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Background: An increasing number of patients are being diagnosed with lung
adenocarcinoma, but there remains limited progress in enhancing prognostic
outcomes and improving survival rates for these patients. Genome instability is
considered a contributing factor, as it enables other hallmarks of cancer to acquire
functional capabilities, thus allowing cancer cells to survive, proliferate, and
disseminate. Despite the importance of genome instability in cancer
development, few studies have explored the prognostic signature associated
with genome instability for lung adenocarcinoma.

Methods: In the study, we randomly divided 397 lung adenocarcinoma patients
from The Cancer Genome Atlas database into a training group (n = 199) and a
testing group (n = 198). By calculating the cumulative counts of genomic
alterations for each patient in the training group, we distinguished the top 25%
and bottom 25% of patients. We then compared their gene expressions to identify
genome instability-related genes. Next, we used univariate and multivariate Cox
regression analyses to identify the prognostic signature. We also performed the
Kaplan–Meier survival analysis and the log-rank test to evaluate the performance
of the identified prognostic signature. The performance of the signature was
further validated in the testing group, in The Cancer Genome Atlas dataset, and in
external datasets. We also conducted a time-dependent receiver operating
characteristic analysis to compare our signature with established prognostic
signatures to demonstrate its potential clinical value.

Results: We identified GULPsig, which includes IGF2BP1, IGF2BP3, SMC1B,
CLDN6, and LY6K, as a prognostic signature for lung adenocarcinoma patients
from 42 genome instability-related genes. Based on the risk score of the risk
model with GULPsig, we successfully stratified the patients into high- and low-risk
groups according to the results of the Kaplan–Meier survival analysis and the log-
rank test. We further validated the performance of GULPsig as an independent
prognostic signature and observed that it outperformed established prognostic
signatures.

Conclusion: We provided new insights to explore the clinical application of
genome instability and identified GULPsig as a potential prognostic signature
for lung adenocarcinoma patients.
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1 Introduction

Lung cancer is one of the most frequently diagnosed cancer
types and the leading cause of cancer-related deaths worldwide
(Bray et al., 2018). Lung adenocarcinoma, the most prevalent
subtype of lung cancer, accounts for 40% of all lung cancer types
and continues to increase (Nagy-Mignotte et al., 2011; Myers and
Wallen, 2023). However, there has been limited progress in
improving prognostic outcomes and enhancing survival rates for
lung adenocarcinoma patients (Travis et al., 2015). Therefore, a
prognostic signature for lung adenocarcinoma would be highly
valuable for clinical management.

Genome instability, one of the hallmarks of cancer, is regarded
as a contributing factor for other hallmarks to acquire functional
capabilities that allow cancer cells to survive, proliferate, and
disseminate (Hanahan and Weinberg, 2011). Moreover, genome
instability has been proved to be a vital prognostic factor associated
with cancer progression and survival (Suzuki et al., 2003; Negrini
et al., 2010). Signatures related to genome instability have been
identified in certain types of cancers. For example, a prognostic
signature including 11 genome instability-derived genes was
identified for triple-negative breast cancer (Guo and Wang,
2021). A signature composed of five prognostic lncRNAs
associated with genome instability was identified in endometrial
cancer (Liu et al., 2022). Woo et al. (2021) identified circulating
tumor DNA–genomic instability I-scores as a prognostic marker for
pancreatic cancer survival, and Sun et al. (2021) found a prognostic
signature composed of six lncRNAs associated with genome
instability for gastric cancer. However, few studies have explored
the association between genome instability and survival prediction
in lung adenocarcinoma.

Genome instability is defined as an increased propensity for
genomic alterations, including somatic mutations, copy number
variations, and fusion genes (Shen, 2011). Patients with various
genomic alterations may be affected differently. We assumed that
there could be a signal associated with genome instability that plays a
role in tumor development and drug resistance and that this
potential signal could serve as a prognostic signature to predict
the overall survival of lung adenocarcinoma patients. To identify the
signature, we proposed comparing the gene expression of patients
with various genomic alternations, which can be measured by
integrating somatic mutations, copy number variations, and
fusion genes.

