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Key Points: 17 

• Spatially distinct and nonlinear increase of sub-daily rainfall extremes are revealed over a 18 
rapidly developing coastal megalopolis 19 

• Short-duration intensification is prominent in urban areas as apposed to rural areas 20 
exhibiting less timescale-dependent variability 21 

• More frequent nuisance hourly-scale events are expected in urban areas while daily-scale 22 
events nominally increase with return period  23 
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Abstract 24 

Intensification of short-duration rainfall extremes is posing greater urban flood risk. Yet, it remains 25 
intriguing how the upper-tail statistics update with regional warming. Here, we characterize the 26 
non-stationarity of rainfall extremes with durations from 1 to 24 hours over a rapidly developing 27 
coastal megalopolis, namely the Greater Bay Area in China, using multi-source merged gridded 28 
data of high spatiotemporal resolution. We observe prominent increasing rainfall intensities 29 
particularly for the north-central part of the region as opposed to the southern coastal region. Our 30 
results show, for the first time, that urbanization nonlinearly exacerbates the rainfall intensities at 31 
different extremities, which favors short durations (≤ 3-hour) and short return periods (2-year), 32 
with remarkably high return level-based scaling rates (> 34%/°C). Conversely, rural areas exhibit 33 
higher scaling rates than the urban areas for longer durations (≥ 9-hour), with lower degree of 34 
dependency on both durations and return periods.  35 

Plain Language Summary 36 

Short-duration (sub-daily) rainfall extremes, a major driver of flash floods, are disruptive to 37 
humans and societies. It is widely recognized by both numerical and statistical studies that 38 
urbanization intensifies short-duration rainfall extremes. However, little work provides regional 39 
quantification of the rate of intensification under a warming climate, particularly regarding the 40 
extreme quantiles that correspond to the return periods comparable to or even longer than the data 41 
time span. In this study, we take one of the world’s most famous and urbanized bay areas as an 42 
example. The high spatiotemporal-resolution dataset of a 30-year time span merged from gauge 43 
networks, satellite observations, and reanalysis products, enables spatially continuous and 44 
coherent analysis of low-frequency extremes (2- to 100-year return levels) under a novel 45 
nonstationary framework that incorporates the association with changing climate. The results 46 
highlight the essential control of timescales on rainfall extremes intensities particularly in urban 47 
areas in contrast to rural areas, as well as a higher rate of magnification of short-return period 48 
events, suggesting more ‘nuisance’ rainfall with the increasing surface temperature. This study 49 
offers a new perspective/framework for climate risk assessment and urban flood adaptation under 50 
a changing climate.  51 

