

X{n| - (E18

Zhao, Yokojima, and Chen

The equations of motion fgs™ so obtained have the form

ifip™=[h"p"] (E19
with the generalized Fock operatof' given by
ol m OEFF=AN) d [ oF
h"¢l)=——"—————| ——|. (E20
K" dt| g(pm

The density matrip™ has a one-to-one correspondence with
the Slater determinani!") up to a phase. This can be un-
derstood from Eq(E16) in which |¢f) are the eigenstates
(with eigenvalues 1 or)that diagonalize the density matrix.
For a given density matrix, therefore, its diagonalization de-
termines the molecular orbitats™, with which a Slater de-
terminant differing from|¢{F) is constructed upon by a
phase factor.

APPENDIX F: THE DAVYDOV ANSATZ

In this appendix we shall take, as an example, the Davy-
dov ansatz to illustrate how a multiconfigurational trial wave
function is applied in a time-dependent variational proce-
dure. The Davydov ansatz

|®<t)>=§ wn<t>BL|0>exexr{§ (Ang(D)b]—H.c) ||0)p
(F1)

is adopted for the Holstein Hamiltoni&T® also known as
the molecular crystal model,

H=H&4 {Ph4 fePh (F2)

H®=—32 Bl(Bni 1By 1), (F3)
n

th=§q‘, fiwgbibg, (F4)

HPg> hwg(ble 9" +b,e'"")BIB,. (F5)
nq

HereJ is the exciton transfer integral between nearest neigh-
bor sites, andy is the diagonal exciton-coupling coupling
strength. We define the Debye—Waller fac8y,(t) as

St =pOlexe 3, (\p 00y Hc)

xex;{% ()\nq(t)bg—H.c.) 10) ph (F6)
or alternatively,
Sin(t) = (Am(D[An(1)), (F7)
where
|An<t>>=exp[§ (Nng()bi—H.C) | |0} (F8)

From Eg.(2.1) the Lagrangian is given by
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if . .
L=5 S (s = V)

i : .
+7n2q |‘/’n|2()\nq)\:q_)\:q)\nq)_Ha (F9)
whereH is defined as
H=(®(t)[H|D(1)). (F10
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