In the study, we quantified genomic alternations by calculating
the cumulative counts of somatic mutations, copy number
variations, and fusion genes. We then selected the top 25% of
patients as the genomic stable-like (GS) group and the bottom
25% as the genomic unstable-like (GU) group from the ranked cases
in ascending order. By comparing the gene expressions between the
GS and GU groups, we identified 42 genes associated with genome
instability. Furthermore, from these 42 genes, we identified
GULPsig, composed of IGF2BP1, IGF2BP3, SMC1B, CLDN6, and
LY6K, as a prognostic signature for predicting overall survival.
Subsequently, we constructed a risk model with GULPsig and
divided the patients into high- and low-risk groups based on the
score of the risk model to predict the overall survival of lung
adenocarcinoma patients. We further evaluated the independence
of GULPsig as a prognostic signature and compared its performance
with established prognostic signatures. Overall, our study found
GULPsig as an independent prognostic signature for overall survival
prediction in clinical management for lung adenocarcinoma
patients.

FIGURE 1
Methodology of the study.
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2 Materials and methods

2.1 Data acquisition

The genomic alterations, gene expression profiles, and
corresponding clinical data of lung adenocarcinoma from The
Cancer Genome Atlas (TCGA) Pan-Cancer Atlas dataset were
obtained from the cBioPortal database (Cerami et al., 2012; Gao
et al., 2013). The dataset includes somatic mutations and fusion
genes of 566 patients, copy number variations of 511 patients,
mRNA expressions of 510 patients, and clinical data of
566 patients. After data integration, data of 397 patients were
used to construct and evaluate the prognostic risk model. The
gene expression data were batch-normalized from Illumina
HiSeq_RNASeq V2. In addition, we collected the expression
data and corresponding clinical data of 133 patients in
GSE42127 (Hight et al., 2020) and 85 patients in GSE30219
(Rousseaux et al., 2013) from the Gene Expression Omnibus
(GEO) database to validate the performance of the risk model. To
access the GEO data, we used the R package “GEOquery” (Davis
and Meltzer, 2007).

2.2 Identification of genome instability-
related genes

To visualize the frequency of somatic mutations, copy number
variations, and fusion genes for each gene in each patient, we
developed a binary matrix with genes in rows and patients in
columns to represent the genome events independently for the
397 patients in the TCGA dataset. Then, we computed the sum
of the three binary matrices to obtain the total genome events for
each patient. Based on the results, we sorted the patients and
classified the top 25% as the genomic stable-like (GS) group and
the bottom 25% as the genomic unstable-like (GU) group.

For the gene expression data, we used a log2 (x + 1)-transformed
RSEM normalized count and then performed quantile
normalization on the data. Only genes that had 10 counts or
more in at least 10 samples were kept for differential expression
analysis. The R package “limma” (Ritchie et al., 2015) was used to
compare the gene expression between the GU and GS groups. The
differentially expressed genes (DEGs) were identified with a
Benjamini–Hochberg (BH)-adjusted p-value <0.05 and logFC
(fold-change) > 2.

TABLE 1 Clinical information for patients with lung adenocarcinoma.

Categories Training group Testing group TCGA dataset p-value *

(n = 199) (n = 198) (n = 397)

Age (%) Age ≤ 65 88 (44.22) 99 (50.00) 187 (47.10) 0.813

Age >65 103 (51.76) 90 (45.45) 193 (48.61)

Unknown 8 (4.02) 9 (4.55) 17 (4.28)

Sex (%) Male 98 (49.25) 87 (43.94) 185 (46.60) 0.570

Female 101 (50.75) 111 (56.06) 212 (53.40)

Tumor stage (%) I 105 (52.76) 112 (56.57) 217 (54.66) 0.493

II 54 (27.14) 37 (18.69) 91 (22.92)

III 28 (14.07) 39 (19.70) 67 (16.88)

IV 11 (5.53) 9 (4.55) 20 (5.04)

Unknown 1 (0.50) 1 (0.51) 2 (0.50)

T stage (%) TX/T1 68 (34.17) 63 (31.82) 131 (33.00) 0.883

T2/T3/T4 131 (65.83) 135 (68.18) 266 (67.00)

M stage (%) MX/M0 188 (94.47) 185 (93.43) 373 (93.95) 0.923

M1 11 (5.53) 9 (4.55) 20 (5.04)

Unknown 0 (0.00) 4 (2.02) 4 (1.01)