1 Introduction 52 

Heavy precipitation has increased in intensity and frequency for most land areas since the 1950s – 53 
trends that have been attributed to human-induced global warming (IPCC, 2021). Whilst such 54 
changes at daily or longer durations are detected globally (IPCC, 2021; Papalexiou & Montanari, 55 
2019; Westra et al., 2013), sub-daily rainfall extremes, which can cause severe socioeconomic 56 
impacts through flash flooding (Ayat et al., 2022; Fischer & Knutti, 2016; Fowler et al., 2021), 57 
generally exhibit much greater variability across continents, regions, and sites (Agilan & 58 
Umamahesh, 2015; Barbero et al., 2017; Y. Chen et al., 2021; Fowler et al., 2021; 59 
Hosseinzadehtalaei et al., 2020). In urban areas, where more than half of the world’s population is 60 
concentrated (Grimm et al., 2008), rainfall patterns are modified due to i) heat island, ii) higher 61 
roughness, iii) higher aerosol concentration and iv) anthropogenic infrastructures, which 62 
collectively enhance the extreme and total rainfall locally and downwind (Han et al., 2014; J. Liu 63 
& Niyogi, 2019; Shepherd, 2013). Hence, continuous and rapid urbanization is placing more areas 64 
under rising flood risk especially in the economic growth hubs in the Asia-Pacific region.  65 
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Extreme value theory (EVT) is typically used to evaluate the statistical properties of rainfall 66 
extremes, which then enables extrapolation to events outside the range of available data (Khaliq 67 
et al., 2006). Associated methodologies such as intensity-duration-frequency (IDF) curves are 68 
routinely applied to infrastructure design and water management (Hosseinzadehtalaei et al., 2020). 69 
However, these conventional techniques rest on the assumption of stationarity which is 70 
problematic in the context of climate change, as the probability distribution of the extreme variable 71 
studied is time-invariant (Khaliq et al., 2006; Milly et al., 2008). Hence, as seen worldwide (Fauer 72 
& Rust, 2022; Fu et al., 2021; Slater et al., 2021; Vu & Mishra, 2019), it makes sense to consider 73 
the non-stationarity of rainfall extremes using EVT. However, rain gauge networks, which are 74 
often relied upon for extreme value analysis, have uneven and sparse coverage and may under- or 75 
mis- sample convective events which largely contribute to short-duration extremes (Kidd et al., 76 
2017; Lengfeld et al., 2020). On the other hand, satellite-derived or analysis-based gridded 77 
precipitation products offer fine spatiotemporal resolutions and complete coverage (Q. Sun et al., 78 
2018). Nevertheless, they are inadequate for regional extreme value analysis due to significant 79 
uncertainties in their accuracy (Alexander et al., 2019; Ali et al., 2021; J. Zhang et al., 2022). In 80 
this regard, blending the merits of multiple sources for long-term rainfall statistics characterization 81 
is recommended, e.g., the studies on urban rainfall effects (McLeod et al., 2017; McLeod & 82 
Shepherd, 2022), while hourly non-stationarity studies with blended datasets remain rare. 83 

Increasing intensities of sub-daily rainfall in urbanized areas are detected by nonstationary EVT 84 
based on one or a few scattered station (Agilan & Umamahesh, 2015; Ganguli & Coulibaly, 2017; 85 
Yilmaz et al., 2014) (Fig. S1, Table S1), whereas cross-duration features and coherent spatial 86 
patterns that quantify rural-urban contrasts are still unclear. The statistical relations between the 87 
non-stationarity and underlying climate drivers, implied by time and physical covariates 88 
formulated in frequency models, further complicate takeaway messages for decision-makers in the 89 
context of growing urbanization and surface temperature (Y.-R. Chen et al., 2013; Fauer & Rust, 90 
2022; Westra & Sisson, 2011). Many studies have applied Clausius-Clapeyron (C-C) scaling to 91 
examine how the moisture-holding capacity of the atmosphere and thus rainfall intensity responds 92 
to global warming (Bao et al., 2017; Lenderink & van Meijgaard, 2008; Visser et al., 2021; Westra 93 
et al., 2014) relating extreme quantiles to incremental temperature bins, usually under daily 94 
timescale (Fowler et al., 2021). However, the scaling for the ‘upper tails’ of short-duration rainfall 95 
intensities (return periods well beyond the length of observational records) indicative for the non-96 
stationarity is hitherto unexplored.  97 

Here, we analyze the non-stationarity in hourly to daily rainfall extremes (with intensities ≥2-years 98 
return period) in relation to surface temperature over the Greater Bay Area (GBA). The GBA is an 99 
agglomeration of 11 metropolitan areas in south China covering Guangdong, Hong Kong and 100 
Macau. This region has experienced a surge of urban development and population growth since 101 
the 1990s, becoming the most important economic hubs in Asia (Qiang et al., 2020; X. Sun et al., 102 
2021). Moreover, it is one of the most vulnerable urban areas globally, given its high exposure to 103 
floods, dense population, and developing economy (Schelske et al., 2013). Having differentiated 104 
areas with high and low degrees of urbanization, we investigate the non-stationarity of rainfall 105 
extremes over the region over hourly to daily scales with potential climate drivers being assessed; 106 
robust scaling relation regarding the detected nonstationary for the timescale-dependent upper-tail 107 
statistics are also proposed and demonstrated. 108 
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2 Materials and Methods 109 