N stage (%) NX/N0 128 (64.32) 136 (68.69) 264 (66.50) 0.609

N1/N2/N3 71 (35.68) 61 (30.81) 132 (33.25)

Unknown 0 (0.00) 1 (0.51) 1 (0.25)

OS status (%) Living 131 (65.83) 131 (66.16) 262 (65.99) 0.998

Deceased 68 (34.17) 67 (33.84) 135 (34.01)

*p-value: chi-square test.
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2.3 Functional enrichment analysis of
genome instability-related genes

The functions enrichGO and enrichKEGG in the R package
“clusterProfiler” (Wu et al., 2021) were applied for enrichment
analysis and annotation of the Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genome (KEGG) pathways for DEGs.
We identified the biological properties of the DEGs and
visualized the DEG enrichment of molecular function (MF),
cellular component (CC), biological process (BP), and KEGG
pathways. A BH-adjusted p-value <0.05 was considered
statistically significant.

2.4 Construction and validation of the risk
model

The 397 patients in the TCGA dataset were randomly divided
into a training group and a testing group, with a balanced proportion

of living and deceased overall survival status. We used the
199 patients in the training group to identify the prognostic
signature and construct the risk model. The univariate Cox
proportional hazards regression analysis was applied to evaluate
the relationship between the expression level of each gene and the
overall survival of patients. Only a gene with a p-value of <0.05 was
regarded as a statistically significant survival predictor. Next, we
applied the multivariate Cox regression model to construct the risk
model. To evaluate the risk of each patient, we used the following
risk score formula:

Overall risk score ORS( ) � ∑
N

i�1
Coef i × Expri( ),

where N is the total number of genes, Expr is the normalized gene
expression value, and Coef is the estimated regression coefficient
value of the gene. We calculated the ORS for each patient with this
formula and then sorted them. To divide the patients into high-
and low-risk groups based on ORS, we used the function “surv_
cutpoint” in the R package “survminer” to determine the optimal
cut-off threshold. The Kaplan–Meier (KM) survival analysis and a
log-rank test were performed with the R package “survival” and
“survminer.” Next, we used the R package “e1071” to train a
support vector machine (SVM) classifier using the expression data
of selected genes and the identified groups. The classifier’s
performance was evaluated with 10-fold cross-validation using
the R package “caret.” Similarly, the aforementioned operations
were conducted on the 198 patients in the testing group and
397 patients in the TCGA dataset. To further validate the
performance of the risk model, we applied the same operations
to 133 patients in GSE42127 (Tang et al., 2013; Hight et al., 2020)

FIGURE 2
Identification of genome instability-related genes in lung adenocarcinoma. (A–C) Boxplots of cumulative counts for somatic mutations, copy
number variations, and fusion genes between the GS and GU groups. (D)Hierarchical cluster of the patients in the GS and GU groups with the expression
of 42 genome instability-related genes. (E) GO terms for functional enrichment of the 42 genome instability-related genes.

TABLE 2 Univariate Cox regression analysis for five of the 42 genome
instability-derived genes.

Genes HR 95% CI for HR p-value

IGF2BP3 1.23 1.10–1.38 <0.001

SMC1B 1.12 1.02–1.22 0.012

IGF2BP1 1.14 1.06–1.22 <0.001

CLDN6 1.10 1.03–1.18 0.006

LY6K 1.14 1.05–1.24 0.002
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and 85 patients in GSE30219 (Rousseaux et al., 2013).
Additionally, we performed a univariate and multivariate Cox
proportional hazards regression, as well as data stratification
analysis, to identify the independence of ORS as an
independent prognostic indicator.

2.5 Evaluation of the risk model

We applied the TCGA dataset to construct the established
benchmarks following the instructions in the respective
publications. The R package “survivalROC” was used to
conduct a time-dependent receiver operating characteristic
(ROC) analysis and calculate the area under the curve (AUC).
The performance of the risk model was assessed by measuring
the AUC.

2.6 Statistical analysis

A Wilcoxon rank-sum test was performed on the continuous
variables, and a chi-square test was performed for categorical data to
compare the differences, as appropriate. Statistical significance was
defined when p < 0.05. Statistical analysis and visualization were
performed with R version 4.2.1.