2.1 Meteorological data and multisource merging 110 

This study applies nonstationary frequency analysis to high-resolution hourly rainfall data. The 111 
gridded rainfall data include Multi-Source Weighted-Ensemble Precipitation (MSWEP V2.8) 112 
(Beck et al., 2019), Integrated Multi-satellite Retrievals for the Global Precipitation Measurement 113 
mission (IMERG) Final Run Version 07 (Huffman et al., 2023), and the ERA5-Land reanalysis 114 
data of European Center for Medium-Range Weather Forecast (ECMWF) (Hersbach et al., 2020). 115 
In addition, the rain gauge data from 50 weather stations managed by the National Meteorological 116 
Information Center of the China Meteorological Administration and The Hong Kong Observatory 117 
are also analyzed. Other meteorological data, covering the period of 1960-2020, include global 118 
(land + ocean) mean surface temperature, Multivariate ENSO Index (MEI), mean surface 119 
temperature (T2m), mean dew point temperature (DT2m), and mean equivalent potential 120 
temperature (EPT). T2m and DT2m data are obtained from the ERA5-Land dataset whereas EPT 121 
is calculated following the methods in Song et al. (2022). 122 

2.2 Multisource merging and correction of the gridded rainfall data 123 

The quality assessment of several popular gridded rainfall products around the GBA indicates a 124 
poor agreement with gauge observations at the hourly timescale (Fig. S2). Although preliminary 125 
calibration has already been performed for the multi-source merged products such as MSWEP, 126 
only a limited number of gauges with daily data are adopted (Beck et al., 2019; Hersbach et al., 127 
2020). Thus, we further employ a Random Forest (RF) based Merging Procedure (RF-MEP) 128 
(Baez-Villanueva et al., 2020) of the original datasets from multiple resources in Section 2.1 to 129 
improve the spatiotemporal accuracy at an hourly 0.1° resolution. The RF-merged dataset 130 
significantly outperforms the original datasets in terms of Nash–Sutcliffe efficiency (NSE) 131 
coefficient while preserve the spatial variability that the sparse gauge network does not possess 132 
(Supporting Text S1, Fig. S2). 133 

2.3 Nonstationary frequency analysis of rainfall extremes 134 

Annual maximum rainfall intensities for each grid/station under various durations are extracted for 135 
the frequency analysis. ‘Rainfall extremes’ refers to the rainfall intensities corresponding to ≥ 2-136 
year return periods. This criterion is roughly equivalent to 98.75th and 99.7th percentiles in terms 137 
of event-based and direct sampling from the hourly time series, respectively. The generalized 138 
extreme value distribution (GEV) is applied with flexible location and scale parameters with 139 
climate variables as physical covariates to take into account the potential non-stationarity (Coles 140 
et al., 2003; Nerantzaki & Papalexiou, 2022). Details of the model structure, model selection and 141 
parameter estimation are given in Supporting Text S2. Mann-Kendall (M-K) trend analysis with 142 
Sen’s slope estimator (Gocic & Trajkovic, 2013; Khaliq et al., 2009) is performed for each 143 
location/grid for different return levels. In addition, the statistics for the urban and rural areas are 144 
compared (Supporting Text S3); the sensitivity of potential climate drivers, regarding mesoscale 145 
convective systems, tropical cyclones, and monsoonal activities, are evaluated (Supporting Text 146 
S4).  147 
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2.4 Surface temperature scaling of nonstationary return levels 148 

To determine how rainfall extremes respond to the regional warming, we calculate the scaling of 149 
rainfall intensities at different return levels (RL) with respect to annual mean surface temperature, 150 
or the NS-RL scaling for simplicity. Such relation, possibly for the first time, attempts to bridge 151 
the rainfall intensities corresponding to a certain exceedance probability under the changing 152 
climate with an easily accessible and less uncertain climate variable (i.e., annual mean surface 153 
temperature). Similar to the scaling in the time domain (Bao et al., 2017; Lenderink & van 154 
Meijgaard, 2008; Visser et al., 2021), the NS-RL scaling assumes that changes in annual mean 155 
surface temperature ∆𝑇 causes 𝛼% changes in rainfall extremes intensities, such that: 156 

𝑃!,#,$% = (1 + 0.01𝛼)∆'𝑃(,#,$%  (3) 157 

where 𝑃(,#,$%  and 𝑃!,#,$%  are the average rain rate at a certain RL of a certain duration (T) of 158 
periods 1 and 2, respectively, while ∆𝑇 is the difference of the mean annual surface temperature 159 
of the corresponding two periods. Simplification of the above equation yields: 160 

𝛼 = /)*+,!,#,$%/,&,#,$%.
∆'

− 11 × 100  (4) 161 

We apply bootstrapping for the calculated RLs at each grid, specifically, we randomly sample the 162 
years analyzed into two subperiods of the same length. Then the median of 𝛼% among all the 163 
repetitions are recorded as the representative scaling rate of the grid.  164 

3 Results 165 

3.1 Non-stationarity reflected by annual trends and the duration-dependency 166 

Overall increasing trends are detected for both the annual maximum (AM) and extreme frequency 167 
(EF) of 10-year hourly rainfall intensities at gauge stations in the GBA (Fig. 1a-b). For the hourly 168 
duration, more than 60% of the stations show positive trends, primarily in the central part of the 169 
region. While for the daily duration, less than 50% of the stations have positive EF trends (Fig. 1c-170 
d). Only a few stations (12% for hourly and 10% for daily durations) have significant trends (𝛼 ≤171 
0.05) for AM, suggesting a large uncertainty to directly use AM to reflect the non-stationarity, 172 
while more stations indicate higher significance levels in terms of EF. Guangzhou (the north-173 
central part of the GBA) has the most rapid changes in rainfall extremes at both hourly and daily 174 
scales. Here, trends for hourly and daily intensities are around +15%/10yr for AM, and around + 175 
7%/10yr for EF. In contrast, Zhuhai, Shenzhen, and Hong Kong, which are closest to the coast, 176 
have a negative trend for both AM and EF. The non-stationarity analyzed (Fig. 1e-g) using the 177 
merged gridded dataset is spatially consistent with the gauge-based results. For the 10-year return 178 
period, the maximum trend (+12.2%/10yr) (95% CI [11.7, 12.7]) for hourly rainfall is in central 179 
Guangzhou, comparable positive trends also occur at northwestern Huizhou (Fig. 1f1&f4). 180 
Negative trends in daily extremes around the southern coastlines (Zhuhai, Shenzhen, and Hong 181 
Kong) reach -20%/10yr. In addition, the southwest and the east parts show a low degree of non-182 
stationarity. If stationary models are still applied, the errors (discrepancies from current-stage 183 
nonstationary results, calculated based on the covariates in 2020) spatially agree with the 184 
nonstationary patterns (Fig. S3). It is worth noting that the clusters subject to severe increasing 185 
intensities tend to locate northeast of the core urban regions (Fig. S4), which could be induced by 186 
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the downwind shift of rain centers by urban areas under prevailing southwesterlies and sea breezes 187 
(Han et al., 2014; Shepherd et al., 2010; Shepherd, 2013; X. Sun et al., 2021; Yang et al., 2021). 188 

 189 
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Fig. 1. Nonstationary short-duration rainfall extremes detected by gauge stations and 190 
multisource-merged gridded data. The trend in annual maximum rainfall intensity for 1-hour 191 
(a) and 24-hour (c) durations normalized by the mean intensities, and the trend in extreme 192 
frequency of 10-year return period rainfall intensity for 1-hour (b) and 24-hour (d) durations 193 
normalized by stationary model results. e1-g4, spatially uneven nonstationary rainfall extremes 194 
given by the trend normalized by the stationary model results at 2- (a), 10- (b), and 100-year (c) 195 
return levels for 1-, 6-, 12- and 24 h durations (subscripts 1-4). Dots mark grids with significant 196 
trends (𝛼 ≤ 0.05). 197 