3 Results

3.1 Identification of genome instability-
related genes

Figure 1 illustrates the methodology of the study. We involved
397 patients in the TCGA dataset and briefly addressed the clinical
characteristics in Table 1. Furthermore, we calculated the
cumulative counts of genomic alterations for each patient,
consisting of somatic mutations (Figure 2A), copy number
variations (Figure 2B), and fusion genes (Figure 2C). We also
summarized the genomic alterations and sorted the counts in
ascending order. The top 25% of the lung adenocarcinoma
patients (n = 99) were defined as the GS group, and the bottom
25% (n = 99) were defined as the GU group. We performed a
statistical analysis of the clinical characteristics of the GU and GS
groups and found no association (Supplementary Table S1,
p > 0.05).

Subsequently, we explored the differences in mRNA
expression between the GU and GS groups and found
42 differentially expressed genes (Figure 2D). Among these
genes, ROS1 was reported as an oncogenic driver in lung
cancer (Rikova et al., 2007), and tyrosine kinase inhibitors
(TKIs) targeting ROS1 have been found to block tumor
growth and provide clinical benefits for patients (D’Angelo

FIGURE 3
Identification of GULPsig for overall survival prediction. (A) Forest plot to show the hazard ratio for each gene in GULPsig. (B) Survival curve for the
high- and low-risk groups. (C) Expression of each gene in GULPsig between the high- and low-risk groups. (D) 1-, 3-, and 5-year ROC curves for GULPsig.
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et al., 2020; Shaw et al., 2014). MAGEA2, MAGEA3, MAGEA4,
MAGEA6, and MEGEA12, members of the MAGE family, have
been studied for their potential for cancer immunotherapy
(Barker and Salehi, 2002). MAGEs were observed to be
broadly expressed in many tumor types, such as lung cancer
(Tajima et al., 2003; Gure et al., 2005; Kim et al., 2012), melanoma

(Brasseur et al., 1995; Barrow et al., 2006), brain cancer (Scarcella
et al., 1999), colorectal carcinoma (Mori et al., 1996), prostate
cancer (Karpf et al., 2009), and breast cancer (Otte et al., 2001).
To identify the potential functions of these 42 genes, we
performed functional enrichment analysis, which indicated
that these genes are involved mainly in the respiratory gaseous

FIGURE 4
Validation of GULPsig as a prognostic signature. (A) Survival curve for the high- and low-risk groups in the testing dataset. (B) 1-, 3-, and 5-year ROC
curves for GULPsig. (C) Expression of each gene in GULPsig between the high- and low-risk groups in the testing dataset. (D) Survival curve for the high-
and low-risk groups in GSE42127. (E) Survival curve for the high- and low-risk groups in GSE30219.
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exchange by respiratory system (BP), histone deacetylase binding
(MF) and endocytic vesicle, collagen trimer, lamellar body,
multivesicular body, and clathrin-coated endocytic vesicle
(CC) (Figure 2E).

3.2 Screening genome instability-derived
genes as GULPsig

To explore the potential prognostic value of the 42 genome
instability-related genes, we randomly divided all 397 samples into a

training group (n = 199) and a testing group (n = 198) with the same
size of living and deceased overall survival status in each
group. Next, we conducted a univariate Cox regression analysis
with samples in the training group to identify the prognostic-related
genes (Supplementary Table S2). Among the genes, IGF2BP3,
SMC1B, IGF2BP1, CLDN6, and LY6K were found to be closely
associated with overall survival (Table 2, p < 0.05). The combined
signature of the five genes was named GULPsig. IGF2BP1 and
IGF2BP3 are both members of the IGF2BP family (Bell et al.,
2013). IGF2BP1 was found to promote proliferation (Rebucci
et al., 2015), invasion (Zhou et al., 2015), and chemoresistance

TABLE 3 Univariate and multivariate Cox regression analyses.