 198 
We observe distinct spatial- and duration-dependent (Fig. 1 e-g) patterns of the non-stationarity. 199 
From the hourly to the daily durations, the clusters of high-degree non-stationarity tend to shrink 200 
and move northward; the fraction of area with stationary rainfall extremes (i.e., low significance 201 
level of non-stationarity) also expands. North-central and eastern Guangzhou and northwestern 202 
Huizhou exhibit consistent increasing intensities for all return periods and durations, while 203 
negative-trend clusters intrude towards inland from the southern coastlines especially for long 204 
durations (12- to 24-hour). Accordingly, as the duration increases, less grids are detected to favor 205 
nonstationary models (Fig. S5) despite the punishment of Akaike Information Criterion (AIC) 206 
score due to the increasing number of model parameters (Supporting Text S2); all the cities except 207 
Zhaoqing and Jiangmen, both at western GBA, prefer nonstationary models to the stationary one 208 
(Fig. S6). Nonstationary models are almost (>98% of the grids) always preferred rather than the 209 
stationary one purely based on AIC, for all the durations (Fig. S5). 210 

3.2 Controls of urbanization degree 211 

The GBA has experienced rapid urbanization, where the urban land cover fraction increased from 212 
5% in 1980 to 15% in 2018 (Fig. S4). Remarkably higher rates of mean annual air temperature 213 
(𝑇/444) during 1991-2020 (P2) are observed compared with 1960-1990 (P1) (Fig. 2a). The classified 214 
rural and urban grids have similar trends of 𝑇/444  (+0.080℃/10yr and +0.084℃/10yr in P1, 215 
+0.243℃/10yr and +0.237℃/10yr in P2, for urban and rural areas respectively). However, 216 
outstanding differences in rainfall extremes between the rural and urban groups can be observed 217 
across different durations (Fig. 2b). The urban group sees larger trends than the rural group for 218 
short durations (1-2 hours), while the relationship is reversed for longer durations (6-24 hours), 219 
and the 3-hour duration appears to be a threshold for such rural-urban contrast. Furthermore, the 220 
trends in P2 are consistently larger than those in P1, in align with the trends of mean surface 221 
temperature.  222 

The regional non-stationarity viewed from the mediant of 10-year intensity of all grids in the 223 
corresponding groups (Fig. 2c-e) agree with the mean statistics in Fig. 2b. Interestingly, during P2, 224 
the 1-hour 10-year rainfall intensity increases at a rate much faster in urban areas (+1.88 225 
mm/hr/10yr, 95% CI [1.79, 1.96]) than in rural areas (+0.94 mm/hr/10yr, 95% CI [0.90, 0.98]) 226 
(Fig. 2c). However, the discrepancy reduces at the 6-hour duration (Fig. 2d), and then reverses at 227 
the 24-hour duration (+0.045 mm/hr/10yr, 95% CI [0.001, 0.009], versus +0.210 mm/hr/10yr, 95% 228 
CI [0.195, 0.226], Fig. 2e). The above results educe the necessity to differentiate time scales 229 
according to the degree of urbanization when considering long-term flood risk assessment at 230 
regional or larger spatial scale.  231 
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3.3 Changes in potential climate drivers 232 