Characteristics Univariate analysis Multivariate analysis

HR 95% CI p-value HR 95% CI p-value

Age 1.01 0.99–1.02 0.470 1.02 1.00–1.04 0.024

Sex 1.04 0.74–1.47 0.812 0.96 0.67–1.36 0.807

Tumor stage 1.68 1.43–1.98 <0.001 1.51 1.16–1.97 0.002

T stage 1.62 1.30–2.03 <0.001 1.28 1.02–1.61 0.033

M stage 1.53 1.08–2.17 0.017 1.01 0.68–1.51 0.958

N stage 1.58 1.30–1.93 <0.001 1.01 0.76–1.33 0.964

GULPsig 2.08 1.58–2.74 <0.001 2.09 1.55–2.80 <0.001

FIGURE 5
Assessment of GULPsig as an independent prognostic signature. (A, B) Survival curve for the high- and low-risk groups among patients
aged >65 and ≤65. (C, D) Survival curve for the high- and low-risk groups amongmales and females. (E, F) Survival curve for the high- and low-risk groups
among patients at tumor stage I/II and tumor stage III/IV.
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(Faye et al., 2015). In addition, its overexpression was associated
with poor prognosis (Gu et al., 2004; Bell et al., 2015) in various types
of cancer. There were also reports that the overexpression of
IGF2BP3 was closely related to poor prognosis in endometrial
carcinoma (Fadare et al., 2013), oral squamous cell carcinoma
(Lin et al., 2011), colorectal cancer (Shantha Kumara et al.,
2015), ovarian cancer (Hsu et al., 2015), and lung
adenocarcinoma (Guo et al., 2021). The overexpression of
SMC1B was found to be associated with poor overall survival in
hepatocellular carcinoma (Nie et al., 2021). CLDN6 was also found
to play a role in cancer cell migration and invasion in breast cancer
(Song et al., 2019), hepatocellular carcinoma (Lu et al., 2021), and
gastric cancer (Yu et al., 2019). LY6K was found to be a molecular
marker for non-small-cell lung carcinoma (Ishikawa et al., 2007),
head-and-neck squamous cell carcinoma (de Nooij-van Dalen et al.,
2003), breast cancer (Kong et al., 2012), bladder cancer (Matsuda
et al., 2011), and esophageal squamous cell carcinoma (Zhang et al.,
2012).

3.3 Construction of a risk model with
GULPsig

We performed a multivariate Cox regression analysis
(Figure 3A) and constructed a risk model based on the
expression of GULPsig and the corresponding coefficients of
multivariate Cox regression to evaluate the prognostic potential
of GULPsig. The formula of the risk model is ORS = (0.141 ×
expression IGF2BP3) + (0.009 × expression SMC1B) + (0.053 ×
expression IGF2BP1) + (0.034 × expression CLDN6) + (0.069 ×
expression LY6K). The coefficients of GULPsig were all positive,
suggesting that upregulated expressions of GULPsig are associated
with poor prognosis. Then, we divided these patients into high-
and low-risk groups according to the optimal cut-off threshold of
2.124. Patients whose scores were higher than the threshold were
classified as high risk, and those whose scores were equal to or
lower than the threshold were classified as low risk. We performed

a chi-square test of association for the clinical characteristics
between the high- and low-risk groups in the training group. A
statistically significant association (p < 0.001) was found between
the overall survival status and the risk groups, suggesting an
association between the overall survival status and the risk
groups (Supplementary Table S3).

To evaluate the performance of the prognostic risk model, we
conducted the KM survival analysis to estimate the survival
probability and the log-rank test to compare the survival curves
of the high- and low-risk groups (Figure 3B). We found that the
overall survival of the low-risk group was significantly better than
that of the high-risk group (p < 0.001). We also checked the
expression of each gene within GULPsig for both the high- and
low-risk groups. The results showed that the expression of each gene
in the high-risk group was significantly higher than that in the low-
risk group (Figure 3C).

We assessed the specificity and sensitivity of GULPsig using
ROC curve analysis and calculated AUC to evaluate its performance
in overall survival prediction at 1, 3, and 5 years. The AUC for 1, 3,
and 5 years was 0.661, 0.705, and 0.715, respectively, suggesting that
GULPsig is better for predicting overall survival at 5 years
(Figure 3D). In addition, the results of SVM and 10-fold cross-
validation showed that GULPsig is effective in classifying patients
into high- and low-risk groups (Supplementary Figure S3D).