The sources of rainfall extremes non-stationarity are likely contributed by changing atmospheric 233 
conditions at local, regional and global scales (Slater et al., 2021). Heavy rainfall events mainly 234 
occur over southern China during the East Asia summer monsoon (MS) and tropical cyclone (TC) 235 
landfall (Lai et al., 2020; Tang et al., 2021). In the Pearl River Basin where the GBA is located, 236 
mesoscale convective systems (MCS) contribute to a significant portion of rainfall extremes during 237 
monsoons, particularly for the Pre-Meiyu and Meiyu period (mainly in May and June) when 238 
southwesterlies prevail (D. Chen et al., 2019; Cheng et al., 2022). We identify the rainfall extremes 239 
(≥ 99th percentiles) of each grid in association with one of the five groups of associated climate 240 
activities, namely TC, MCS during summer and fall-to-early winter MS periods, and other 241 
activities during the two MS periods, and repeat the nonstationary frequency analysis while 242 
excluding the AM associated with each type individually (Methods see Supplementary Text S4). 243 
We find that summer MCSs and TCs contribute the most (> 10%) to the stationary return level for 244 
1-hour and 24-hour durations (Fig. 2f-h), respectively, and they are comparably important for the 245 
6-hour duration, consistent with the typical lifetime of the associated weather systems (P. Li et al., 246 
2020; L. Liu & Wang, 2020). Summer MSs also contribute non-negligibly for the three durations 247 
(1-5%). While TCs account for a larger fraction of rainfall extremes for longer durations (increases 248 
from 18% to 34%, from 1-hour to 24-hour durations), the trend of the percentage contribution 249 
gradually decreases. Although slowdown of TCs and increasing stalling frequencies are expected 250 
to bring higher total precipitation to costal region such as the Pearl River Delta (Hall & Kossin, 251 
2019; Lai et al., 2020; L. Zhang et al., 2023), we also observe a decreased total duration of TC-252 
induced rainfall extremes in the GBA (Fig. S7) align with the decreased contribution to the 253 
occurrences of rainfall extremes (≥ 99th percentiles), consistent with the declining TC frequencies 254 
under global warming (Chand et al., 2022) particularly in low latitudes (Yamaguchi et al., 2020). 255 
Pronounced growing contribution of summer MS to rainfall extremes particularly in urban area is 256 
observed, suggesting that smaller-scale convective systems as well as monsoonal activities 257 
increasingly influence the non-stationarity. In fact, meso-𝛽- to meso-𝛾- scale storms (2-200 km) 258 
constitute a considerable portion of extreme rainfall events in the GBA (X. Sun et al., 2021), but 259 
are likely to be incorporated in the MS group due to the resolution limitation of the gridded infrared 260 
brightness temperature data (4-30 km) (Cheng et al., 2022; X. Huang et al., 2018). In addition, the 261 
change of contribution of MCSs is relatively milder, and fall-to-early winter activities remain a 262 
stable contribution. Besides the 10-year return period presented above, similar patterns are found 263 
for 2-year (Fig. S8) and 100-year (Fig. S9) return periods albeit the confidence interval expands 264 
with the return period. 265 



Accepted Manuscript of Geophysical Research Letters 

9 
 

 266 

Fig. 2. Non-stationarity in rainfall extremes distinguishing urban and rural areas, and 267 
sensitivity to potential climate drivers (10-year return level). a, the median surface temperature 268 
time series and fitted linear curves over the rural and urban areas for Period 1 (1960-1990) and 269 
Period 2 (1991-2020). b, trends at different durations for rural and urban groups. c-e, the median 270 
rainfall intensity and linear trends for rural and urban areas in Period 1 and Period 2 for 1-hour, 6-271 
hour, and 24-hour durations, respectively. g-h, Sensitivity of different climate activities on the 10-272 
year return level. ∆𝑃(0 is the percentage deviation of mean 10-year return level of the tested group 273 
from the results including all the activities; ∆𝑇𝑟1 is the annual trend of the percentage contribution 274 
to rainfall extremes. The Doughnut Charts to the top-right corner show the 30-year averaged 275 
percentage contribution of each climate activity group, with inner and outer circles showing rural 276 
and urban areas, respectively. 277 