3.4 Validation of GULPsig as a prognostic
signature

To further evaluate the risk model with GULPsig, we divided the
testing group into high- and low-risk groups according to the
optimal cut-off threshold. In the testing group, 76 patients were
classified into the high-risk group and 122 patients into the low-risk
group. The chi-square test of association showed a significant
association between the overall survival status and the risk
groups (Supplementary Table S3, p < 0.001). Moreover, the
results of the KM survival analysis and the log-rank test showed

FIGURE 6
Comparison of GULPsig with established prognostic signatures. (A) ROC curves comparing GULPsig with traditional clinical characteristics. (B) ROC
curves comparing GULPsig with the state-of-the-art prognostic signatures.
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a significant difference between the high- and low-risk groups
(Figure 4A, p < 0.01). The expression of each gene in GULPsig
was significantly higher in the high-risk group than in the low-risk
group (Figure 4C, p < 0.01). Moreover, the AUC for 1, 3, and 5 years
in the testing group was 0.672, 0.558, and 0.686, respectively,
suggesting that GULPsig was more effective in predicting overall
survival at 5 years (Figure 4B). Additionally, the results of SVM and
10-fold cross-validation suggest the effectiveness of GULPsig in
classifying patients into high- and low-risk groups in the testing
dataset (Supplementary Figure S2B).

We also validated the prognostic value of the risk model with
GULPsig on the TCGA dataset. Based on the optimal cut-off
threshold, we classified 143 patients in the high-risk group and
254 patients in the low-risk group. We observed a significant
association between the overall survival status and the risk groups
(Supplementary Table S3, p < 0.001). The KM survival analysis
and the log-rank test demonstrated that patients in the low-risk
group had a significantly better prognosis than those in the high-
risk group (Supplementary Figure S3A, p < 0.001). Furthermore,
the expression of each gene in GULPsig was significantly higher
in the high-risk group than in the low-risk group (Supplementary
Figure S3B, p < 0.001). The AUC for 1, 3, and 5 years was 0.677,
0.634, and 0.697, respectively, indicating that GULPsig is better at
predicting overall survival at 5 years (Supplementary Figure
S3C). Moreover, SVM and 10-fold cross-validation showed the
robustness of GULPsig for classifying patients into high- and
low-risk groups (Supplementary Figure S3D). We used
GSE42127 and GSE30219 to further validate the performance
of GULPsig. When we applied the risk model to GSE42127, it
classified 49 patients as high risk and 84 patients as low risk. The
KM survival analysis and the log-rank test showed high
significance between the high- and low-risk groups
(Figure 4D, p < 0.001). For GSE30219, the model classified
11 patients as high risk and 74 as low risk. Similarly, a
significant difference between the high-risk and low-risk
groups was observed in the results of the KM analysis and the
log-rank test (Figure 4E, p < 0.001).

3.5 Assessment of GULPsig as an
independent prognostic signature

To explore whether GULPsig was an independent prognostic
signature from traditional clinical characteristics, we performed
univariate and multivariate Cox regression analyses using the
TCGA dataset. The results indicated that GULPsig (p < 0.001) is
significantly associated with overall survival when adjustments
are made for age, sex, tumor stage, T stage, M stage, and N stage
(Table 3). Additionally, we divided the TCGA dataset into two
groups based on age (>65 and ≤65), sex (male and female), and
tumor stage (I/II and III/IV). Then, we used the risk model and
categorized the patients in each group into high- and low-risk
categories independently. The results demonstrated a significant
difference between the high- and low-risk groups at age >65
(Figure 5A, p < 0.01), age ≤65 (Figure 5B, p < 0.01), male
(Figure 5C, p < 0.05), female (Figure 5D, p < 0.01), tumor
stage I/II (Figure 5E, p < 0.01), and tumor stage III/IV
(Figure 5F, p < 0.01). These results demonstrate the

independence of GULPsig as a prognostic signature, regardless
of age, sex, and tumor stage.

3.6 Comparison of GULPsig with established
prognostic signatures

To further evaluate the performance of GULPsig, we compared
GULPsig with traditional clinical characteristics, including age, sex,
tumor stage, T stage, M stage, and N stage. By assessing the
specificity and sensitivity using the ROC curve analysis and
calculating the AUC, we found that the AUC of GULPsig (0.697)
was larger than that of age (0.541), sex (0.457), tumor stage (0.664),
T stage (0.567), M stage (0.549), and N stage (0.615), suggesting the
better performance of GULPsig (Figure 6A). We also compared the
performance of GULPsig with that of the state-of-the-art prognostic
signatures, including the 7-gene signature (Al-Dherasi et al., 2021),
10-gene signature (Jiang et al., 2021), 4-gene signature (Liu et al.,
2019), 9-gene signature (Zhang et al., 2019), and 6-gene signature
(Xie and Xie, 2019). Still, the AUC of GULPsig (0.697) was larger
than that of the 7-gene signature (0.609), 10-gene signature (0.524),
4-gene signature (0.654), 9-gene signature (0.655), and 6-gene
signature (0.577), indicating that GULPsig performed better at
overall survival prediction than the state-of-the-art prognostic
signatures (Figure 6B).