 278 
3.4 Temperature scaling of the regional non-stationarity 279 



Accepted Manuscript of Geophysical Research Letters 

10 
 

Nonstationary rainfall intensities for various return periods are scaled with the mean annual surface 280 
temperature to obtain the NS-RL scaling (Section 2.4). The overall scaling rates vary around the 281 
C-C (~ 7%/℃) and super C-C rate (14%/℃), peaking at 1-hour (30%/℃), 6-hour (16%/℃) and 282 
24-hour (13%/℃) durations for 2-year, 10-year and 100-year return periods respectively, with 283 
pronounced rural-urban contrasts (Fig. 3). Urban areas peak at 1-hour duration, reaching nearly 284 
40%/℃ (highest for all the cases) and maintaining about 34%/℃ at the 3-hour duration, and tends 285 
to decay for longer durations and return periods. Conversely, rural areas see the peaks equal to or 286 
longer than 9-hour duration with smaller variabilities among all the durations. Although short-287 
duration scaling rates tend to decay with an increasing return period as well, they even see an 288 
increase for the longer durations (>12 hours). This pattern (Fig. 3) agrees well with the scaling 289 
rates directly calculated based on the regional median rainfall intensities (Fig. S10). In addition, 290 
most (80%) of the urbanized area in the GBA is in the low-lying region (elevation <60 m) (Fig. 291 
S6), such that the inherent elevation and temperature differences between the urban and rural areas 292 
may entangle with the effects of land cover. We thus re-calculate the scaling rates excluding the 293 
grids with an elevation >100 m (remaining 62% of the entire area). The results show marginal 294 
differences in terms of scaling rate magnitudes and rural-urban contrasts (Fig. S11), underlining 295 
the role of land cover conditions in the sub-regional differences in the NS-RL scaling.  296 

Although the NS-RL scaling does not adopt event-associated temperature as the C-C relation, its 297 
remarkably large variabilities across time scales and the sensitivities to land cover conditions 298 
signify strong dynamic controls rather than thermodynamic conditions (Berg et al., 2013). While 299 
a higher temperature range is generally favorable for convective precipitation (Fowler et al., 2021), 300 
negative slopes of temperature-precipitation scaling are widely observed when temperature 301 
exceeds a certain threshold (Berg et al., 2013; Oh et al., 2021; Visser et al., 2021), which can be 302 
explained by the lack of moisture availability as relative humidity decreases (or saturation deficit 303 
increases) at high temperatures (Chan et al., 2016; X. Sun & Wang, 2022). Because urban areas 304 
have higher base temperature than the rural areas (Fig. 2a), longer-duration events in the urban 305 
area are more susceptible to such humidity limitation compared to the rural area, leading to a much 306 
smaller scaling rates under the same rate of regional warming (Fig. 3). The negative contribution 307 
of urbanization on daily-scale precipitation extremes, attributed to the urban dry island effects, are 308 
observed in many China coastal urban agglomerations including the GBA (Lin et al., 2020), in 309 
contrast to the enhancement for short-lived rainfall extremes by the urban heat island effects 310 
(Chang et al., 2023; J. Huang et al., 2022; Y. Li et al., 2020). In addition, the downwind effects 311 
(Section 2.1) of urbanization add further complexities to the scaling pattern due to potential 312 
nonlocality of the non-stationarity, and the distance depends on organization degree of convection 313 
(Naylor & Mulholland, 2023). An improved understanding of the underlying dynamics in control 314 
requires the differentiation of rain types in association with atmospheric dynamics at event-based 315 
level. 316 
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 317 

Fig. 3. NS-RL scaling rates for (a) 2-year, (b) 10-year and (c) 100-year return periods. Light 318 
and dark dashed lines denote the C-C scaling rate (7%/℃) and super C-C rate (14%/℃, or C-319 
C×2), respectively. 320 
 321 

4 Discussion and Conclusion 322 

Our study demonstrates cross-timescale and space-continuous non-stationarity of rainfall extremes 323 
over a rapidly developing megalopolis. We detect more severe rainfall extremes over the north-324 
central region of the agglomerations as opposed to the southern coastlines. We also reveal the 325 
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major contribution by urban areas to the positive non-stationarity for short-duration (< 6-hour) 326 
extremes in contrast to more uniform uplift for all durations in the rural areas. These findings are 327 
further supported by the temperature-scaling performed for different return levels. Remarkably 328 
high short-duration scaling rates in urban areas, which are then waning with increasing durations, 329 
highlights the exacerbation of the rainfall extremes by urbanization at short time scales, on top of 330 
the overall intensification under the warming climate.  331 

Disputes naturally arise in previous studies regarding the yes-or-no questions – whether the rainfall 332 
extremes have nonstationary frequency, and whether to adopt nonstationary models to correct or 333 
refine local climate characterizations for infrastructure design (Agilan & Umamahesh, 2016; 334 
Ganguli & Coulibaly, 2017; Sarhadi & Soulis, 2017; Vu & Mishra, 2019; Westra et al., 2014; 335 
Yilmaz et al., 2014). However, the duration-dependent and spatially nonuniform nature of the non-336 
stationarity (e.g. Fig. 2b&3) presented by our study discourages an oversimplified answer 337 
considering the scale-dependent behaviors, which are essential factors to determine both flood risk 338 
and effectiveness of flood-protection measures (Yan et al., 2023). At the regional scale (~ 100 km), 339 
the ensemble of all the grids exhibits different extent of non-stationarity for urban and rural 340 
subgroups shown by the annual trends (Fig. 2b) and integrated in the NS-RL scaling (Fig. 3). At 341 
the local/grid scale (~ 10 km), significant spatial disparities exist (Fig. 1e-g), leading to distinct 342 
strategies to update IDF curves, for example, a clockwise rotation of IDF curves is expected in 343 
Shenzhen and Hong Kong, as opposed to Dongguan, while those of Guangdong may see an overall 344 
uplift. Additionally, meter-scale results (based on the gauges, shown in Fig. 1b&d) also deviate 345 
from the grid-scale ones, their representativeness in regional climatology should be evaluated upon 346 
the spatial scales applied. In brief, with the non-stationarity being perceived as a general case 347 
including the stationarity, we recommend depictions for the upper-tail statistics distinguishing the 348 
spatial and temporal scales of interest. 349 

This study is among the first to apply a multi-source merged and high spatiotemporal-resolution 350 
rainfall dataset to nonstationary frequency analysis, which avoid the drawbacks of sparse, 351 
localized, and uneven rain gauge coverage (Kidd et al., 2017; Lengfeld et al., 2020), the poor 352 
accuracy of satellite and reanalysis datasets (Alexander et al., 2019; Ali et al., 2021), and the high 353 
computational costs and input uncertainties of numerical weather model experiments (Alexander 354 
et al., 2019; X. Sun et al., 2021). However, finer-scale extreme events due to deep convection 355 
systems (~ 1km) (Lengfeld et al., 2020; Shepherd et al., 2002), as well as highly localized short-356 
duration, slow-moving storms around urban agglomerations (X. Sun et al., 2021), may still be 357 
missed by our blended dataset. Radar data are needed to capture the characteristics of sub-hourly 358 
rainfall extremes at 1 km resolution (Ayat et al., 2022; Lengfeld et al., 2020), but are not applied 359 
in this study due to unavailability for a long time span (> 20 years). This challenge is not unique 360 
to the Greater Bay Area and is a global challenge (Lengfeld et al., 2020). Future efforts to 361 
investigate such small spatiotemporal-scale extremes are imperative, which can be assisted by 362 
denser rain gauge networks (Kidd et al., 2017), radar reflectivity measurements (Ayat et al., 2022; 363 
Lengfeld et al., 2020), and numerical model simulations (Fung et al., 2021; Yang et al., 2019, 364 
2021). 365 

In summary, we provide systematic evidence on the exacerbation of rainfall extremes over the 366 
areas with higher degree of urbanization in a coastal megalopolis. Such exacerbation is nonlinearly 367 
biased towards short (~ 2-year) return periods and short durations (< 6-hour) particularly in urban 368 
areas. The tendency of more frequent ‘nuisance’ events may have less dramatic consequences but 369 
nonetheless pose recurrent challenges for urban transport and drainage infrastructure (Fowler et 370 
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al., 2021), which necessitates adaptation to increasing risk of flash floods and protection measures 371 
for vulnerable people (Yin et al., 2023). Such level of details is often not of concern at continental-372 
scale and event-based studies owing to coarse resolutions and small sample amount of rainfall 373 
records, respectively, but is essential to bridge the gap between atmospheric science and flood 374 
hydrology (Westra et al., 2014), and is important to both scientists and decision-makers.  375 
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