4 Discussion

Traditional prognostic signatures for lung adenocarcinoma
patients, such as age (Tas et al., 2013), sex (Radkiewicz et al.,
2019), TNM stage, and tumor stage (Goldstraw et al., 2007), have
provided valuable insights. However, the absence of molecular
characteristics limits the comprehensiveness and accuracy of
prognostic signatures. As our study has shown, incorporating
genome instability-derived genes can substantially improve the
accuracy of overall survival prediction for lung adenocarcinoma
patients. We initially identified 42 genome instability-related genes
by analyzing the gene expression profiles of patients with various
genomic alternations. Using functional analysis, we found that these
genes focused mainly on the biological process of the respiratory
gaseous exchange by the respiratory system and the molecular
function of histone deacetylase binding, which play vital roles in
studies of molecular mechanisms for lung cancer (Valavanidis et al.,
2013; Sanaei and Kavoosi, 2019; Rolfo et al., 2022; Seguin et al.,
2022). Furthermore, we identified GULPsig, which includes
IGF2BP1, IGF2BP3, SMC1B, CLDN6, and LY6K, from these
42 genome instability-related genes. Each gene in GULPsig has
been reported to be involved in tumor development (Bell et al., 2013;
Du et al., 2021; Nie et al., 2021; Guo D et al., 2022). We also
constructed a risk model with GULPsig and stratified the patients
into high- and low-risk groups based on the optimal cut-off
threshold. Then, we validated the performance of GULPsig in
various cohorts, including the testing group, TCGA dataset, and
external datasets GSE42127 and GSE30219. These results further
corroborated the effectiveness of GULPsig as a reliable and robust
prognostic signature for lung adenocarcinoma patients. As we
continued to evaluate the independence of GULPsig as a
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prognostic signature, irrespective of factors such as age, gender, and
tumor stage, we embarked on a more comprehensive investigation
of its potential clinical implications. By comparing it with
established prognostic signatures, our findings revealed that
GULPsig surpassed both traditional clinical characteristics and
state-of-the-art prognostic signatures in performance,
highlighting its potential for enhanced clinical applications in
lung adenocarcinoma prognosis.

To the best of our knowledge, this study is the first to integrate
somatic mutations, copy number variations, and fusion genes to
comprehensively measure genome instability. Prior studies typically
considered only one or two genomic alternations (Guo and Wang,
2021; Song et al., 2021; Chen et al., 2022). Our approach offers a
more holistic representation of genome instability and its impact on
prognostic signatures. Furthermore, while Guo C R et al. (2022) and
Peng et al. (2021) identified genome instability-derived lncRNA
signatures for lung adenocarcinoma patients, our study focused on
mRNA-based signatures. An mRNA-based signature allows for a
more direct assessment of gene expression, which, in turn, provides
valuable insights into the functional consequences of genome
instability. Additionally, focusing on mRNA can facilitate the
identification of novel therapeutic targets and enrich our
understanding of the molecular mechanisms driving tumor
progression. This distinct approach underscores the unique
contribution of our study to the field of lung adenocarcinoma
prognostic research.

Our study has some limitations. The method of quantifying
genome instability using genomic alterations needs further
exploration. While we have pinpointed GULPsig as a potential
prognostic signature for overall survival prediction, the hidden
biological mechanisms related to GULPsig are still unclear, so
further investigation is needed.

In conclusion, we identified GULPsig, consisting of IGF2BP1,
IGF2BP3, SMC1B, CLDN6, and LY6K, as a potential prognostic
signature for lung adenocarcinoma patients. However, further
studies are required for clinical applications, such as the further
validation of biological experiments and the exploration of hidden
biological mechanisms.
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